1 /*
2 * jdhuff.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * Modifications:
7 * Copyright (C) 2009-2011, 2016, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README file.
9 *
10 * This file contains Huffman entropy decoding routines.
11 *
12 * Much of the complexity here has to do with supporting input suspension.
13 * If the data source module demands suspension, we want to be able to back
14 * up to the start of the current MCU. To do this, we copy state variables
15 * into local working storage, and update them back to the permanent
16 * storage only upon successful completion of an MCU.
17 */
18
19 #define JPEG_INTERNALS
20 #include "jinclude.h"
21 #include "jpeglib.h"
22 #include "jdhuff.h" /* Declarations shared with jdphuff.c */
23 #include "jpegcomp.h"
24 #include "jstdhuff.c"
25
26
27 /*
28 * Expanded entropy decoder object for Huffman decoding.
29 *
30 * The savable_state subrecord contains fields that change within an MCU,
31 * but must not be updated permanently until we complete the MCU.
32 */
33
34 typedef struct {
35 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
36 } savable_state;
37
38 /* This macro is to work around compilers with missing or broken
39 * structure assignment. You'll need to fix this code if you have
40 * such a compiler and you change MAX_COMPS_IN_SCAN.
41 */
42
43 #ifndef NO_STRUCT_ASSIGN
44 #define ASSIGN_STATE(dest,src) ((dest) = (src))
45 #else
46 #if MAX_COMPS_IN_SCAN == 4
47 #define ASSIGN_STATE(dest,src) \
48 ((dest).last_dc_val[0] = (src).last_dc_val[0], \
49 (dest).last_dc_val[1] = (src).last_dc_val[1], \
50 (dest).last_dc_val[2] = (src).last_dc_val[2], \
51 (dest).last_dc_val[3] = (src).last_dc_val[3])
52 #endif
53 #endif
54
55
56 typedef struct {
57 struct jpeg_entropy_decoder pub; /* public fields */
58
59 /* These fields are loaded into local variables at start of each MCU.
60 * In case of suspension, we exit WITHOUT updating them.
61 */
62 bitread_perm_state bitstate; /* Bit buffer at start of MCU */
63 savable_state saved; /* Other state at start of MCU */
64
65 /* These fields are NOT loaded into local working state. */
66 unsigned int restarts_to_go; /* MCUs left in this restart interval */
67
68 /* Pointers to derived tables (these workspaces have image lifespan) */
69 d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
70 d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
71
72 /* Precalculated info set up by start_pass for use in decode_mcu: */
73
74 /* Pointers to derived tables to be used for each block within an MCU */
75 d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
76 d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
77 /* Whether we care about the DC and AC coefficient values for each block */
78 boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
79 boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
80 } huff_entropy_decoder;
81
82 typedef huff_entropy_decoder * huff_entropy_ptr;
83
84
85 /*
86 * Initialize for a Huffman-compressed scan.
87 */
88
89 METHODDEF(void)
start_pass_huff_decoder(j_decompress_ptr cinfo)90 start_pass_huff_decoder (j_decompress_ptr cinfo)
91 {
92 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
93 int ci, blkn, dctbl, actbl;
94 d_derived_tbl **pdtbl;
95 jpeg_component_info * compptr;
96
97 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
98 * This ought to be an error condition, but we make it a warning because
99 * there are some baseline files out there with all zeroes in these bytes.
100 */
101 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
102 cinfo->Ah != 0 || cinfo->Al != 0)
103 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
104
105 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
106 compptr = cinfo->cur_comp_info[ci];
107 dctbl = compptr->dc_tbl_no;
108 actbl = compptr->ac_tbl_no;
109 /* Compute derived values for Huffman tables */
110 /* We may do this more than once for a table, but it's not expensive */
111 pdtbl = entropy->dc_derived_tbls + dctbl;
112 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
113 pdtbl = entropy->ac_derived_tbls + actbl;
114 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
115 /* Initialize DC predictions to 0 */
116 entropy->saved.last_dc_val[ci] = 0;
117 }
118
119 /* Precalculate decoding info for each block in an MCU of this scan */
120 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
121 ci = cinfo->MCU_membership[blkn];
122 compptr = cinfo->cur_comp_info[ci];
123 /* Precalculate which table to use for each block */
124 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
125 entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
126 /* Decide whether we really care about the coefficient values */
127 if (compptr->component_needed) {
128 entropy->dc_needed[blkn] = TRUE;
129 /* we don't need the ACs if producing a 1/8th-size image */
130 entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
131 } else {
132 entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
133 }
134 }
135
136 /* Initialize bitread state variables */
137 entropy->bitstate.bits_left = 0;
138 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
139 entropy->pub.insufficient_data = FALSE;
140
141 /* Initialize restart counter */
142 entropy->restarts_to_go = cinfo->restart_interval;
143 }
144
145
146 /*
147 * Compute the derived values for a Huffman table.
