1 /*
2 * jcarith.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Developed 1997-2009 by Guido Vollbeding.
6 * It was modified by The libjpeg-turbo Project to include only code relevant
7 * to libjpeg-turbo.
8 * For conditions of distribution and use, see the accompanying README file.
9 *
10 * This file contains portable arithmetic entropy encoding routines for JPEG
11 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
12 *
13 * Both sequential and progressive modes are supported in this single module.
14 *
15 * Suspension is not currently supported in this module.
16 */
17
18 #define JPEG_INTERNALS
19 #include "jinclude.h"
20 #include "jpeglib.h"
21
22
23 /* Expanded entropy encoder object for arithmetic encoding. */
24
25 typedef struct {
26 struct jpeg_entropy_encoder pub; /* public fields */
27
28 INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
29 INT32 a; /* A register, normalized size of coding interval */
30 INT32 sc; /* counter for stacked 0xFF values which might overflow */
31 INT32 zc; /* counter for pending 0x00 output values which might *
32 * be discarded at the end ("Pacman" termination) */
33 int ct; /* bit shift counter, determines when next byte will be written */
34 int buffer; /* buffer for most recent output byte != 0xFF */
35
36 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
37 int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
38
39 unsigned int restarts_to_go; /* MCUs left in this restart interval */
40 int next_restart_num; /* next restart number to write (0-7) */
41
42 /* Pointers to statistics areas (these workspaces have image lifespan) */
43 unsigned char * dc_stats[NUM_ARITH_TBLS];
44 unsigned char * ac_stats[NUM_ARITH_TBLS];
45
46 /* Statistics bin for coding with fixed probability 0.5 */
47 unsigned char fixed_bin[4];
48 } arith_entropy_encoder;
49
50 typedef arith_entropy_encoder * arith_entropy_ptr;
51
52 /* The following two definitions specify the allocation chunk size
53 * for the statistics area.
54 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
55 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
56 *
57 * We use a compact representation with 1 byte per statistics bin,
58 * thus the numbers directly represent byte sizes.
59 * This 1 byte per statistics bin contains the meaning of the MPS
60 * (more probable symbol) in the highest bit (mask 0x80), and the
61 * index into the probability estimation state machine table
62 * in the lower bits (mask 0x7F).
63 */
64
65 #define DC_STAT_BINS 64
66 #define AC_STAT_BINS 256
67
68 /* NOTE: Uncomment the following #define if you want to use the
69 * given formula for calculating the AC conditioning parameter Kx
70 * for spectral selection progressive coding in section G.1.3.2
71 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
72 * Although the spec and P&M authors claim that this "has proven
73 * to give good results for 8 bit precision samples", I'm not
74 * convinced yet that this is really beneficial.
75 * Early tests gave only very marginal compression enhancements
76 * (a few - around 5 or so - bytes even for very large files),
77 * which would turn out rather negative if we'd suppress the
78 * DAC (Define Arithmetic Conditioning) marker segments for
79 * the default parameters in the future.
80 * Note that currently the marker writing module emits 12-byte
81 * DAC segments for a full-component scan in a color image.
82 * This is not worth worrying about IMHO. However, since the
83 * spec defines the default values to be used if the tables
84 * are omitted (unlike Huffman tables, which are required
85 * anyway), one might optimize this behaviour in the future,
86 * and then it would be disadvantageous to use custom tables if
87 * they don't provide sufficient gain to exceed the DAC size.
88 *
89 * On the other hand, I'd consider it as a reasonable result
90 * that the conditioning has no significant influence on the
91 * compression performance. This means that the basic
92 * statistical model is already rather stable.
93 *
94 * Thus, at the moment, we use the default conditioning values
95 * anyway, and do not use the custom formula.
96 *
97 #define CALCULATE_SPECTRAL_CONDITIONING
98 */
99
100 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
101 * We assume that int right shift is unsigned if INT32 right shift is,
102 * which should be safe.
