1 /*
2  * jccoefct.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1994-1997, Thomas G. Lane.
6  * It was modified by The libjpeg-turbo Project to include only code and
7  * information relevant to libjpeg-turbo.
8  * For conditions of distribution and use, see the accompanying README file.
9  *
10  * This file contains the coefficient buffer controller for compression.
11  * This controller is the top level of the JPEG compressor proper.
12  * The coefficient buffer lies between forward-DCT and entropy encoding steps.
13  */
14 
15 #define JPEG_INTERNALS
16 #include "jinclude.h"
17 #include "jpeglib.h"
18 
19 
20 /* We use a full-image coefficient buffer when doing Huffman optimization,
21  * and also for writing multiple-scan JPEG files.  In all cases, the DCT
22  * step is run during the first pass, and subsequent passes need only read
23  * the buffered coefficients.
24  */
25 #ifdef ENTROPY_OPT_SUPPORTED
26 #define FULL_COEF_BUFFER_SUPPORTED
27 #else
28 #ifdef C_MULTISCAN_FILES_SUPPORTED
29 #define FULL_COEF_BUFFER_SUPPORTED
30 #endif
31 #endif
32 
33 
34 /* Private buffer controller object */
35 
36 typedef struct {
37   struct jpeg_c_coef_controller pub; /* public fields */
38 
39   JDIMENSION iMCU_row_num;      /* iMCU row # within image */
40   JDIMENSION mcu_ctr;           /* counts MCUs processed in current row */
41   int MCU_vert_offset;          /* counts MCU rows within iMCU row */
42   int MCU_rows_per_iMCU_row;    /* number of such rows needed */
43 
44   /* For single-pass compression, it's sufficient to buffer just one MCU
45    * (although this may prove a bit slow in practice).  We allocate a
46    * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
47    * MCU constructed and sent.  In multi-pass modes, this array points to the
48    * current MCU's blocks within the virtual arrays.
49    */
50   JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
51 
52   /* In multi-pass modes, we need a virtual block array for each component. */
53   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
54 } my_coef_controller;
55 
56 typedef my_coef_controller * my_coef_ptr;
57 
58 
59 /* Forward declarations */
60 METHODDEF(boolean) compress_data
61         (j_compress_ptr cinfo, JSAMPIMAGE input_buf);
62 #ifdef FULL_COEF_BUFFER_SUPPORTED
63 METHODDEF(boolean) compress_first_pass
64         (j_compress_ptr cinfo, JSAMPIMAGE input_buf);
65 METHODDEF(boolean) compress_output
66         (j_compress_ptr cinfo, JSAMPIMAGE input_buf);
67 #endif
68 
69 
70 LOCAL(void)
start_iMCU_row(j_compress_ptr cinfo)71 start_iMCU_row (j_compress_ptr cinfo)
72 /* Reset within-iMCU-row counters for a new row */
73 {
74   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
75 
76   /* In an interleaved scan, an MCU row is the same as an iMCU row.
77    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
78    * But at the bottom of the image, process only what's left.
79    */
80   if (cinfo->comps_in_scan > 1) {
81     coef->MCU_rows_per_iMCU_row = 1;
82   } else {
83     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
84       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
85     else
86       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
87   }
88 
89   coef->mcu_ctr = 0;
90   coef->MCU_vert_offset = 0;
91 }
92 
93 
94 /*
95  * Initialize for a processing pass.
96  */
97 
98 METHODDEF(void)
start_pass_coef(j_compress_ptr cinfo,J_BUF_MODE pass_mode)99 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
100 {
101   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
102 
103   coef->iMCU_row_num = 0;
104   start_iMCU_row(cinfo);
105 
106   switch (pass_mode) {
107   case JBUF_PASS_THRU:
108     if (coef->whole_image[0] != NULL)
109       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
110     coef->pub.compress_data = compress_data;
111     break;
112 #ifdef FULL_COEF_BUFFER_SUPPORTED
113   case JBUF_SAVE_AND_PASS:
114     if (coef->whole_image[0] == NULL)
115       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
116     coef->pub.compress_data = compress_first_pass;
117     break;
118   case JBUF_CRANK_DEST:
119     if (coef->whole_image[0] == NULL)
120       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
121     coef->pub.compress_data = compress_output;
122     break;
123 #endif
124   default:
125     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
126     break;
127   }
128 }
129 
130 
131 /*
132  * Process some data in the single-pass case.