148 * This routine also performs some validation checks on the table.
149 *
150 * Note this is also used by jdphuff.c.
151 */
152
153 GLOBAL(void)
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo,boolean isDC,int tblno,d_derived_tbl ** pdtbl)154 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
155 d_derived_tbl ** pdtbl)
156 {
157 JHUFF_TBL *htbl;
158 d_derived_tbl *dtbl;
159 int p, i, l, si, numsymbols;
160 int lookbits, ctr;
161 char huffsize[257];
162 unsigned int huffcode[257];
163 unsigned int code;
164
165 /* Note that huffsize[] and huffcode[] are filled in code-length order,
166 * paralleling the order of the symbols themselves in htbl->huffval[].
167 */
168
169 /* Find the input Huffman table */
170 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
171 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
172 htbl =
173 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
174 if (htbl == NULL)
175 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
176
177 /* Allocate a workspace if we haven't already done so. */
178 if (*pdtbl == NULL)
179 *pdtbl = (d_derived_tbl *)
180 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
181 sizeof(d_derived_tbl));
182 dtbl = *pdtbl;
183 dtbl->pub = htbl; /* fill in back link */
184
185 /* Figure C.1: make table of Huffman code length for each symbol */
186
187 p = 0;
188 for (l = 1; l <= 16; l++) {
189 i = (int) htbl->bits[l];
190 if (i < 0 || p + i > 256) /* protect against table overrun */
191 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
192 while (i--)
193 huffsize[p++] = (char) l;
194 }
195 huffsize[p] = 0;
196 numsymbols = p;
197
198 /* Figure C.2: generate the codes themselves */
199 /* We also validate that the counts represent a legal Huffman code tree. */
200
201 code = 0;
202 si = huffsize[0];
203 p = 0;
204 while (huffsize[p]) {
205 while (((int) huffsize[p]) == si) {
206 huffcode[p++] = code;
207 code++;
208 }
209 /* code is now 1 more than the last code used for codelength si; but
210 * it must still fit in si bits, since no code is allowed to be all ones.
211 */
212 if (((INT32) code) >= (((INT32) 1) << si))
213 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
214 code <<= 1;
215 si++;
216 }
217
218 /* Figure F.15: generate decoding tables for bit-sequential decoding */
219
220 p = 0;
221 for (l = 1; l <= 16; l++) {
222 if (htbl->bits[l]) {
223 /* valoffset[l] = huffval[] index of 1st symbol of code length l,
224 * minus the minimum code of length l
225 */
226 dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
227 p += htbl->bits[l];
228 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
229 } else {
230 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
231 }
232 }
233 dtbl->valoffset[17] = 0;
234 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
235
236 /* Compute lookahead tables to speed up decoding.
237 * First we set all the table entries to 0, indicating "too long";
238 * then we iterate through the Huffman codes that are short enough and
239 * fill in all the entries that correspond to bit sequences starting
240 * with that code.
241 */
242
243 for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
244 dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
245
246 p = 0;
247 for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
248 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
249 /* l = current code's length, p = its index in huffcode[] & huffval[]. */
250 /* Generate left-justified code followed by all possible bit sequences */
251 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
252 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
253 dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
254 lookbits++;
255 }
256 }
257 }
258
259 /* Validate symbols as being reasonable.
260 * For AC tables, we make no check, but accept all byte values 0..255.
261 * For DC tables, we require the symbols to be in range 0..15.
262 * (Tighter bounds could be applied depending on the data depth and mode,
263 * but this is sufficient to ensure safe decoding.)
264 */
265 if (isDC) {
266 for (i = 0; i < numsymbols; i++) {
267 int sym = htbl->huffval[i];
268 if (sym < 0 || sym > 15)
269 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
270 }
271 }
272 }
273
274
275 /*
276 * Out-of-line code for bit fetching (shared with jdphuff.c).