103 */
104
105 #ifdef RIGHT_SHIFT_IS_UNSIGNED
106 #define ISHIFT_TEMPS int ishift_temp;
107 #define IRIGHT_SHIFT(x,shft) \
108 ((ishift_temp = (x)) < 0 ? \
109 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
110 (ishift_temp >> (shft)))
111 #else
112 #define ISHIFT_TEMPS
113 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
114 #endif
115
116
117 LOCAL(void)
emit_byte(int val,j_compress_ptr cinfo)118 emit_byte (int val, j_compress_ptr cinfo)
119 /* Write next output byte; we do not support suspension in this module. */
120 {
121 struct jpeg_destination_mgr * dest = cinfo->dest;
122
123 *dest->next_output_byte++ = (JOCTET) val;
124 if (--dest->free_in_buffer == 0)
125 if (! (*dest->empty_output_buffer) (cinfo))
126 ERREXIT(cinfo, JERR_CANT_SUSPEND);
127 }
128
129
130 /*
131 * Finish up at the end of an arithmetic-compressed scan.
132 */
133
134 METHODDEF(void)
finish_pass(j_compress_ptr cinfo)135 finish_pass (j_compress_ptr cinfo)
136 {
137 arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
138 INT32 temp;
139
140 /* Section D.1.8: Termination of encoding */
141
142 /* Find the e->c in the coding interval with the largest
143 * number of trailing zero bits */
144 if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
145 e->c = temp + 0x8000L;
146 else
147 e->c = temp;
148 /* Send remaining bytes to output */
149 e->c <<= e->ct;
150 if (e->c & 0xF8000000L) {
151 /* One final overflow has to be handled */
152 if (e->buffer >= 0) {
153 if (e->zc)
154 do emit_byte(0x00, cinfo);
155 while (--e->zc);
156 emit_byte(e->buffer + 1, cinfo);
157 if (e->buffer + 1 == 0xFF)
158 emit_byte(0x00, cinfo);
159 }
160 e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
161 e->sc = 0;
162 } else {
163 if (e->buffer == 0)
164 ++e->zc;
165 else if (e->buffer >= 0) {
166 if (e->zc)
167 do emit_byte(0x00, cinfo);
168 while (--e->zc);
169 emit_byte(e->buffer, cinfo);
170 }
171 if (e->sc) {
172 if (e->zc)
173 do emit_byte(0x00, cinfo);
174 while (--e->zc);
175 do {
176 emit_byte(0xFF, cinfo);
177 emit_byte(0x00, cinfo);
178 } while (--e->sc);
179 }
180 }
181 /* Output final bytes only if they are not 0x00 */
182 if (e->c & 0x7FFF800L) {
183 if (e->zc) /* output final pending zero bytes */
184 do emit_byte(0x00, cinfo);
185 while (--e->zc);
186 emit_byte((e->c >> 19) & 0xFF, cinfo);
187 if (((e->c >> 19) & 0xFF) == 0xFF)
188 emit_byte(0x00, cinfo);
189 if (e->c & 0x7F800L) {
190 emit_byte((e->c >> 11) & 0xFF, cinfo);
191 if (((e->c >> 11) & 0xFF) == 0xFF)
192 emit_byte(0x00, cinfo);
193 }
194 }
195 }
196
197
198 /*
199 * The core arithmetic encoding routine (common in JPEG and JBIG).
200 * This needs to go as fast as possible.
201 * Machine-dependent optimization facilities
202 * are not utilized in this portable implementation.
203 * However, this code should be fairly efficient and
204 * may be a good base for further optimizations anyway.
205 *
206 * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
207 *
208 * Note: I've added full "Pacman" termination support to the
209 * byte output routines, which is equivalent to the optional
210 * Discard_final_zeros procedure (Figure D.15) in the spec.