133  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
134  * per call, ie, v_samp_factor block rows for each component in the image.
135  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
136  *
137  * NB: input_buf contains a plane for each component in image,
138  * which we index according to the component's SOF position.
139  */
140 
141 METHODDEF(boolean)
compress_data(j_compress_ptr cinfo,JSAMPIMAGE input_buf)142 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
143 {
144   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
145   JDIMENSION MCU_col_num;       /* index of current MCU within row */
146   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
147   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
148   int blkn, bi, ci, yindex, yoffset, blockcnt;
149   JDIMENSION ypos, xpos;
150   jpeg_component_info *compptr;
151 
152   /* Loop to write as much as one whole iMCU row */
153   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
154        yoffset++) {
155     for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
156          MCU_col_num++) {
157       /* Determine where data comes from in input_buf and do the DCT thing.
158        * Each call on forward_DCT processes a horizontal row of DCT blocks
159        * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
160        * sequentially.  Dummy blocks at the right or bottom edge are filled in
161        * specially.  The data in them does not matter for image reconstruction,
162        * so we fill them with values that will encode to the smallest amount of
163        * data, viz: all zeroes in the AC entries, DC entries equal to previous
164        * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
165        */
166       blkn = 0;
167       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
168         compptr = cinfo->cur_comp_info[ci];
169         blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
170                                                 : compptr->last_col_width;
171         xpos = MCU_col_num * compptr->MCU_sample_width;
172         ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
173         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
174           if (coef->iMCU_row_num < last_iMCU_row ||
175               yoffset+yindex < compptr->last_row_height) {
176             (*cinfo->fdct->forward_DCT) (cinfo, compptr,
177                                          input_buf[compptr->component_index],
178                                          coef->MCU_buffer[blkn],
179                                          ypos, xpos, (JDIMENSION) blockcnt);
180             if (blockcnt < compptr->MCU_width) {
181               /* Create some dummy blocks at the right edge of the image. */
182               jzero_far((void *) coef->MCU_buffer[blkn + blockcnt],
183                         (compptr->MCU_width - blockcnt) * sizeof(JBLOCK));
184               for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
185                 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
186               }
187             }
188           } else {
189             /* Create a row of dummy blocks at the bottom of the image. */
190             jzero_far((void *) coef->MCU_buffer[blkn],
191                       compptr->MCU_width * sizeof(JBLOCK));
192             for (bi = 0; bi < compptr->MCU_width; bi++) {
193               coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
194             }
195           }
196           blkn += compptr->MCU_width;
197           ypos += DCTSIZE;
198         }
199       }
200       /* Try to write the MCU.  In event of a suspension failure, we will
201        * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
202        */
203       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
204         /* Suspension forced; update state counters and exit */
205         coef->MCU_vert_offset = yoffset;
206         coef->mcu_ctr = MCU_col_num;
207         return FALSE;
208       }
209     }
210     /* Completed an MCU row, but perhaps not an iMCU row */
211     coef->mcu_ctr = 0;
212   }
213   /* Completed the iMCU row, advance counters for next one */
214   coef->iMCU_row_num++;
215   start_iMCU_row(cinfo);
216   return TRUE;
217 }
218 
219 
220 #ifdef FULL_COEF_BUFFER_SUPPORTED
221 
222 /*
223  * Process some data in the first pass of a multi-pass case.
224  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
225  * per call, ie, v_samp_factor block rows for each component in the image.
226  * This amount of data is read from the source buffer, DCT'd and quantized,
227  * and saved into the virtual arrays.  We also generate suitable dummy blocks
228  * as needed at the right and lower edges.  (The dummy blocks are constructed
229  * in the virtual arrays, which have been padded appropriately.)  This makes
230  * it possible for subsequent passes not to worry about real vs. dummy blocks.
231  *
232  * We must also emit the data to the entropy encoder.  This is conveniently
233  * done by calling compress_output() after we've loaded the current strip
234  * of the virtual arrays.