277 * See jdhuff.h for info about usage.
278 * Note: current values of get_buffer and bits_left are passed as parameters,
279 * but are returned in the corresponding fields of the state struct.
280 *
281 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
282 * of get_buffer to be used. (On machines with wider words, an even larger
283 * buffer could be used.) However, on some machines 32-bit shifts are
284 * quite slow and take time proportional to the number of places shifted.
285 * (This is true with most PC compilers, for instance.) In this case it may
286 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
287 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
288 */
289
290 #ifdef SLOW_SHIFT_32
291 #define MIN_GET_BITS 15 /* minimum allowable value */
292 #else
293 #define MIN_GET_BITS (BIT_BUF_SIZE-7)
294 #endif
295
296
297 GLOBAL(boolean)
jpeg_fill_bit_buffer(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,int nbits)298 jpeg_fill_bit_buffer (bitread_working_state * state,
299 register bit_buf_type get_buffer, register int bits_left,
300 int nbits)
301 /* Load up the bit buffer to a depth of at least nbits */
302 {
303 /* Copy heavily used state fields into locals (hopefully registers) */
304 register const JOCTET * next_input_byte = state->next_input_byte;
305 register size_t bytes_in_buffer = state->bytes_in_buffer;
306 j_decompress_ptr cinfo = state->cinfo;
307
308 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
309 /* (It is assumed that no request will be for more than that many bits.) */
310 /* We fail to do so only if we hit a marker or are forced to suspend. */
311
312 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
313 while (bits_left < MIN_GET_BITS) {
314 register int c;
315
316 /* Attempt to read a byte */
317 if (bytes_in_buffer == 0) {
318 if (! (*cinfo->src->fill_input_buffer) (cinfo))
319 return FALSE;
320 next_input_byte = cinfo->src->next_input_byte;
321 bytes_in_buffer = cinfo->src->bytes_in_buffer;
322 }
323 bytes_in_buffer--;
324 c = GETJOCTET(*next_input_byte++);
325
326 /* If it's 0xFF, check and discard stuffed zero byte */
327 if (c == 0xFF) {
328 /* Loop here to discard any padding FF's on terminating marker,
329 * so that we can save a valid unread_marker value. NOTE: we will
330 * accept multiple FF's followed by a 0 as meaning a single FF data
331 * byte. This data pattern is not valid according to the standard.
332 */
333 do {
334 if (bytes_in_buffer == 0) {
335 if (! (*cinfo->src->fill_input_buffer) (cinfo))
336 return FALSE;
337 next_input_byte = cinfo->src->next_input_byte;
338 bytes_in_buffer = cinfo->src->bytes_in_buffer;
339 }
340 bytes_in_buffer--;
341 c = GETJOCTET(*next_input_byte++);
342 } while (c == 0xFF);
343
344 if (c == 0) {
345 /* Found FF/00, which represents an FF data byte */
346 c = 0xFF;
347 } else {
348 /* Oops, it's actually a marker indicating end of compressed data.
349 * Save the marker code for later use.
350 * Fine point: it might appear that we should save the marker into
351 * bitread working state, not straight into permanent state. But
352 * once we have hit a marker, we cannot need to suspend within the
353 * current MCU, because we will read no more bytes from the data
354 * source. So it is OK to update permanent state right away.
355 */
356 cinfo->unread_marker = c;
357 /* See if we need to insert some fake zero bits. */
358 goto no_more_bytes;
359 }
360 }
361
362 /* OK, load c into get_buffer */
363 get_buffer = (get_buffer << 8) | c;
364 bits_left += 8;
365 } /* end while */
366 } else {
367 no_more_bytes:
368 /* We get here if we've read the marker that terminates the compressed
369 * data segment. There should be enough bits in the buffer register
370 * to satisfy the request; if so, no problem.
371 */
372 if (nbits > bits_left) {
373 /* Uh-oh. Report corrupted data to user and stuff zeroes into
374 * the data stream, so that we can produce some kind of image.
375 * We use a nonvolatile flag to ensure that only one warning message
376 * appears per data segment.