211 * Thus, we always produce the shortest possible output
212 * stream compliant to the spec (no trailing zero bytes,
213 * except for FF stuffing).
214 *
215 * I've also introduced a new scheme for accessing
216 * the probability estimation state machine table,
217 * derived from Markus Kuhn's JBIG implementation.
218 */
219
220 LOCAL(void)
arith_encode(j_compress_ptr cinfo,unsigned char * st,int val)221 arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
222 {
223 register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
224 register unsigned char nl, nm;
225 register INT32 qe, temp;
226 register int sv;
227
228 /* Fetch values from our compact representation of Table D.2:
229 * Qe values and probability estimation state machine
230 */
231 sv = *st;
232 qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
233 nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
234 nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
235
236 /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
237 e->a -= qe;
238 if (val != (sv >> 7)) {
239 /* Encode the less probable symbol */
240 if (e->a >= qe) {
241 /* If the interval size (qe) for the less probable symbol (LPS)
242 * is larger than the interval size for the MPS, then exchange
243 * the two symbols for coding efficiency, otherwise code the LPS
244 * as usual: */
245 e->c += e->a;
246 e->a = qe;
247 }
248 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
249 } else {
250 /* Encode the more probable symbol */
251 if (e->a >= 0x8000L)
252 return; /* A >= 0x8000 -> ready, no renormalization required */
253 if (e->a < qe) {
254 /* If the interval size (qe) for the less probable symbol (LPS)
255 * is larger than the interval size for the MPS, then exchange
256 * the two symbols for coding efficiency: */
257 e->c += e->a;
258 e->a = qe;
259 }
260 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
261 }
262
263 /* Renormalization & data output per section D.1.6 */
264 do {
265 e->a <<= 1;
266 e->c <<= 1;
267 if (--e->ct == 0) {
268 /* Another byte is ready for output */
269 temp = e->c >> 19;
270 if (temp > 0xFF) {
271 /* Handle overflow over all stacked 0xFF bytes */
272 if (e->buffer >= 0) {
273 if (e->zc)
274 do emit_byte(0x00, cinfo);
275 while (--e->zc);
276 emit_byte(e->buffer + 1, cinfo);
277 if (e->buffer + 1 == 0xFF)
278 emit_byte(0x00, cinfo);
279 }
280 e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
281 e->sc = 0;
282 /* Note: The 3 spacer bits in the C register guarantee
283 * that the new buffer byte can't be 0xFF here
284 * (see page 160 in the P&M JPEG book). */
285 e->buffer = temp & 0xFF; /* new output byte, might overflow later */
286 } else if (temp == 0xFF) {
287 ++e->sc; /* stack 0xFF byte (which might overflow later) */
288 } else {
289 /* Output all stacked 0xFF bytes, they will not overflow any more */
290 if (e->buffer == 0)
291 ++e->zc;
292 else if (e->buffer >= 0) {
293 if (e->zc)
294 do emit_byte(0x00, cinfo);
295 while (--e->zc);
296 emit_byte(e->buffer, cinfo);
297 }
298 if (e->sc) {
299 if (e->zc)
300 do emit_byte(0x00, cinfo);
301 while (--e->zc);
302 do {
303 emit_byte(0xFF, cinfo);
304 emit_byte(0x00, cinfo);
305 } while (--e->sc);
306 }
307 e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
308 }
309 e->c &= 0x7FFFFL;
310 e->ct += 8;
311 }
312 } while (e->a < 0x8000L);
313 }
314
315
316 /*
317 * Emit a restart marker & resynchronize predictions.
