1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Weak pointers are pointers to an object that do not affect its lifetime,
6 // and which may be invalidated (i.e. reset to NULL) by the object, or its
7 // owner, at any time, most commonly when the object is about to be deleted.
8
9 // Weak pointers are useful when an object needs to be accessed safely by one
10 // or more objects other than its owner, and those callers can cope with the
11 // object vanishing and e.g. tasks posted to it being silently dropped.
12 // Reference-counting such an object would complicate the ownership graph and
13 // make it harder to reason about the object's lifetime.
14
15 // EXAMPLE:
16 //
17 // class Controller {
18 // public:
19 // Controller() : weak_factory_(this) {}
20 // void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
21 // void WorkComplete(const Result& result) { ... }
22 // private:
23 // // Member variables should appear before the WeakPtrFactory, to ensure
24 // // that any WeakPtrs to Controller are invalidated before its members
25 // // variable's destructors are executed, rendering them invalid.
26 // WeakPtrFactory<Controller> weak_factory_;
27 // };
28 //
29 // class Worker {
30 // public:
31 // static void StartNew(const WeakPtr<Controller>& controller) {
32 // Worker* worker = new Worker(controller);
33 // // Kick off asynchronous processing...
34 // }
35 // private:
36 // Worker(const WeakPtr<Controller>& controller)
37 // : controller_(controller) {}
38 // void DidCompleteAsynchronousProcessing(const Result& result) {
39 // if (controller_)
40 // controller_->WorkComplete(result);
41 // }
42 // WeakPtr<Controller> controller_;
43 // };
44 //
45 // With this implementation a caller may use SpawnWorker() to dispatch multiple
46 // Workers and subsequently delete the Controller, without waiting for all
47 // Workers to have completed.
48
49 // ------------------------- IMPORTANT: Thread-safety -------------------------
50
51 // Weak pointers may be passed safely between threads, but must always be
52 // dereferenced and invalidated on the same SequencedTaskRunner otherwise
53 // checking the pointer would be racey.
54 //
55 // To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
56 // is dereferenced, the factory and its WeakPtrs become bound to the calling
57 // thread or current SequencedWorkerPool token, and cannot be dereferenced or
58 // invalidated on any other task runner. Bound WeakPtrs can still be handed
59 // off to other task runners, e.g. to use to post tasks back to object on the
60 // bound sequence.
61 //
62 // If all WeakPtr objects are destroyed or invalidated then the factory is
63 // unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
64 // destroyed, or new WeakPtr objects may be used, from a different sequence.
65 //
66 // Thus, at least one WeakPtr object must exist and have been dereferenced on
67 // the correct thread to enforce that other WeakPtr objects will enforce they
68 // are used on the desired thread.
69
70 #ifndef BASE_MEMORY_WEAK_PTR_H_
71 #define BASE_MEMORY_WEAK_PTR_H_
72
73 #include "base/base_export.h"
74 #include "base/logging.h"
75 #include "base/macros.h"
76 #include "base/memory/ref_counted.h"
77 #include "base/sequence_checker.h"
78 #include "base/template_util.h"
79
80 namespace base {
81
82 template <typename T> class SupportsWeakPtr;
83 template <typename T> class WeakPtr;
84
85 namespace internal {
86 // These classes are part of the WeakPtr implementation.
87 // DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
88
89 class BASE_EXPORT WeakReference {
90 public:
91 // Although Flag is bound to a specific SequencedTaskRunner, it may be
92 // deleted from another via base::WeakPtr::~WeakPtr().
