1 //===----------------------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // REQUIRES: long_tests
11 
12 // <random>
13 
14 // template<class RealType = double>
15 // class extreme_value_distribution
16 
17 // template<class _URNG> result_type operator()(_URNG& g);
18 
19 #include <random>
20 #include <cassert>
21 #include <vector>
22 #include <numeric>
23 
24 template <class T>
25 inline
26 T
sqr(T x)27 sqr(T x)
28 {
29     return x * x;
30 }
31 
main()32 int main()
33 {
34     {
35         typedef std::extreme_value_distribution<> D;
36         typedef D::param_type P;
37         typedef std::mt19937 G;
38         G g;
39         D d(0.5, 2);
40         const int N = 1000000;
41         std::vector<D::result_type> u;
42         for (int i = 0; i < N; ++i)
43         {
44             D::result_type v = d(g);
45             u.push_back(v);
46         }
47         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
48         double var = 0;
49         double skew = 0;
50         double kurtosis = 0;
51         for (int i = 0; i < u.size(); ++i)
52         {
53             double d = (u[i] - mean);
54             double d2 = sqr(d);
55             var += d2;
56             skew += d * d2;
57             kurtosis += d2 * d2;
58         }
59         var /= u.size();
60         double dev = std::sqrt(var);
61         skew /= u.size() * dev * var;
62         kurtosis /= u.size() * var * var;
63         kurtosis -= 3;
64         double x_mean = d.a() + d.b() * 0.577215665;
65         double x_var = sqr(d.b()) * 1.644934067;
66         double x_skew = 1.139547;
67         double x_kurtosis = 12./5;
68         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
69         assert(std::abs((var - x_var) / x_var) < 0.01);
70         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
71         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
72     }
73     {
74         typedef std::extreme_value_distribution<> D;
75         typedef D::param_type P;
76         typedef std::mt19937 G;
77         G g;
78         D d(1, 2);
79         const int N = 1000000;
80         std::vector<D::result_type> u;
81         for (int i = 0; i < N; ++i)
82         {
83             D::result_type v = d(g);
84             u.push_back(v);
85         }
86         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
87         double var = 0;
88         double skew = 0;
89         double kurtosis = 0;
90         for (int i = 0; i < u.size(); ++i)
91         {
92             double d = (u[i] - mean);
93             double d2 = sqr(d);
94             var += d2;
95             skew += d * d2;
96             kurtosis += d2 * d2;
97         }
98         var /= u.size();
99         double dev = std::sqrt(var);
100         skew /= u.size() * dev * var;
101         kurtosis /= u.size() * var * var;
102         kurtosis -= 3;
103         double x_mean = d.a() + d.b() * 0.577215665;
104         double x_var = sqr(d.b()) * 1.644934067;
105         double x_skew = 1.139547;
106         double x_kurtosis = 12./5;
107         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
108         assert(std::abs((var - x_var) / x_var) < 0.01);
109         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
110         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
111     }
112     {
113         typedef std::extreme_value_distribution<> D;
114         typedef D::param_type P;
115         typedef std::mt19937 G;
116         G g;
117         D d(1.5, 3);
118         const int N = 1000000;
119         std::vector<D::result_type> u;
120         for (int i = 0; i < N; ++i)
121         {
122             D::result_type v = d(g);
123             u.push_back(v);
124         }
125         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
126         double var = 0;
127         double skew = 0;
128         double kurtosis = 0;
129         for (int i = 0; i < u.size(); ++i)
130         {
131             double d = (u[i] - mean);
132             double d2 = sqr(d);
133             var += d2;
134             skew += d * d2;
135             kurtosis += d2 * d2;
136         }
137         var /= u.size();
138         double dev = std::sqrt(var);
139         skew /= u.size() * dev * var;
140         kurtosis /= u.size() * var * var;
141         kurtosis -= 3;
142         double x_mean = d.a() + d.b() * 0.577215665;
143         double x_var = sqr(d.b()) * 1.644934067;
144         double x_skew = 1.139547;
145         double x_kurtosis = 12./5;
146         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
147         assert(std::abs((var - x_var) / x_var) < 0.01);
148         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
149         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
150     }
151     {
152         typedef std::extreme_value_distribution<> D;
153         typedef D::param_type P;
154         typedef std::mt19937 G;
155         G g;
156         D d(3, 4);
157         const int N = 1000000;
158         std::vector<D::result_type> u;
159         for (int i = 0; i < N; ++i)
160         {
161             D::result_type v = d(g);
162             u.push_back(v);
163         }
164         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
165         double var = 0;
166         double skew = 0;
167         double kurtosis = 0;
168         for (int i = 0; i < u.size(); ++i)
169         {
170             double d = (u[i] - mean);
171             double d2 = sqr(d);
172             var += d2;
173             skew += d * d2;
174             kurtosis += d2 * d2;
175         }
176         var /= u.size();
177         double dev = std::sqrt(var);
178         skew /= u.size() * dev * var;
179         kurtosis /= u.size() * var * var;
180         kurtosis -= 3;
181         double x_mean = d.a() + d.b() * 0.577215665;
182         double x_var = sqr(d.b()) * 1.644934067;
183         double x_skew = 1.139547;
184         double x_kurtosis = 12./5;
185         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
186         assert(std::abs((var - x_var) / x_var) < 0.01);
187         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
188         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
189     }
190 }
191