318 */
319
320 LOCAL(void)
emit_restart(j_compress_ptr cinfo,int restart_num)321 emit_restart (j_compress_ptr cinfo, int restart_num)
322 {
323 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
324 int ci;
325 jpeg_component_info * compptr;
326
327 finish_pass(cinfo);
328
329 emit_byte(0xFF, cinfo);
330 emit_byte(JPEG_RST0 + restart_num, cinfo);
331
332 /* Re-initialize statistics areas */
333 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
334 compptr = cinfo->cur_comp_info[ci];
335 /* DC needs no table for refinement scan */
336 if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
337 MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
338 /* Reset DC predictions to 0 */
339 entropy->last_dc_val[ci] = 0;
340 entropy->dc_context[ci] = 0;
341 }
342 /* AC needs no table when not present */
343 if (cinfo->progressive_mode == 0 || cinfo->Se) {
344 MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
345 }
346 }
347
348 /* Reset arithmetic encoding variables */
349 entropy->c = 0;
350 entropy->a = 0x10000L;
351 entropy->sc = 0;
352 entropy->zc = 0;
353 entropy->ct = 11;
354 entropy->buffer = -1; /* empty */
355 }
356
357
358 /*
359 * MCU encoding for DC initial scan (either spectral selection,
360 * or first pass of successive approximation).
361 */
362
363 METHODDEF(boolean)
encode_mcu_DC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)364 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
365 {
366 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
367 JBLOCKROW block;
368 unsigned char *st;
369 int blkn, ci, tbl;
370 int v, v2, m;
371 ISHIFT_TEMPS
372
373 /* Emit restart marker if needed */
374 if (cinfo->restart_interval) {
375 if (entropy->restarts_to_go == 0) {
376 emit_restart(cinfo, entropy->next_restart_num);
377 entropy->restarts_to_go = cinfo->restart_interval;
378 entropy->next_restart_num++;
379 entropy->next_restart_num &= 7;
380 }
381 entropy->restarts_to_go--;
382 }
383
384 /* Encode the MCU data blocks */
385 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
386 block = MCU_data[blkn];
387 ci = cinfo->MCU_membership[blkn];
388 tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
389
390 /* Compute the DC value after the required point transform by Al.
391 * This is simply an arithmetic right shift.
392 */
393 m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
394
395 /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
396
397 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
398 st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
399
400 /* Figure F.4: Encode_DC_DIFF */
401 if ((v = m - entropy->last_dc_val[ci]) == 0) {
402 arith_encode(cinfo, st, 0);
403 entropy->dc_context[ci] = 0; /* zero diff category */
404 } else {
405 entropy->last_dc_val[ci] = m;
406 arith_encode(cinfo, st, 1);
407 /* Figure F.6: Encoding nonzero value v */
408 /* Figure F.7: Encoding the sign of v */
409 if (v > 0) {
410 arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
411 st += 2; /* Table F.4: SP = S0 + 2 */
412 entropy->dc_context[ci] = 4; /* small positive diff category */
413 } else {
414 v = -v;
415 arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
416 st += 3; /* Table F.4: SN = S0 + 3 */
417 entropy->dc_context[ci] = 8; /* small negative diff category */
418 }
419 /* Figure F.8: Encoding the magnitude category of v */
420 m = 0;
421 if (v -= 1) {
422 arith_encode(cinfo, st, 1);
423 m = 1;
424 v2 = v;
425 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
426 while (v2 >>= 1) {
427 arith_encode(cinfo, st, 1);
428 m <<= 1;
429 st += 1;
430 }
431 }
432 arith_encode(cinfo, st, 0);
433 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
434 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
435 entropy->dc_context[ci] = 0; /* zero diff category */
436 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
437 entropy->dc_context[ci] += 8; /* large diff category */
438 /* Figure F.9: Encoding the magnitude bit pattern of v */
439 st += 14;
440 while (m >>= 1)
441 arith_encode(cinfo, st, (m & v) ? 1 : 0);
442 }
443 }
444
445 return TRUE;
446 }
447
448
449 /*
450 * MCU encoding for AC initial scan (either spectral selection,
451 * or first pass of successive approximation).
