1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef SANDBOX_LINUX_SECCOMP_BPF_SYSCALL_H__ 6 #define SANDBOX_LINUX_SECCOMP_BPF_SYSCALL_H__ 7 8 #include <signal.h> 9 #include <stdint.h> 10 11 #include "base/macros.h" 12 #include "sandbox/linux/system_headers/linux_signal.h" 13 #include "sandbox/sandbox_export.h" 14 15 namespace sandbox { 16 17 // This purely static class can be used to perform system calls with some 18 // low-level control. 19 class SANDBOX_EXPORT Syscall { 20 public: 21 // InvalidCall() invokes Call() with a platform-appropriate syscall 22 // number that is guaranteed to not be implemented (i.e., normally 23 // returns -ENOSYS). 24 // This is primarily meant to be useful for writing sandbox policy 25 // unit tests. 26 static intptr_t InvalidCall(); 27 28 // System calls can take up to six parameters (up to eight on some 29 // architectures). Traditionally, glibc 30 // implements this property by using variadic argument lists. This works, but 31 // confuses modern tools such as valgrind, because we are nominally passing 32 // uninitialized data whenever we call through this function and pass less 33 // than the full six arguments. 34 // So, instead, we use C++'s template system to achieve a very similar 35 // effect. C++ automatically sets the unused parameters to zero for us, and 36 // it also does the correct type expansion (e.g. from 32bit to 64bit) where 37 // necessary. 38 // We have to use C-style cast operators as we want to be able to accept both 39 // integer and pointer types. 40 template <class T0, 41 class T1, 42 class T2, 43 class T3, 44 class T4, 45 class T5, 46 class T6, 47 class T7> 48 static inline intptr_t Call(int nr,T0 p0,T1 p1,T2 p2,T3 p3,T4 p4,T5 p5,T6 p6,T7 p7)49 Call(int nr, T0 p0, T1 p1, T2 p2, T3 p3, T4 p4, T5 p5, T6 p6, T7 p7) { 50 return Call(nr, 51 (intptr_t)p0, 52 (intptr_t)p1, 53 (intptr_t)p2, 54 (intptr_t)p3, 55 (intptr_t)p4, 56 (intptr_t)p5, 57 (intptr_t)p6, 58 (intptr_t)p7); 59 } 60 61 template <class T0, 62 class T1, 63 class T2, 64 class T3, 65 class T4, 66 class T5, 67 class T6> 68 static inline intptr_t Call(int nr,T0 p0,T1 p1,T2 p2,T3 p3,T4 p4,T5 p5,T6 p6)69 Call(int nr, T0 p0, T1 p1, T2 p2, T3 p3, T4 p4, T5 p5, T6 p6) { 70 return Call(nr, 71 (intptr_t)p0, 72 (intptr_t)p1, 73 (intptr_t)p2, 74 (intptr_t)p3, 75 (intptr_t)p4, 76 (intptr_t)p5, 77 (intptr_t)p6, 78 0); 79 } 80 81 template <class T0, class T1, class T2, class T3, class T4, class T5> 82 static inline intptr_t Call(int nr,T0 p0,T1 p1,T2 p2,T3 p3,T4 p4,T5 p5)83 Call(int nr, T0 p0, T1 p1, T2 p2, T3 p3, T4 p4, T5 p5) { 84 return Call(nr, 85 (intptr_t)p0, 86 (intptr_t)p1, 87 (intptr_t)p2, 88 (intptr_t)p3, 89 (intptr_t)p4, 90 (intptr_t)p5, 91 0, 92 0); 93 } 94 95 template <class T0, class T1, class T2, class T3, class T4> Call(int nr,T0 p0,T1 p1,T2 p2,T3 p3,T4 p4)96 static inline intptr_t Call(int nr, T0 p0, T1 p1, T2 p2, T3 p3, T4 p4) { 97 return Call(nr, p0, p1, p2, p3, p4, 0, 0, 0); 98 } 99 100 template <class T0, class T1, class T2, class T3> Call(int nr,T0 p0,T1 p1,T2 p2,T3 p3)101 static inline intptr_t Call(int nr, T0 p0, T1 p1, T2 p2, T3 p3) { 102 return Call(nr, p0, p1, p2, p3, 0, 0, 0, 0); 103 } 104 105 template <class T0, class T1, class T2> Call(int nr,T0 p0,T1 p1,T2 p2)106 static inline intptr_t Call(int nr, T0 p0, T1 p1, T2 p2) { 107 return Call(nr, p0, p1, p2, 0, 0, 0, 0, 0); 108 } 109 110 template <class T0, class T1> Call(int nr,T0 p0,T1 p1)111 static inline intptr_t Call(int nr, T0 p0, T1 p1) { 112 return Call(nr, p0, p1, 0, 0, 0, 0, 0, 0); 113 } 114 115 template <class T0> Call(int nr,T0 p0)116 static inline intptr_t Call(int nr, T0 p0) { 117 return Call(nr, p0, 0, 0, 0, 0, 0, 0, 0); 118 } 119 Call(int nr)120 static inline intptr_t Call(int nr) { 121 return Call(nr, 0, 0, 0, 0, 0, 0, 0, 0); 122 } 123 124 // Set the registers in |ctx| to match what they would be after a system call 125 // returning |ret_val|. |ret_val| must follow the Syscall::Call() convention 126 // of being -errno on errors. 127 static void PutValueInUcontext(intptr_t ret_val, ucontext_t* ctx); 128 129 private: 130 // This performs system call |nr| with the arguments p0 to p7 from a constant 131 // userland address, which is for instance observable by seccomp-bpf filters. 132 // The constant userland address from which these system calls are made will 133 // be returned if |nr| is passed as -1. 134 // On error, this function will return a value between -1 and -4095 which 135 // should be interpreted as -errno. 136 static intptr_t Call(int nr, 137 intptr_t p0, 138 intptr_t p1, 139 intptr_t p2, 140 intptr_t p3, 141 intptr_t p4, 142 intptr_t p5, 143 intptr_t p6, 144 intptr_t p7); 145 146 #if defined(__mips__) 147 // This function basically does on MIPS what SandboxSyscall() is doing on 148 // other architectures. However, because of specificity of MIPS regarding 149 // handling syscall errors, SandboxSyscall() is made as a wrapper for this 150 // function in order for SandboxSyscall() to behave more like on other 151 // architectures on places where return value from SandboxSyscall() is used 152 // directly (like in most tests). 153 // The syscall "nr" is called with arguments that are set in an array on which 154 // pointer "args" points to and an information weather there is an error or no 155 // is returned to SandboxSyscall() by err_stat. 156 static intptr_t SandboxSyscallRaw(int nr, 157 const intptr_t* args, 158 intptr_t* err_stat); 159 #endif // defined(__mips__) 160 161 DISALLOW_IMPLICIT_CONSTRUCTORS(Syscall); 162 }; 163 164 } // namespace sandbox 165 166 #endif // SANDBOX_LINUX_SECCOMP_BPF_SYSCALL_H__ 167