1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Weak pointers are pointers to an object that do not affect its lifetime,
6 // and which may be invalidated (i.e. reset to NULL) by the object, or its
7 // owner, at any time, most commonly when the object is about to be deleted.
8 
9 // Weak pointers are useful when an object needs to be accessed safely by one
10 // or more objects other than its owner, and those callers can cope with the
11 // object vanishing and e.g. tasks posted to it being silently dropped.
12 // Reference-counting such an object would complicate the ownership graph and
13 // make it harder to reason about the object's lifetime.
14 
15 // EXAMPLE:
16 //
17 //  class Controller {
18 //   public:
19 //    Controller() : weak_factory_(this) {}
20 //    void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
21 //    void WorkComplete(const Result& result) { ... }
22 //   private:
23 //    // Member variables should appear before the WeakPtrFactory, to ensure
24 //    // that any WeakPtrs to Controller are invalidated before its members
25 //    // variable's destructors are executed, rendering them invalid.
26 //    WeakPtrFactory<Controller> weak_factory_;
27 //  };
28 //
29 //  class Worker {
30 //   public:
31 //    static void StartNew(const WeakPtr<Controller>& controller) {
32 //      Worker* worker = new Worker(controller);
33 //      // Kick off asynchronous processing...
34 //    }
35 //   private:
36 //    Worker(const WeakPtr<Controller>& controller)
37 //        : controller_(controller) {}
38 //    void DidCompleteAsynchronousProcessing(const Result& result) {
39 //      if (controller_)
40 //        controller_->WorkComplete(result);
41 //    }
42 //    WeakPtr<Controller> controller_;
43 //  };
44 //
45 // With this implementation a caller may use SpawnWorker() to dispatch multiple
46 // Workers and subsequently delete the Controller, without waiting for all
47 // Workers to have completed.
48 
49 // ------------------------- IMPORTANT: Thread-safety -------------------------
50 
51 // Weak pointers may be passed safely between threads, but must always be
52 // dereferenced and invalidated on the same SequencedTaskRunner otherwise
53 // checking the pointer would be racey.
54 //
55 // To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
56 // is dereferenced, the factory and its WeakPtrs become bound to the calling
57 // thread or current SequencedWorkerPool token, and cannot be dereferenced or
58 // invalidated on any other task runner. Bound WeakPtrs can still be handed
59 // off to other task runners, e.g. to use to post tasks back to object on the
60 // bound sequence.
61 //
62 // If all WeakPtr objects are destroyed or invalidated then the factory is
63 // unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
64 // destroyed, or new WeakPtr objects may be used, from a different sequence.
65 //
66 // Thus, at least one WeakPtr object must exist and have been dereferenced on
67 // the correct thread to enforce that other WeakPtr objects will enforce they
68 // are used on the desired thread.
69 
70 #ifndef BASE_MEMORY_WEAK_PTR_H_
71 #define BASE_MEMORY_WEAK_PTR_H_
72 
73 #include "base/base_export.h"
74 #include "base/logging.h"
75 #include "base/macros.h"
76 #include "base/memory/ref_counted.h"
77 #include "base/sequence_checker.h"
78 #include "base/template_util.h"
79 
80 namespace base {
81 
82 template <typename T> class SupportsWeakPtr;
83 template <typename T> class WeakPtr;
84 
85 namespace internal {
86 // These classes are part of the WeakPtr implementation.
87 // DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
88 
89 class BASE_EXPORT WeakReference {
90  public:
91   // Although Flag is bound to a specific SequencedTaskRunner, it may be
92   // deleted from another via base::WeakPtr::~WeakPtr().
