1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // PLEASE READ: Do you really need a singleton?
6 //
7 // Singletons make it hard to determine the lifetime of an object, which can
8 // lead to buggy code and spurious crashes.
9 //
10 // Instead of adding another singleton into the mix, try to identify either:
11 //   a) An existing singleton that can manage your object's lifetime
12 //   b) Locations where you can deterministically create the object and pass
13 //      into other objects
14 //
15 // If you absolutely need a singleton, please keep them as trivial as possible
16 // and ideally a leaf dependency. Singletons get problematic when they attempt
17 // to do too much in their destructor or have circular dependencies.
18 
19 #ifndef BASE_MEMORY_SINGLETON_H_
20 #define BASE_MEMORY_SINGLETON_H_
21 
22 #include "base/at_exit.h"
23 #include "base/atomicops.h"
24 #include "base/base_export.h"
25 #include "base/macros.h"
26 #include "base/memory/aligned_memory.h"
27 #include "base/threading/thread_restrictions.h"
28 
29 namespace base {
30 namespace internal {
31 
32 // Our AtomicWord doubles as a spinlock, where a value of
33 // kBeingCreatedMarker means the spinlock is being held for creation.
34 static const subtle::AtomicWord kBeingCreatedMarker = 1;
35 
36 // We pull out some of the functionality into a non-templated function, so that
37 // we can implement the more complicated pieces out of line in the .cc file.
38 BASE_EXPORT subtle::AtomicWord WaitForInstance(subtle::AtomicWord* instance);
39 
40 class DeleteTraceLogForTesting;
41 
42 }  // namespace internal
43 
44 
45 // Default traits for Singleton<Type>. Calls operator new and operator delete on
46 // the object. Registers automatic deletion at process exit.
47 // Overload if you need arguments or another memory allocation function.
48 template<typename Type>
49 struct DefaultSingletonTraits {
50   // Allocates the object.
NewDefaultSingletonTraits51   static Type* New() {
52     // The parenthesis is very important here; it forces POD type
53     // initialization.
54     return new Type();
55   }
56 
57   // Destroys the object.
DeleteDefaultSingletonTraits58   static void Delete(Type* x) {
59     delete x;
60   }
61 
62   // Set to true to automatically register deletion of the object on process
63   // exit. See below for the required call that makes this happen.
64   static const bool kRegisterAtExit = true;
65 
66 #ifndef NDEBUG
67   // Set to false to disallow access on a non-joinable thread.  This is
68   // different from kRegisterAtExit because StaticMemorySingletonTraits allows
69   // access on non-joinable threads, and gracefully handles this.
70   static const bool kAllowedToAccessOnNonjoinableThread = false;
71 #endif
72 };
73 
74 
75 // Alternate traits for use with the Singleton<Type>.  Identical to
76 // DefaultSingletonTraits except that the Singleton will not be cleaned up
77 // at exit.
78 template<typename Type>
79 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
80   static const bool kRegisterAtExit = false;
81 #ifndef NDEBUG
82   static const bool kAllowedToAccessOnNonjoinableThread = true;
83 #endif
84 };
85 
86 
87 // Alternate traits for use with the Singleton<Type>.  Allocates memory
88 // for the singleton instance from a static buffer.  The singleton will
89 // be cleaned up at exit, but can't be revived after destruction unless
90 // the Resurrect() method is called.
91 //
92 // This is useful for a certain category of things, notably logging and
93 // tracing, where the singleton instance is of a type carefully constructed to
94 // be safe to access post-destruction.
95 // In logging and tracing you'll typically get stray calls at odd times, like
96 // during static destruction, thread teardown and the like, and there's a
97 // termination race on the heap-based singleton - e.g. if one thread calls
98 // get(), but then another thread initiates AtExit processing, the first thread
99 // may call into an object residing in unallocated memory. If the instance is
100 // allocated from the data segment, then this is survivable.
101 //
102 // The destructor is to deallocate system resources, in this case to unregister
103 // a callback the system will invoke when logging levels change. Note that
104 // this is also used in e.g. Chrome Frame, where you have to allow for the
105 // possibility of loading briefly into someone else's process space, and
106 // so leaking is not an option, as that would sabotage the state of your host
107 // process once you've unloaded.
108 template <typename Type>
109 struct StaticMemorySingletonTraits {
110   // WARNING: User has to deal with get() in the singleton class
111   // this is traits for returning NULL.
NewStaticMemorySingletonTraits112   static Type* New() {
113     // Only constructs once and returns pointer; otherwise returns NULL.
114     if (subtle::NoBarrier_AtomicExchange(&dead_, 1))
115       return NULL;
116 
117     return new(buffer_.void_data()) Type();
118   }
119 
DeleteStaticMemorySingletonTraits120   static void Delete(Type* p) {
121     if (p != NULL)
122       p->Type::~Type();
123   }
124 
125   static const bool kRegisterAtExit = true;
126   static const bool kAllowedToAccessOnNonjoinableThread = true;
127 
128   // Exposed for unittesting.
ResurrectStaticMemorySingletonTraits129   static void Resurrect() { subtle::NoBarrier_Store(&dead_, 0); }
130 
131  private:
132   static AlignedMemory<sizeof(Type), ALIGNOF(Type)> buffer_;
133   // Signal the object was already deleted, so it is not revived.
134   static subtle::Atomic32 dead_;
135 };
136 
137 template <typename Type>
138 AlignedMemory<sizeof(Type), ALIGNOF(Type)>
139     StaticMemorySingletonTraits<Type>::buffer_;
140 template <typename Type>
141 subtle::Atomic32 StaticMemorySingletonTraits<Type>::dead_ = 0;
142 
143 // The Singleton<Type, Traits, DifferentiatingType> class manages a single
144 // instance of Type which will be created on first use and will be destroyed at
145 // normal process exit). The Trait::Delete function will not be called on
146 // abnormal process exit.