452 */
453
454 METHODDEF(boolean)
encode_mcu_AC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)455 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
456 {
457 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
458 JBLOCKROW block;
459 unsigned char *st;
460 int tbl, k, ke;
461 int v, v2, m;
462
463 /* Emit restart marker if needed */
464 if (cinfo->restart_interval) {
465 if (entropy->restarts_to_go == 0) {
466 emit_restart(cinfo, entropy->next_restart_num);
467 entropy->restarts_to_go = cinfo->restart_interval;
468 entropy->next_restart_num++;
469 entropy->next_restart_num &= 7;
470 }
471 entropy->restarts_to_go--;
472 }
473
474 /* Encode the MCU data block */
475 block = MCU_data[0];
476 tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
477
478 /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
479
480 /* Establish EOB (end-of-block) index */
481 for (ke = cinfo->Se; ke > 0; ke--)
482 /* We must apply the point transform by Al. For AC coefficients this
483 * is an integer division with rounding towards 0. To do this portably
484 * in C, we shift after obtaining the absolute value.
485 */
486 if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
487 if (v >>= cinfo->Al) break;
488 } else {
489 v = -v;
490 if (v >>= cinfo->Al) break;
491 }
492
493 /* Figure F.5: Encode_AC_Coefficients */
494 for (k = cinfo->Ss; k <= ke; k++) {
495 st = entropy->ac_stats[tbl] + 3 * (k - 1);
496 arith_encode(cinfo, st, 0); /* EOB decision */
497 for (;;) {
498 if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
499 if (v >>= cinfo->Al) {
500 arith_encode(cinfo, st + 1, 1);
501 arith_encode(cinfo, entropy->fixed_bin, 0);
502 break;
503 }
504 } else {
505 v = -v;
506 if (v >>= cinfo->Al) {
507 arith_encode(cinfo, st + 1, 1);
508 arith_encode(cinfo, entropy->fixed_bin, 1);
509 break;
510 }
511 }
512 arith_encode(cinfo, st + 1, 0); st += 3; k++;
513 }
514 st += 2;
515 /* Figure F.8: Encoding the magnitude category of v */
516 m = 0;
517 if (v -= 1) {
518 arith_encode(cinfo, st, 1);
519 m = 1;
520 v2 = v;
521 if (v2 >>= 1) {
522 arith_encode(cinfo, st, 1);
523 m <<= 1;
524 st = entropy->ac_stats[tbl] +
525 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
526 while (v2 >>= 1) {
527 arith_encode(cinfo, st, 1);
528 m <<= 1;
529 st += 1;
530 }
531 }
532 }
533 arith_encode(cinfo, st, 0);
534 /* Figure F.9: Encoding the magnitude bit pattern of v */
535 st += 14;
536 while (m >>= 1)
537 arith_encode(cinfo, st, (m & v) ? 1 : 0);
538 }
539 /* Encode EOB decision only if k <= cinfo->Se */
540 if (k <= cinfo->Se) {
541 st = entropy->ac_stats[tbl] + 3 * (k - 1);
542 arith_encode(cinfo, st, 1);
543 }
544
545 return TRUE;
546 }
547
548
549 /*
550 * MCU encoding for DC successive approximation refinement scan.
551 */
552
553 METHODDEF(boolean)
encode_mcu_DC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)554 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
555 {
556 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
557 unsigned char *st;
558 int Al, blkn;
559
560 /* Emit restart marker if needed */
561 if (cinfo->restart_interval) {
562 if (entropy->restarts_to_go == 0) {
563 emit_restart(cinfo, entropy->next_restart_num);
564 entropy->restarts_to_go = cinfo->restart_interval;
565 entropy->next_restart_num++;
566 entropy->next_restart_num &= 7;
567 }
568 entropy->restarts_to_go--;
569 }
570
571 st = entropy->fixed_bin; /* use fixed probability estimation */
572 Al = cinfo->Al;
573
574 /* Encode the MCU data blocks */
575 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
576 /* We simply emit the Al'th bit of the DC coefficient value. */
577 arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
578 }
579
580 return TRUE;
581 }
582
583
584 /*
585 * MCU encoding for AC successive approximation refinement scan.