93   class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
94    public:
95     Flag();
96 
97     void Invalidate();
98     bool IsValid() const;
99 
100    private:
101     friend class base::RefCountedThreadSafe<Flag>;
102 
103     ~Flag();
104 
105     SequenceChecker sequence_checker_;
106     bool is_valid_;
107   };
108 
109   WeakReference();
110   explicit WeakReference(const Flag* flag);
111   ~WeakReference();
112 
113   bool is_valid() const;
114 
115  private:
116   scoped_refptr<const Flag> flag_;
117 };
118 
119 class BASE_EXPORT WeakReferenceOwner {
120  public:
121   WeakReferenceOwner();
122   ~WeakReferenceOwner();
123 
124   WeakReference GetRef() const;
125 
HasRefs()126   bool HasRefs() const {
127     return flag_.get() && !flag_->HasOneRef();
128   }
129 
130   void Invalidate();
131 
132  private:
133   mutable scoped_refptr<WeakReference::Flag> flag_;
134 };
135 
136 // This class simplifies the implementation of WeakPtr's type conversion
137 // constructor by avoiding the need for a public accessor for ref_.  A
138 // WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
139 // base class gives us a way to access ref_ in a protected fashion.
140 class BASE_EXPORT WeakPtrBase {
141  public:
142   WeakPtrBase();
143   ~WeakPtrBase();
144 
145  protected:
146   explicit WeakPtrBase(const WeakReference& ref);
147 
148   WeakReference ref_;
149 };
150 
151 // This class provides a common implementation of common functions that would
152 // otherwise get instantiated separately for each distinct instantiation of
153 // SupportsWeakPtr<>.
154 class SupportsWeakPtrBase {
155  public:
156   // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
157   // conversion will only compile if there is exists a Base which inherits
158   // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
159   // function that makes calling this easier.
160   template<typename Derived>
StaticAsWeakPtr(Derived * t)161   static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
162     typedef
163         is_convertible<Derived, internal::SupportsWeakPtrBase&> convertible;
164     static_assert(convertible::value,
165                   "AsWeakPtr argument must inherit from SupportsWeakPtr");
166     return AsWeakPtrImpl<Derived>(t, *t);
167   }
168 
169  private:
170   // This template function uses type inference to find a Base of Derived
171   // which is an instance of SupportsWeakPtr<Base>. We can then safely
172   // static_cast the Base* to a Derived*.
173   template <typename Derived, typename Base>
AsWeakPtrImpl(Derived * t,const SupportsWeakPtr<Base> &)174   static WeakPtr<Derived> AsWeakPtrImpl(
175       Derived* t, const SupportsWeakPtr<Base>&) {
176     WeakPtr<Base> ptr = t->Base::AsWeakPtr();
177     return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
178   }
179 };
180 
181 }  // namespace internal
182 
183 template <typename T> class WeakPtrFactory;
184 
185 // The WeakPtr class holds a weak reference to |T*|.
186 //
187 // This class is designed to be used like a normal pointer.  You should always
188 // null-test an object of this class before using it or invoking a method that
189 // may result in the underlying object being destroyed.
190 //
191 // EXAMPLE:
192 //
193 //   class Foo { ... };
194 //   WeakPtr<Foo> foo;
195 //   if (foo)
196 //     foo->method();
197 //
198 template <typename T>
199 class WeakPtr : public internal::WeakPtrBase {
200  public:
WeakPtr()201   WeakPtr() : ptr_(NULL) {
202   }
203 
204   // Allow conversion from U to T provided U "is a" T. Note that this
205   // is separate from the (implicit) copy constructor.
206   template <typename U>
WeakPtr(const WeakPtr<U> & other)207   WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {
208   }
209 
get()210   T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
211 
212   T& operator*() const {
213     DCHECK(get() != NULL);
214     return *get();
215   }
216   T* operator->() const {
217     DCHECK(get() != NULL);
218     return get();
219   }
220 
221   // Allow WeakPtr<element_type> to be used in boolean expressions, but not
222   // implicitly convertible to a real bool (which is dangerous).
223   //
224   // Note that this trick is only safe when the == and != operators
225   // are declared explicitly, as otherwise "weak_ptr1 == weak_ptr2"
226   // will compile but do the wrong thing (i.e., convert to Testable
227   // and then do the comparison).