377 */
378 if (! cinfo->entropy->insufficient_data) {
379 WARNMS(cinfo, JWRN_HIT_MARKER);
380 cinfo->entropy->insufficient_data = TRUE;
381 }
382 /* Fill the buffer with zero bits */
383 get_buffer <<= MIN_GET_BITS - bits_left;
384 bits_left = MIN_GET_BITS;
385 }
386 }
387
388 /* Unload the local registers */
389 state->next_input_byte = next_input_byte;
390 state->bytes_in_buffer = bytes_in_buffer;
391 state->get_buffer = get_buffer;
392 state->bits_left = bits_left;
393
394 return TRUE;
395 }
396
397
398 /* Macro version of the above, which performs much better but does not
399 handle markers. We have to hand off any blocks with markers to the
400 slower routines. */
401
402 #define GET_BYTE \
403 { \
404 register int c0, c1; \
405 c0 = GETJOCTET(*buffer++); \
406 c1 = GETJOCTET(*buffer); \
407 /* Pre-execute most common case */ \
408 get_buffer = (get_buffer << 8) | c0; \
409 bits_left += 8; \
410 if (c0 == 0xFF) { \
411 /* Pre-execute case of FF/00, which represents an FF data byte */ \
412 buffer++; \
413 if (c1 != 0) { \
414 /* Oops, it's actually a marker indicating end of compressed data. */ \
415 cinfo->unread_marker = c1; \
416 /* Back out pre-execution and fill the buffer with zero bits */ \
417 buffer -= 2; \
418 get_buffer &= ~0xFF; \
419 } \
420 } \
421 }
422
423 #if SIZEOF_SIZE_T==8 || defined(_WIN64)
424
425 /* Pre-fetch 48 bytes, because the holding register is 64-bit */
426 #define FILL_BIT_BUFFER_FAST \
427 if (bits_left <= 16) { \
428 GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
429 }
430
431 #else
432
433 /* Pre-fetch 16 bytes, because the holding register is 32-bit */
434 #define FILL_BIT_BUFFER_FAST \
435 if (bits_left <= 16) { \
436 GET_BYTE GET_BYTE \
437 }
438
439 #endif
440
441
442 /*
443 * Out-of-line code for Huffman code decoding.
444 * See jdhuff.h for info about usage.
445 */
446
447 GLOBAL(int)
jpeg_huff_decode(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,d_derived_tbl * htbl,int min_bits)448 jpeg_huff_decode (bitread_working_state * state,
449 register bit_buf_type get_buffer, register int bits_left,
450 d_derived_tbl * htbl, int min_bits)
451 {
452 register int l = min_bits;
453 register INT32 code;
454
455 /* HUFF_DECODE has determined that the code is at least min_bits */
456 /* bits long, so fetch that many bits in one swoop. */
457
458 CHECK_BIT_BUFFER(*state, l, return -1);
459 code = GET_BITS(l);
460
461 /* Collect the rest of the Huffman code one bit at a time. */
462 /* This is per Figure F.16 in the JPEG spec. */
463
464 while (code > htbl->maxcode[l]) {
465 code <<= 1;
466 CHECK_BIT_BUFFER(*state, 1, return -1);
467 code |= GET_BITS(1);
468 l++;
469 }
470
471 /* Unload the local registers */
472 state->get_buffer = get_buffer;
473 state->bits_left = bits_left;
474
475 /* With garbage input we may reach the sentinel value l = 17. */
476
477 if (l > 16) {
478 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
479 return 0; /* fake a zero as the safest result */
480 }
481
482 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
483 }
484
485
486 /*
487 * Figure F.12: extend sign bit.
488 * On some machines, a shift and add will be faster than a table lookup.
489 */
490
491 #define AVOID_TABLES
492 #ifdef AVOID_TABLES
493
494 #define NEG_1 ((unsigned int)-1)
495 #define HUFF_EXTEND(x,s) ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((NEG_1)<<(s)) + 1)))
496
497 #else
498
499 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
500
501 static const int extend_test[16] = /* entry n is 2**(n-1) */
502 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
503 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
504
505 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
506 { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
507 ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
508 ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
509 ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
510
511 #endif /* AVOID_TABLES */
512
513
514 /*
515 * Check for a restart marker & resynchronize decoder.
516 * Returns FALSE if must suspend.
