1 /*
2  * jquant1.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1996, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009, D. R. Commander
8  * For conditions of distribution and use, see the accompanying README file.
9  *
10  * This file contains 1-pass color quantization (color mapping) routines.
11  * These routines provide mapping to a fixed color map using equally spaced
12  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
13  */
14 
15 #define JPEG_INTERNALS
16 #include "jinclude.h"
17 #include "jpeglib.h"
18 
19 #ifdef QUANT_1PASS_SUPPORTED
20 
21 
22 /*
23  * The main purpose of 1-pass quantization is to provide a fast, if not very
24  * high quality, colormapped output capability.  A 2-pass quantizer usually
25  * gives better visual quality; however, for quantized grayscale output this
26  * quantizer is perfectly adequate.  Dithering is highly recommended with this
27  * quantizer, though you can turn it off if you really want to.
28  *
29  * In 1-pass quantization the colormap must be chosen in advance of seeing the
30  * image.  We use a map consisting of all combinations of Ncolors[i] color
31  * values for the i'th component.  The Ncolors[] values are chosen so that
32  * their product, the total number of colors, is no more than that requested.
33  * (In most cases, the product will be somewhat less.)
34  *
35  * Since the colormap is orthogonal, the representative value for each color
36  * component can be determined without considering the other components;
37  * then these indexes can be combined into a colormap index by a standard
38  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
39  * can be precalculated and stored in the lookup table colorindex[].
40  * colorindex[i][j] maps pixel value j in component i to the nearest
41  * representative value (grid plane) for that component; this index is
42  * multiplied by the array stride for component i, so that the
43  * index of the colormap entry closest to a given pixel value is just
44  *    sum( colorindex[component-number][pixel-component-value] )
45  * Aside from being fast, this scheme allows for variable spacing between
46  * representative values with no additional lookup cost.
47  *
48  * If gamma correction has been applied in color conversion, it might be wise
49  * to adjust the color grid spacing so that the representative colors are
50  * equidistant in linear space.  At this writing, gamma correction is not
51  * implemented by jdcolor, so nothing is done here.
52  */
53 
54 
55 /* Declarations for ordered dithering.
56  *
57  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
58  * dithering is described in many references, for instance Dale Schumacher's
59  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
60  * In place of Schumacher's comparisons against a "threshold" value, we add a
61  * "dither" value to the input pixel and then round the result to the nearest
62  * output value.  The dither value is equivalent to (0.5 - threshold) times
63  * the distance between output values.  For ordered dithering, we assume that
64  * the output colors are equally spaced; if not, results will probably be
65  * worse, since the dither may be too much or too little at a given point.
66  *
67  * The normal calculation would be to form pixel value + dither, range-limit
68  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
69  * We can skip the separate range-limiting step by extending the colorindex
70  * table in both directions.
71  */
72 
73 #define ODITHER_SIZE  16        /* dimension of dither matrix */
74 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
75 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */
76 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
77 
78 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
79 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
80 
81 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
82   /* Bayer's order-4 dither array.  Generated by the code given in
83    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
84    * The values in this array must range from 0 to ODITHER_CELLS-1.
85    */
86   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
87   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
88   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
89   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
90   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
91   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
92   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
93   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
94   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
95   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
96   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
97   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
98   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
99   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
100   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
101   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
102 };
103 
104 
105 /* Declarations for Floyd-Steinberg dithering.
106  *
107  * Errors are accumulated into the array fserrors[], at a resolution of
108  * 1/16th of a pixel count.  The error at a given pixel is propagated
109  * to its not-yet-processed neighbors using the standard F-S fractions,
110  *              ...     (here)  7/16
111  *              3/16    5/16    1/16
112  * We work left-to-right on even rows, right-to-left on odd rows.
113  *
114  * We can get away with a single array (holding one row's worth of errors)
115  * by using it to store the current row's errors at pixel columns not yet
116  * processed, but the next row's errors at columns already processed.  We
117  * need only a few extra variables to hold the errors immediately around the
118  * current column.  (If we are lucky, those variables are in registers, but
119  * even if not, they're probably cheaper to access than array elements are.)
120  *
121  * The fserrors[] array is indexed [component#][position].