228  private:
229   typedef T* WeakPtr::*Testable;
230 
231  public:
Testable()232   operator Testable() const { return get() ? &WeakPtr::ptr_ : NULL; }
233 
reset()234   void reset() {
235     ref_ = internal::WeakReference();
236     ptr_ = NULL;
237   }
238 
239  private:
240   // Explicitly declare comparison operators as required by the bool
241   // trick, but keep them private.
242   template <class U> bool operator==(WeakPtr<U> const&) const;
243   template <class U> bool operator!=(WeakPtr<U> const&) const;
244 
245   friend class internal::SupportsWeakPtrBase;
246   template <typename U> friend class WeakPtr;
247   friend class SupportsWeakPtr<T>;
248   friend class WeakPtrFactory<T>;
249 
WeakPtr(const internal::WeakReference & ref,T * ptr)250   WeakPtr(const internal::WeakReference& ref, T* ptr)
251       : WeakPtrBase(ref),
252         ptr_(ptr) {
253   }
254 
255   // This pointer is only valid when ref_.is_valid() is true.  Otherwise, its
256   // value is undefined (as opposed to NULL).
257   T* ptr_;
258 };
259 
260 // A class may be composed of a WeakPtrFactory and thereby
261 // control how it exposes weak pointers to itself.  This is helpful if you only
262 // need weak pointers within the implementation of a class.  This class is also
263 // useful when working with primitive types.  For example, you could have a
264 // WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
265 template <class T>
266 class WeakPtrFactory {
267  public:
WeakPtrFactory(T * ptr)268   explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
269   }
270 
~WeakPtrFactory()271   ~WeakPtrFactory() {
272     ptr_ = NULL;
273   }
274 
GetWeakPtr()275   WeakPtr<T> GetWeakPtr() {
276     DCHECK(ptr_);
277     return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
278   }
279 
280   // Call this method to invalidate all existing weak pointers.
InvalidateWeakPtrs()281   void InvalidateWeakPtrs() {
282     DCHECK(ptr_);
283     weak_reference_owner_.Invalidate();
284   }
285 
286   // Call this method to determine if any weak pointers exist.
HasWeakPtrs()287   bool HasWeakPtrs() const {
288     DCHECK(ptr_);
289     return weak_reference_owner_.HasRefs();
290   }
291 
292  private:
293   internal::WeakReferenceOwner weak_reference_owner_;
294   T* ptr_;
295   DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
296 };
297 
298 // A class may extend from SupportsWeakPtr to let others take weak pointers to
299 // it. This avoids the class itself implementing boilerplate to dispense weak
300 // pointers.  However, since SupportsWeakPtr's destructor won't invalidate
301 // weak pointers to the class until after the derived class' members have been
302 // destroyed, its use can lead to subtle use-after-destroy issues.
303 template <class T>
304 class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
305  public:
SupportsWeakPtr()306   SupportsWeakPtr() {}
307 
AsWeakPtr()308   WeakPtr<T> AsWeakPtr() {
309     return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
310   }
311 
312  protected:
~SupportsWeakPtr()313   ~SupportsWeakPtr() {}
314 
315  private:
316   internal::WeakReferenceOwner weak_reference_owner_;
317   DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
318 };
319 
320 // Helper function that uses type deduction to safely return a WeakPtr<Derived>
321 // when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
322 // extends a Base that extends SupportsWeakPtr<Base>.
323 //
324 // EXAMPLE:
325 //   class Base : public base::SupportsWeakPtr<Producer> {};
326 //   class Derived : public Base {};
327 //
328 //   Derived derived;
329 //   base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
330 //
331 // Note that the following doesn't work (invalid type conversion) since
332 // Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
333 // and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
334 // the caller.
335 //
336 //   base::WeakPtr<Derived> ptr = derived.AsWeakPtr();  // Fails.
337 
338 template <typename Derived>
AsWeakPtr(Derived * t)339 WeakPtr<Derived> AsWeakPtr(Derived* t) {
340   return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
341 }
342 
343 }  // namespace base
344 
345 #endif  // BASE_MEMORY_WEAK_PTR_H_
346