517 */
518
519 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)520 process_restart (j_decompress_ptr cinfo)
521 {
522 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
523 int ci;
524
525 /* Throw away any unused bits remaining in bit buffer; */
526 /* include any full bytes in next_marker's count of discarded bytes */
527 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
528 entropy->bitstate.bits_left = 0;
529
530 /* Advance past the RSTn marker */
531 if (! (*cinfo->marker->read_restart_marker) (cinfo))
532 return FALSE;
533
534 /* Re-initialize DC predictions to 0 */
535 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
536 entropy->saved.last_dc_val[ci] = 0;
537
538 /* Reset restart counter */
539 entropy->restarts_to_go = cinfo->restart_interval;
540
541 /* Reset out-of-data flag, unless read_restart_marker left us smack up
542 * against a marker. In that case we will end up treating the next data
543 * segment as empty, and we can avoid producing bogus output pixels by
544 * leaving the flag set.
545 */
546 if (cinfo->unread_marker == 0)
547 entropy->pub.insufficient_data = FALSE;
548
549 return TRUE;
550 }
551
552
553 LOCAL(boolean)
decode_mcu_slow(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)554 decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
555 {
556 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
557 BITREAD_STATE_VARS;
558 int blkn;
559 savable_state state;
560 /* Outer loop handles each block in the MCU */
561
562 /* Load up working state */
563 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
564 ASSIGN_STATE(state, entropy->saved);
565
566 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
567 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
568 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
569 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
570 register int s, k, r;
571
572 /* Decode a single block's worth of coefficients */
573
574 /* Section F.2.2.1: decode the DC coefficient difference */
575 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
576 if (s) {
577 CHECK_BIT_BUFFER(br_state, s, return FALSE);
578 r = GET_BITS(s);
579 s = HUFF_EXTEND(r, s);
580 }
581
582 if (entropy->dc_needed[blkn]) {
583 /* Convert DC difference to actual value, update last_dc_val */
584 int ci = cinfo->MCU_membership[blkn];
585 s += state.last_dc_val[ci];
586 state.last_dc_val[ci] = s;
587 if (block) {
588 /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
589 (*block)[0] = (JCOEF) s;
590 }
591 }
592
593 if (entropy->ac_needed[blkn] && block) {
594
595 /* Section F.2.2.2: decode the AC coefficients */
596 /* Since zeroes are skipped, output area must be cleared beforehand */
597 for (k = 1; k < DCTSIZE2; k++) {
598 HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
599
600 r = s >> 4;
601 s &= 15;
602
603 if (s) {
604 k += r;
605 CHECK_BIT_BUFFER(br_state, s, return FALSE);
606 r = GET_BITS(s);
607 s = HUFF_EXTEND(r, s);
608 /* Output coefficient in natural (dezigzagged) order.
609 * Note: the extra entries in jpeg_natural_order[] will save us
610 * if k >= DCTSIZE2, which could happen if the data is corrupted.
611 */
612 (*block)[jpeg_natural_order[k]] = (JCOEF) s;
613 } else {
614 if (r != 15)
615 break;
616 k += 15;
617 }
618 }
619
620 } else {
621
622 /* Section F.2.2.2: decode the AC coefficients */
623 /* In this path we just discard the values */
624 for (k = 1; k < DCTSIZE2; k++) {
625 HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
626
627 r = s >> 4;
628 s &= 15;
629
630 if (s) {
631 k += r;
632 CHECK_BIT_BUFFER(br_state, s, return FALSE);
633 DROP_BITS(s);
634 } else {
635 if (r != 15)
636 break;
637 k += 15;
638 }
639 }
640 }
641 }
642
643 /* Completed MCU, so update state */
644 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
645 ASSIGN_STATE(entropy->saved, state);
646 return TRUE;
647 }
648
649
650 LOCAL(boolean)
decode_mcu_fast(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)651 decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
652 {
653 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
654 BITREAD_STATE_VARS;
655 JOCTET *buffer;
656 int blkn;
657 savable_state state;
658 /* Outer loop handles each block in the MCU */
659
660 /* Load up working state */
661 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
662 buffer = (JOCTET *) br_state.next_input_byte;