586 */
587
588 METHODDEF(boolean)
encode_mcu_AC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)589 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
590 {
591 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
592 JBLOCKROW block;
593 unsigned char *st;
594 int tbl, k, ke, kex;
595 int v;
596
597 /* Emit restart marker if needed */
598 if (cinfo->restart_interval) {
599 if (entropy->restarts_to_go == 0) {
600 emit_restart(cinfo, entropy->next_restart_num);
601 entropy->restarts_to_go = cinfo->restart_interval;
602 entropy->next_restart_num++;
603 entropy->next_restart_num &= 7;
604 }
605 entropy->restarts_to_go--;
606 }
607
608 /* Encode the MCU data block */
609 block = MCU_data[0];
610 tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
611
612 /* Section G.1.3.3: Encoding of AC coefficients */
613
614 /* Establish EOB (end-of-block) index */
615 for (ke = cinfo->Se; ke > 0; ke--)
616 /* We must apply the point transform by Al. For AC coefficients this
617 * is an integer division with rounding towards 0. To do this portably
618 * in C, we shift after obtaining the absolute value.
619 */
620 if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
621 if (v >>= cinfo->Al) break;
622 } else {
623 v = -v;
624 if (v >>= cinfo->Al) break;
625 }
626
627 /* Establish EOBx (previous stage end-of-block) index */
628 for (kex = ke; kex > 0; kex--)
629 if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
630 if (v >>= cinfo->Ah) break;
631 } else {
632 v = -v;
633 if (v >>= cinfo->Ah) break;
634 }
635
636 /* Figure G.10: Encode_AC_Coefficients_SA */
637 for (k = cinfo->Ss; k <= ke; k++) {
638 st = entropy->ac_stats[tbl] + 3 * (k - 1);
639 if (k > kex)
640 arith_encode(cinfo, st, 0); /* EOB decision */
641 for (;;) {
642 if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
643 if (v >>= cinfo->Al) {
644 if (v >> 1) /* previously nonzero coef */
645 arith_encode(cinfo, st + 2, (v & 1));
646 else { /* newly nonzero coef */
647 arith_encode(cinfo, st + 1, 1);
648 arith_encode(cinfo, entropy->fixed_bin, 0);
649 }
650 break;
651 }
652 } else {
653 v = -v;
654 if (v >>= cinfo->Al) {
655 if (v >> 1) /* previously nonzero coef */
656 arith_encode(cinfo, st + 2, (v & 1));
657 else { /* newly nonzero coef */
658 arith_encode(cinfo, st + 1, 1);
659 arith_encode(cinfo, entropy->fixed_bin, 1);
660 }
661 break;
662 }
663 }
664 arith_encode(cinfo, st + 1, 0); st += 3; k++;
665 }
666 }
667 /* Encode EOB decision only if k <= cinfo->Se */
668 if (k <= cinfo->Se) {
669 st = entropy->ac_stats[tbl] + 3 * (k - 1);
670 arith_encode(cinfo, st, 1);
671 }
672
673 return TRUE;
674 }
675
676
677 /*
678 * Encode and output one MCU's worth of arithmetic-compressed coefficients.