235  *
236  * NB: input_buf contains a plane for each component in image.  All
237  * components are DCT'd and loaded into the virtual arrays in this pass.
238  * However, it may be that only a subset of the components are emitted to
239  * the entropy encoder during this first pass; be careful about looking
240  * at the scan-dependent variables (MCU dimensions, etc).
241  */
242 
243 METHODDEF(boolean)
compress_first_pass(j_compress_ptr cinfo,JSAMPIMAGE input_buf)244 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
245 {
246   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
247   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
248   JDIMENSION blocks_across, MCUs_across, MCUindex;
249   int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
250   JCOEF lastDC;
251   jpeg_component_info *compptr;
252   JBLOCKARRAY buffer;
253   JBLOCKROW thisblockrow, lastblockrow;
254 
255   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
256        ci++, compptr++) {
257     /* Align the virtual buffer for this component. */
258     buffer = (*cinfo->mem->access_virt_barray)
259       ((j_common_ptr) cinfo, coef->whole_image[ci],
260        coef->iMCU_row_num * compptr->v_samp_factor,
261        (JDIMENSION) compptr->v_samp_factor, TRUE);
262     /* Count non-dummy DCT block rows in this iMCU row. */
263     if (coef->iMCU_row_num < last_iMCU_row)
264       block_rows = compptr->v_samp_factor;
265     else {
266       /* NB: can't use last_row_height here, since may not be set! */
267       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
268       if (block_rows == 0) block_rows = compptr->v_samp_factor;
269     }
270     blocks_across = compptr->width_in_blocks;
271     h_samp_factor = compptr->h_samp_factor;
272     /* Count number of dummy blocks to be added at the right margin. */
273     ndummy = (int) (blocks_across % h_samp_factor);
274     if (ndummy > 0)
275       ndummy = h_samp_factor - ndummy;
276     /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
277      * on forward_DCT processes a complete horizontal row of DCT blocks.
278      */
279     for (block_row = 0; block_row < block_rows; block_row++) {
280       thisblockrow = buffer[block_row];
281       (*cinfo->fdct->forward_DCT) (cinfo, compptr,
282                                    input_buf[ci], thisblockrow,
283                                    (JDIMENSION) (block_row * DCTSIZE),
284                                    (JDIMENSION) 0, blocks_across);
285       if (ndummy > 0) {
286         /* Create dummy blocks at the right edge of the image. */
287         thisblockrow += blocks_across; /* => first dummy block */
288         jzero_far((void *) thisblockrow, ndummy * sizeof(JBLOCK));
289         lastDC = thisblockrow[-1][0];
290         for (bi = 0; bi < ndummy; bi++) {
291           thisblockrow[bi][0] = lastDC;
292         }
293       }
294     }
295     /* If at end of image, create dummy block rows as needed.
296      * The tricky part here is that within each MCU, we want the DC values
297      * of the dummy blocks to match the last real block's DC value.
298      * This squeezes a few more bytes out of the resulting file...
299      */
300     if (coef->iMCU_row_num == last_iMCU_row) {
301       blocks_across += ndummy;  /* include lower right corner */
302       MCUs_across = blocks_across / h_samp_factor;
303       for (block_row = block_rows; block_row < compptr->v_samp_factor;
304            block_row++) {
305         thisblockrow = buffer[block_row];
306         lastblockrow = buffer[block_row-1];
307         jzero_far((void *) thisblockrow,
308                   (size_t) (blocks_across * sizeof(JBLOCK)));
309         for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
310           lastDC = lastblockrow[h_samp_factor-1][0];
311           for (bi = 0; bi < h_samp_factor; bi++) {
312             thisblockrow[bi][0] = lastDC;
313           }
314           thisblockrow += h_samp_factor; /* advance to next MCU in row */
315           lastblockrow += h_samp_factor;
316         }
317       }
318     }
319   }
320   /* NB: compress_output will increment iMCU_row_num if successful.
321    * A suspension return will result in redoing all the work above next time.