663 ASSIGN_STATE(state, entropy->saved);
664
665 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
666 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
667 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
668 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
669 register int s, k, r, l;
670
671 HUFF_DECODE_FAST(s, l, dctbl);
672 if (s) {
673 FILL_BIT_BUFFER_FAST
674 r = GET_BITS(s);
675 s = HUFF_EXTEND(r, s);
676 }
677
678 if (entropy->dc_needed[blkn]) {
679 int ci = cinfo->MCU_membership[blkn];
680 s += state.last_dc_val[ci];
681 state.last_dc_val[ci] = s;
682 if (block)
683 (*block)[0] = (JCOEF) s;
684 }
685
686 if (entropy->ac_needed[blkn] && block) {
687
688 for (k = 1; k < DCTSIZE2; k++) {
689 HUFF_DECODE_FAST(s, l, actbl);
690 r = s >> 4;
691 s &= 15;
692
693 if (s) {
694 k += r;
695 FILL_BIT_BUFFER_FAST
696 r = GET_BITS(s);
697 s = HUFF_EXTEND(r, s);
698 (*block)[jpeg_natural_order[k]] = (JCOEF) s;
699 } else {
700 if (r != 15) break;
701 k += 15;
702 }
703 }
704
705 } else {
706
707 for (k = 1; k < DCTSIZE2; k++) {
708 HUFF_DECODE_FAST(s, l, actbl);
709 r = s >> 4;
710 s &= 15;
711
712 if (s) {
713 k += r;
714 FILL_BIT_BUFFER_FAST
715 DROP_BITS(s);
716 } else {
717 if (r != 15) break;
718 k += 15;
719 }
720 }
721 }
722 }
723
724 if (cinfo->unread_marker != 0) {
725 cinfo->unread_marker = 0;
726 return FALSE;
727 }
728
729 br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
730 br_state.next_input_byte = buffer;
731 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
732 ASSIGN_STATE(entropy->saved, state);
733 return TRUE;
734 }
735
736
737 /*
738 * Decode and return one MCU's worth of Huffman-compressed coefficients.
739 * The coefficients are reordered from zigzag order into natural array order,
740 * but are not dequantized.
741 *
742 * The i'th block of the MCU is stored into the block pointed to by
743 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
744 * (Wholesale zeroing is usually a little faster than retail...)
745 *
746 * Returns FALSE if data source requested suspension. In that case no
747 * changes have been made to permanent state. (Exception: some output
748 * coefficients may already have been assigned. This is harmless for
749 * this module, since we'll just re-assign them on the next call.)
750 */
751
752 #define BUFSIZE (DCTSIZE2 * 8)
753
754 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)755 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
756 {
757 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
758 int usefast = 1;
759
760 /* Process restart marker if needed; may have to suspend */
761 if (cinfo->restart_interval) {
762 if (entropy->restarts_to_go == 0)
763 if (! process_restart(cinfo))
764 return FALSE;
765 usefast = 0;
766 }
767
768 if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU
769 || cinfo->unread_marker != 0)
770 usefast = 0;
771
772 /* If we've run out of data, just leave the MCU set to zeroes.
773 * This way, we return uniform gray for the remainder of the segment.
774 */
775 if (! entropy->pub.insufficient_data) {
776
777 if (usefast) {
778 if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
779 }
780 else {
781 use_slow:
782 if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
783 }
784
785 }
786
787 /* Account for restart interval (no-op if not using restarts) */
788 entropy->restarts_to_go--;
789
790 return TRUE;
791 }
792
793
794 /*
795 * Module initialization routine for Huffman entropy decoding.
796 */
797
798 GLOBAL(void)
jinit_huff_decoder(j_decompress_ptr cinfo)799 jinit_huff_decoder (j_decompress_ptr cinfo)
800 {
801 huff_entropy_ptr entropy;
802 int i;
803
804 /* Motion JPEG frames typically do not include the Huffman tables if they
805 are the default tables. Thus, if the tables are not set by the time
806 the Huffman decoder is initialized (usually within the body of
807 jpeg_start_decompress()), we set them to default values. */
808 std_huff_tables((j_common_ptr) cinfo);
809
810 entropy = (huff_entropy_ptr)
811 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
812 sizeof(huff_entropy_decoder));
813 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
814 entropy->pub.start_pass = start_pass_huff_decoder;
815 entropy->pub.decode_mcu = decode_mcu;
816
817 /* Mark tables unallocated */
818 for (i = 0; i < NUM_HUFF_TBLS; i++) {
819 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
820 }
821 }
822