679 */
680
681 METHODDEF(boolean)
encode_mcu(j_compress_ptr cinfo,JBLOCKROW * MCU_data)682 encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
683 {
684 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
685 jpeg_component_info * compptr;
686 JBLOCKROW block;
687 unsigned char *st;
688 int blkn, ci, tbl, k, ke;
689 int v, v2, m;
690
691 /* Emit restart marker if needed */
692 if (cinfo->restart_interval) {
693 if (entropy->restarts_to_go == 0) {
694 emit_restart(cinfo, entropy->next_restart_num);
695 entropy->restarts_to_go = cinfo->restart_interval;
696 entropy->next_restart_num++;
697 entropy->next_restart_num &= 7;
698 }
699 entropy->restarts_to_go--;
700 }
701
702 /* Encode the MCU data blocks */
703 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
704 block = MCU_data[blkn];
705 ci = cinfo->MCU_membership[blkn];
706 compptr = cinfo->cur_comp_info[ci];
707
708 /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
709
710 tbl = compptr->dc_tbl_no;
711
712 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
713 st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
714
715 /* Figure F.4: Encode_DC_DIFF */
716 if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
717 arith_encode(cinfo, st, 0);
718 entropy->dc_context[ci] = 0; /* zero diff category */
719 } else {
720 entropy->last_dc_val[ci] = (*block)[0];
721 arith_encode(cinfo, st, 1);
722 /* Figure F.6: Encoding nonzero value v */
723 /* Figure F.7: Encoding the sign of v */
724 if (v > 0) {
725 arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
726 st += 2; /* Table F.4: SP = S0 + 2 */
727 entropy->dc_context[ci] = 4; /* small positive diff category */
728 } else {
729 v = -v;
730 arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
731 st += 3; /* Table F.4: SN = S0 + 3 */
732 entropy->dc_context[ci] = 8; /* small negative diff category */
733 }
734 /* Figure F.8: Encoding the magnitude category of v */
735 m = 0;
736 if (v -= 1) {
737 arith_encode(cinfo, st, 1);
738 m = 1;
739 v2 = v;
740 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
741 while (v2 >>= 1) {
742 arith_encode(cinfo, st, 1);
743 m <<= 1;
744 st += 1;
745 }
746 }
747 arith_encode(cinfo, st, 0);
748 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
749 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
750 entropy->dc_context[ci] = 0; /* zero diff category */
751 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
752 entropy->dc_context[ci] += 8; /* large diff category */
753 /* Figure F.9: Encoding the magnitude bit pattern of v */
754 st += 14;
755 while (m >>= 1)
756 arith_encode(cinfo, st, (m & v) ? 1 : 0);
757 }
758
759 /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
760
761 tbl = compptr->ac_tbl_no;
762
763 /* Establish EOB (end-of-block) index */
764 for (ke = DCTSIZE2 - 1; ke > 0; ke--)
765 if ((*block)[jpeg_natural_order[ke]]) break;
766
767 /* Figure F.5: Encode_AC_Coefficients */
768 for (k = 1; k <= ke; k++) {
769 st = entropy->ac_stats[tbl] + 3 * (k - 1);
770 arith_encode(cinfo, st, 0); /* EOB decision */
771 while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
772 arith_encode(cinfo, st + 1, 0); st += 3; k++;
773 }
774 arith_encode(cinfo, st + 1, 1);
775 /* Figure F.6: Encoding nonzero value v */
776 /* Figure F.7: Encoding the sign of v */
777 if (v > 0) {
778 arith_encode(cinfo, entropy->fixed_bin, 0);
779 } else {
780 v = -v;
781 arith_encode(cinfo, entropy->fixed_bin, 1);
782 }
783 st += 2;
784 /* Figure F.8: Encoding the magnitude category of v */
785 m = 0;
786 if (v -= 1) {
787 arith_encode(cinfo, st, 1);
788 m = 1;
789 v2 = v;
790 if (v2 >>= 1) {
791 arith_encode(cinfo, st, 1);
792 m <<= 1;
793 st = entropy->ac_stats[tbl] +
794 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
795 while (v2 >>= 1) {
796 arith_encode(cinfo, st, 1);
797 m <<= 1;
798 st += 1;
799 }
800 }
801 }
802 arith_encode(cinfo, st, 0);
803 /* Figure F.9: Encoding the magnitude bit pattern of v */
804 st += 14;
805 while (m >>= 1)
806 arith_encode(cinfo, st, (m & v) ? 1 : 0);
807 }
808 /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
809 if (k <= DCTSIZE2 - 1) {
810 st = entropy->ac_stats[tbl] + 3 * (k - 1);
811 arith_encode(cinfo, st, 1);
812 }
813 }
814
815 return TRUE;
816 }
817
818
819 /*
820 * Initialize for an arithmetic-compressed scan.