322    */
323 
324   /* Emit data to the entropy encoder, sharing code with subsequent passes */
325   return compress_output(cinfo, input_buf);
326 }
327 
328 
329 /*
330  * Process some data in subsequent passes of a multi-pass case.
331  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
332  * per call, ie, v_samp_factor block rows for each component in the scan.
333  * The data is obtained from the virtual arrays and fed to the entropy coder.
334  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
335  *
336  * NB: input_buf is ignored; it is likely to be a NULL pointer.
337  */
338 
339 METHODDEF(boolean)
compress_output(j_compress_ptr cinfo,JSAMPIMAGE input_buf)340 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
341 {
342   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
343   JDIMENSION MCU_col_num;       /* index of current MCU within row */
344   int blkn, ci, xindex, yindex, yoffset;
345   JDIMENSION start_col;
346   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
347   JBLOCKROW buffer_ptr;
348   jpeg_component_info *compptr;
349 
350   /* Align the virtual buffers for the components used in this scan.
351    * NB: during first pass, this is safe only because the buffers will
352    * already be aligned properly, so jmemmgr.c won't need to do any I/O.
353    */
354   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
355     compptr = cinfo->cur_comp_info[ci];
356     buffer[ci] = (*cinfo->mem->access_virt_barray)
357       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
358        coef->iMCU_row_num * compptr->v_samp_factor,
359        (JDIMENSION) compptr->v_samp_factor, FALSE);
360   }
361 
362   /* Loop to process one whole iMCU row */
363   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
364        yoffset++) {
365     for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
366          MCU_col_num++) {
367       /* Construct list of pointers to DCT blocks belonging to this MCU */
368       blkn = 0;                 /* index of current DCT block within MCU */
369       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
370         compptr = cinfo->cur_comp_info[ci];
371         start_col = MCU_col_num * compptr->MCU_width;
372         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
373           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
374           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
375             coef->MCU_buffer[blkn++] = buffer_ptr++;
376           }
377         }
378       }
379       /* Try to write the MCU. */
380       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
381         /* Suspension forced; update state counters and exit */
382         coef->MCU_vert_offset = yoffset;
383         coef->mcu_ctr = MCU_col_num;
384         return FALSE;
385       }
386     }
387     /* Completed an MCU row, but perhaps not an iMCU row */
388     coef->mcu_ctr = 0;
389   }
390   /* Completed the iMCU row, advance counters for next one */
391   coef->iMCU_row_num++;
392   start_iMCU_row(cinfo);
393   return TRUE;
394 }
395 
396 #endif /* FULL_COEF_BUFFER_SUPPORTED */
397 
398 
399 /*
400  * Initialize coefficient buffer controller.
401  */
402 
403 GLOBAL(void)
jinit_c_coef_controller(j_compress_ptr cinfo,boolean need_full_buffer)404 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
405 {
406   my_coef_ptr coef;
407 
408   coef = (my_coef_ptr)
409     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
410                                 sizeof(my_coef_controller));
411   cinfo->coef = (struct jpeg_c_coef_controller *) coef;
412   coef->pub.start_pass = start_pass_coef;
413 
414   /* Create the coefficient buffer. */
415   if (need_full_buffer) {
416 #ifdef FULL_COEF_BUFFER_SUPPORTED
417     /* Allocate a full-image virtual array for each component, */
418     /* padded to a multiple of samp_factor DCT blocks in each direction. */
419     int ci;
420     jpeg_component_info *compptr;
421 
422     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
423          ci++, compptr++) {
424       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
425         ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
426          (JDIMENSION) jround_up((long) compptr->width_in_blocks,
427                                 (long) compptr->h_samp_factor),
428          (JDIMENSION) jround_up((long) compptr->height_in_blocks,
429                                 (long) compptr->v_samp_factor),
430          (JDIMENSION) compptr->v_samp_factor);
431     }
432 #else
433     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
434 #endif
435   } else {
436     /* We only need a single-MCU buffer. */
437     JBLOCKROW buffer;
438     int i;
439 
440     buffer = (JBLOCKROW)
441       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
442                                   C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
443     for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
444       coef->MCU_buffer[i] = buffer + i;
445     }
446     coef->whole_image[0] = NULL; /* flag for no virtual arrays */
447   }
448 }
449