93 class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
94 public:
95 Flag();
96
97 void Invalidate();
98 bool IsValid() const;
99
100 private:
101 friend class base::RefCountedThreadSafe<Flag>;
102
103 ~Flag();
104
105 SequenceChecker sequence_checker_;
106 bool is_valid_;
107 };
108
109 WeakReference();
110 explicit WeakReference(const Flag* flag);
111 ~WeakReference();
112
113 bool is_valid() const;
114
115 private:
116 scoped_refptr<const Flag> flag_;
117 };
118
119 class BASE_EXPORT WeakReferenceOwner {
120 public:
121 WeakReferenceOwner();
122 ~WeakReferenceOwner();
123
124 WeakReference GetRef() const;
125
HasRefs()126 bool HasRefs() const {
127 return flag_.get() && !flag_->HasOneRef();
128 }
129
130 void Invalidate();
131
132 private:
133 mutable scoped_refptr<WeakReference::Flag> flag_;
134 };
135
136 // This class simplifies the implementation of WeakPtr's type conversion
137 // constructor by avoiding the need for a public accessor for ref_. A
138 // WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
139 // base class gives us a way to access ref_ in a protected fashion.
140 class BASE_EXPORT WeakPtrBase {
141 public:
142 WeakPtrBase();
143 ~WeakPtrBase();
144
145 protected:
146 explicit WeakPtrBase(const WeakReference& ref);
147
148 WeakReference ref_;
149 };
150
151 // This class provides a common implementation of common functions that would
152 // otherwise get instantiated separately for each distinct instantiation of
153 // SupportsWeakPtr<>.
154 class SupportsWeakPtrBase {
155 public:
156 // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
157 // conversion will only compile if there is exists a Base which inherits
158 // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
159 // function that makes calling this easier.
160 template<typename Derived>
StaticAsWeakPtr(Derived * t)161 static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
162 typedef
163 is_convertible<Derived, internal::SupportsWeakPtrBase&> convertible;
164 static_assert(convertible::value,
165 "AsWeakPtr argument must inherit from SupportsWeakPtr");
166 return AsWeakPtrImpl<Derived>(t, *t);
167 }
168
169 private:
170 // This template function uses type inference to find a Base of Derived
171 // which is an instance of SupportsWeakPtr<Base>. We can then safely
172 // static_cast the Base* to a Derived*.
173 template <typename Derived, typename Base>
AsWeakPtrImpl(Derived * t,const SupportsWeakPtr<Base> &)174 static WeakPtr<Derived> AsWeakPtrImpl(
175 Derived* t, const SupportsWeakPtr<Base>&) {
176 WeakPtr<Base> ptr = t->Base::AsWeakPtr();
177 return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
178 }
179 };
180
181 } // namespace internal
182
183 template <typename T> class WeakPtrFactory;
184
185 // The WeakPtr class holds a weak reference to |T*|.
186 //
187 // This class is designed to be used like a normal pointer. You should always
188 // null-test an object of this class before using it or invoking a method that
189 // may result in the underlying object being destroyed.
190 //
191 // EXAMPLE:
192 //
193 // class Foo { ... };
194 // WeakPtr<Foo> foo;
195 // if (foo)
196 // foo->method();
197 //
198 template <typename T>
199 class WeakPtr : public internal::WeakPtrBase {
200 public:
WeakPtr()201 WeakPtr() : ptr_(NULL) {
202 }
203
204 // Allow conversion from U to T provided U "is a" T. Note that this
205 // is separate from the (implicit) copy constructor.
206 template <typename U>
WeakPtr(const WeakPtr<U> & other)207 WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {
208 }
209
get()210 T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
211
212 T& operator*() const {
213 DCHECK(get() != NULL);
214 return *get();
215 }
216 T* operator->() const {
217 DCHECK(get() != NULL);
218 return get();
219 }
220
221 // Allow WeakPtr<element_type> to be used in boolean expressions, but not
222 // implicitly convertible to a real bool (which is dangerous).
223 //
224 // Note that this trick is only safe when the == and != operators
225 // are declared explicitly, as otherwise "weak_ptr1 == weak_ptr2"
226 // will compile but do the wrong thing (i.e., convert to Testable
227 // and then do the comparison).