821 */
822
823 METHODDEF(void)
start_pass(j_compress_ptr cinfo,boolean gather_statistics)824 start_pass (j_compress_ptr cinfo, boolean gather_statistics)
825 {
826 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
827 int ci, tbl;
828 jpeg_component_info * compptr;
829
830 if (gather_statistics)
831 /* Make sure to avoid that in the master control logic!
832 * We are fully adaptive here and need no extra
833 * statistics gathering pass!
834 */
835 ERREXIT(cinfo, JERR_NOT_COMPILED);
836
837 /* We assume jcmaster.c already validated the progressive scan parameters. */
838
839 /* Select execution routines */
840 if (cinfo->progressive_mode) {
841 if (cinfo->Ah == 0) {
842 if (cinfo->Ss == 0)
843 entropy->pub.encode_mcu = encode_mcu_DC_first;
844 else
845 entropy->pub.encode_mcu = encode_mcu_AC_first;
846 } else {
847 if (cinfo->Ss == 0)
848 entropy->pub.encode_mcu = encode_mcu_DC_refine;
849 else
850 entropy->pub.encode_mcu = encode_mcu_AC_refine;
851 }
852 } else
853 entropy->pub.encode_mcu = encode_mcu;
854
855 /* Allocate & initialize requested statistics areas */
856 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
857 compptr = cinfo->cur_comp_info[ci];
858 /* DC needs no table for refinement scan */
859 if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
860 tbl = compptr->dc_tbl_no;
861 if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
862 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
863 if (entropy->dc_stats[tbl] == NULL)
864 entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
865 ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
866 MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
867 /* Initialize DC predictions to 0 */
868 entropy->last_dc_val[ci] = 0;
869 entropy->dc_context[ci] = 0;
870 }
871 /* AC needs no table when not present */
872 if (cinfo->progressive_mode == 0 || cinfo->Se) {
873 tbl = compptr->ac_tbl_no;
874 if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
875 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
876 if (entropy->ac_stats[tbl] == NULL)
877 entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
878 ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
879 MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
880 #ifdef CALCULATE_SPECTRAL_CONDITIONING
881 if (cinfo->progressive_mode)
882 /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
883 cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
884 #endif
885 }
886 }
887
888 /* Initialize arithmetic encoding variables */
889 entropy->c = 0;
890 entropy->a = 0x10000L;
891 entropy->sc = 0;
892 entropy->zc = 0;
893 entropy->ct = 11;
894 entropy->buffer = -1; /* empty */
895
896 /* Initialize restart stuff */
897 entropy->restarts_to_go = cinfo->restart_interval;
898 entropy->next_restart_num = 0;
899 }
900
901
902 /*
903 * Module initialization routine for arithmetic entropy encoding.
904 */
905
906 GLOBAL(void)
jinit_arith_encoder(j_compress_ptr cinfo)907 jinit_arith_encoder (j_compress_ptr cinfo)
908 {
909 arith_entropy_ptr entropy;
910 int i;
911
912 entropy = (arith_entropy_ptr)
913 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
914 sizeof(arith_entropy_encoder));
915 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
916 entropy->pub.start_pass = start_pass;
917 entropy->pub.finish_pass = finish_pass;
918
919 /* Mark tables unallocated */
920 for (i = 0; i < NUM_ARITH_TBLS; i++) {
921 entropy->dc_stats[i] = NULL;
922 entropy->ac_stats[i] = NULL;
923 }
924
925 /* Initialize index for fixed probability estimation */
926 entropy->fixed_bin[0] = 113;
927 }
928