147 //
148 // DifferentiatingType is used as a key to differentiate two different
149 // singletons having the same memory allocation functions but serving a
150 // different purpose. This is mainly used for Locks serving different purposes.
151 //
152 // Example usage:
153 //
154 // In your header:
155 //   template <typename T> struct DefaultSingletonTraits;
156 //   class FooClass {
157 //    public:
158 //     static FooClass* GetInstance();  <-- See comment below on this.
159 //     void Bar() { ... }
160 //    private:
161 //     FooClass() { ... }
162 //     friend struct DefaultSingletonTraits<FooClass>;
163 //
164 //     DISALLOW_COPY_AND_ASSIGN(FooClass);
165 //   };
166 //
167 // In your source file:
168 //  #include "base/memory/singleton.h"
169 //  FooClass* FooClass::GetInstance() {
170 //    return Singleton<FooClass>::get();
171 //  }
172 //
173 // And to call methods on FooClass:
174 //   FooClass::GetInstance()->Bar();
175 //
176 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
177 // and it is important that FooClass::GetInstance() is not inlined in the
178 // header. This makes sure that when source files from multiple targets include
179 // this header they don't end up with different copies of the inlined code
180 // creating multiple copies of the singleton.
181 //
182 // Singleton<> has no non-static members and doesn't need to actually be
183 // instantiated.
184 //
185 // This class is itself thread-safe. The underlying Type must of course be
186 // thread-safe if you want to use it concurrently. Two parameters may be tuned
187 // depending on the user's requirements.
188 //
189 // Glossary:
190 //   RAE = kRegisterAtExit
191 //
192 // On every platform, if Traits::RAE is true, the singleton will be destroyed at
193 // process exit. More precisely it uses AtExitManager which requires an
194 // object of this type to be instantiated. AtExitManager mimics the semantics
195 // of atexit() such as LIFO order but under Windows is safer to call. For more
196 // information see at_exit.h.
197 //
198 // If Traits::RAE is false, the singleton will not be freed at process exit,
199 // thus the singleton will be leaked if it is ever accessed. Traits::RAE
200 // shouldn't be false unless absolutely necessary. Remember that the heap where
201 // the object is allocated may be destroyed by the CRT anyway.
202 //
203 // Caveats:
204 // (a) Every call to get(), operator->() and operator*() incurs some overhead
205 //     (16ns on my P4/2.8GHz) to check whether the object has already been
206 //     initialized.  You may wish to cache the result of get(); it will not
207 //     change.
208 //
209 // (b) Your factory function must never throw an exception. This class is not
210 //     exception-safe.
211 //
212 
213 template <typename Type,
214           typename Traits = DefaultSingletonTraits<Type>,
215           typename DifferentiatingType = Type>
216 class Singleton {
217  private:
218   // Classes using the Singleton<T> pattern should declare a GetInstance()
219   // method and call Singleton::get() from within that.
220   friend Type* Type::GetInstance();
221 
222   // Allow TraceLog tests to test tracing after OnExit.
223   friend class internal::DeleteTraceLogForTesting;
224 
225   // This class is safe to be constructed and copy-constructed since it has no
226   // member.
227 
228   // Return a pointer to the one true instance of the class.
get()229   static Type* get() {
230 #ifndef NDEBUG
231     // Avoid making TLS lookup on release builds.
232     if (!Traits::kAllowedToAccessOnNonjoinableThread)
233       ThreadRestrictions::AssertSingletonAllowed();
234 #endif
235 
236     // The load has acquire memory ordering as the thread which reads the
237     // instance_ pointer must acquire visibility over the singleton data.
238     subtle::AtomicWord value = subtle::Acquire_Load(&instance_);
239     if (value != 0 && value != internal::kBeingCreatedMarker) {
240       return reinterpret_cast<Type*>(value);
241     }
242 
243     // Object isn't created yet, maybe we will get to create it, let's try...
244     if (subtle::Acquire_CompareAndSwap(&instance_, 0,
245                                        internal::kBeingCreatedMarker) == 0) {
246       // instance_ was NULL and is now kBeingCreatedMarker.  Only one thread
247       // will ever get here.  Threads might be spinning on us, and they will
248       // stop right after we do this store.
249       Type* newval = Traits::New();
250 
251       // Releases the visibility over instance_ to the readers.
252       subtle::Release_Store(&instance_,
253                             reinterpret_cast<subtle::AtomicWord>(newval));
254 
255       if (newval != NULL && Traits::kRegisterAtExit)
256         AtExitManager::RegisterCallback(OnExit, NULL);
257 
258       return newval;
259     }
260 
261     // We hit a race. Wait for the other thread to complete it.
262     value = internal::WaitForInstance(&instance_);
263 
264     return reinterpret_cast<Type*>(value);
265   }
266 
267   // Adapter function for use with AtExit().  This should be called single
268   // threaded, so don't use atomic operations.
269   // Calling OnExit while singleton is in use by other threads is a mistake.
OnExit(void *)270   static void OnExit(void* /*unused*/) {
271     // AtExit should only ever be register after the singleton instance was
272     // created.  We should only ever get here with a valid instance_ pointer.
273     Traits::Delete(reinterpret_cast<Type*>(subtle::NoBarrier_Load(&instance_)));
274     instance_ = 0;
275   }
276   static subtle::AtomicWord instance_;
277 };
278 
279 template <typename Type, typename Traits, typename DifferentiatingType>
280 subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::instance_ = 0;
281 
282 }  // namespace base
283 
284 #endif  // BASE_MEMORY_SINGLETON_H_
285