228 private:
229 typedef T* WeakPtr::*Testable;
230
231 public:
Testable()232 operator Testable() const { return get() ? &WeakPtr::ptr_ : NULL; }
233
reset()234 void reset() {
235 ref_ = internal::WeakReference();
236 ptr_ = NULL;
237 }
238
239 private:
240 // Explicitly declare comparison operators as required by the bool
241 // trick, but keep them private.
242 template <class U> bool operator==(WeakPtr<U> const&) const;
243 template <class U> bool operator!=(WeakPtr<U> const&) const;
244
245 friend class internal::SupportsWeakPtrBase;
246 template <typename U> friend class WeakPtr;
247 friend class SupportsWeakPtr<T>;
248 friend class WeakPtrFactory<T>;
249
WeakPtr(const internal::WeakReference & ref,T * ptr)250 WeakPtr(const internal::WeakReference& ref, T* ptr)
251 : WeakPtrBase(ref),
252 ptr_(ptr) {
253 }
254
255 // This pointer is only valid when ref_.is_valid() is true. Otherwise, its
256 // value is undefined (as opposed to NULL).
257 T* ptr_;
258 };
259
260 // A class may be composed of a WeakPtrFactory and thereby
261 // control how it exposes weak pointers to itself. This is helpful if you only
262 // need weak pointers within the implementation of a class. This class is also
263 // useful when working with primitive types. For example, you could have a
264 // WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
265 template <class T>
266 class WeakPtrFactory {
267 public:
WeakPtrFactory(T * ptr)268 explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
269 }
270
~WeakPtrFactory()271 ~WeakPtrFactory() {
272 ptr_ = NULL;
273 }
274
GetWeakPtr()275 WeakPtr<T> GetWeakPtr() {
276 DCHECK(ptr_);
277 return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
278 }
279
280 // Call this method to invalidate all existing weak pointers.
InvalidateWeakPtrs()281 void InvalidateWeakPtrs() {
282 DCHECK(ptr_);
283 weak_reference_owner_.Invalidate();
284 }
285
286 // Call this method to determine if any weak pointers exist.
HasWeakPtrs()287 bool HasWeakPtrs() const {
288 DCHECK(ptr_);
289 return weak_reference_owner_.HasRefs();
290 }
291
292 private:
293 internal::WeakReferenceOwner weak_reference_owner_;
294 T* ptr_;
295 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
296 };
297
298 // A class may extend from SupportsWeakPtr to let others take weak pointers to
299 // it. This avoids the class itself implementing boilerplate to dispense weak
300 // pointers. However, since SupportsWeakPtr's destructor won't invalidate
301 // weak pointers to the class until after the derived class' members have been
302 // destroyed, its use can lead to subtle use-after-destroy issues.
303 template <class T>
304 class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
305 public:
SupportsWeakPtr()306 SupportsWeakPtr() {}
307
AsWeakPtr()308 WeakPtr<T> AsWeakPtr() {
309 return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
310 }
311
312 protected:
~SupportsWeakPtr()313 ~SupportsWeakPtr() {}
314
315 private:
316 internal::WeakReferenceOwner weak_reference_owner_;
317 DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
318 };
319
320 // Helper function that uses type deduction to safely return a WeakPtr<Derived>
321 // when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
322 // extends a Base that extends SupportsWeakPtr<Base>.
323 //
324 // EXAMPLE:
325 // class Base : public base::SupportsWeakPtr<Producer> {};
326 // class Derived : public Base {};
327 //
328 // Derived derived;
329 // base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
330 //
331 // Note that the following doesn't work (invalid type conversion) since
332 // Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
333 // and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
334 // the caller.
335 //
336 // base::WeakPtr<Derived> ptr = derived.AsWeakPtr(); // Fails.
337
338 template <typename Derived>
AsWeakPtr(Derived * t)339 WeakPtr<Derived> AsWeakPtr(Derived* t) {
340 return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
341 }
342
343 } // namespace base
344
345 #endif // BASE_MEMORY_WEAK_PTR_H_
346