122  * We provide (#columns + 2) entries per component; the extra entry at each
123  * end saves us from special-casing the first and last pixels.
124  */
125 
126 #if BITS_IN_JSAMPLE == 8
127 typedef INT16 FSERROR;          /* 16 bits should be enough */
128 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
129 #else
130 typedef INT32 FSERROR;          /* may need more than 16 bits */
131 typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
132 #endif
133 
134 typedef FSERROR *FSERRPTR;  /* pointer to error array */
135 
136 
137 /* Private subobject */
138 
139 #define MAX_Q_COMPS 4           /* max components I can handle */
140 
141 typedef struct {
142   struct jpeg_color_quantizer pub; /* public fields */
143 
144   /* Initially allocated colormap is saved here */
145   JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
146   int sv_actual;                /* number of entries in use */
147 
148   JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
149   /* colorindex[i][j] = index of color closest to pixel value j in component i,
150    * premultiplied as described above.  Since colormap indexes must fit into
151    * JSAMPLEs, the entries of this array will too.
152    */
153   boolean is_padded;            /* is the colorindex padded for odither? */
154 
155   int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */
156 
157   /* Variables for ordered dithering */
158   int row_index;                /* cur row's vertical index in dither matrix */
159   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
160 
161   /* Variables for Floyd-Steinberg dithering */
162   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
163   boolean on_odd_row;           /* flag to remember which row we are on */
164 } my_cquantizer;
165 
166 typedef my_cquantizer * my_cquantize_ptr;
167 
168 
169 /*
170  * Policy-making subroutines for create_colormap and create_colorindex.
171  * These routines determine the colormap to be used.  The rest of the module
172  * only assumes that the colormap is orthogonal.
173  *
174  *  * select_ncolors decides how to divvy up the available colors
175  *    among the components.
176  *  * output_value defines the set of representative values for a component.
177  *  * largest_input_value defines the mapping from input values to
178  *    representative values for a component.
179  * Note that the latter two routines may impose different policies for
180  * different components, though this is not currently done.
181  */
182 
183 
184 LOCAL(int)
select_ncolors(j_decompress_ptr cinfo,int Ncolors[])185 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
186 /* Determine allocation of desired colors to components, */
187 /* and fill in Ncolors[] array to indicate choice. */
188 /* Return value is total number of colors (product of Ncolors[] values). */
189 {
190   int nc = cinfo->out_color_components; /* number of color components */
191   int max_colors = cinfo->desired_number_of_colors;
192   int total_colors, iroot, i, j;
193   boolean changed;
194   long temp;
195   int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
196   RGB_order[0] = rgb_green[cinfo->out_color_space];
197   RGB_order[1] = rgb_red[cinfo->out_color_space];
198   RGB_order[2] = rgb_blue[cinfo->out_color_space];
199 
200   /* We can allocate at least the nc'th root of max_colors per component. */
201   /* Compute floor(nc'th root of max_colors). */
202   iroot = 1;
203   do {
204     iroot++;
205     temp = iroot;               /* set temp = iroot ** nc */
206     for (i = 1; i < nc; i++)
207       temp *= iroot;
208   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
209   iroot--;                      /* now iroot = floor(root) */
210 
211   /* Must have at least 2 color values per component */
212   if (iroot < 2)
213     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
214 
215   /* Initialize to iroot color values for each component */
216   total_colors = 1;
217   for (i = 0; i < nc; i++) {
218     Ncolors[i] = iroot;
219     total_colors *= iroot;
220   }
221   /* We may be able to increment the count for one or more components without
222    * exceeding max_colors, though we know not all can be incremented.
223    * Sometimes, the first component can be incremented more than once!
224    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
225    * In RGB colorspace, try to increment G first, then R, then B.
226    */
227   do {
228     changed = FALSE;
229     for (i = 0; i < nc; i++) {
230       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
231       /* calculate new total_colors if Ncolors[j] is incremented */
232       temp = total_colors / Ncolors[j];
233       temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */
234       if (temp > (long) max_colors)
235         break;                  /* won't fit, done with this pass */
236       Ncolors[j]++;             /* OK, apply the increment */
237       total_colors = (int) temp;
238       changed = TRUE;
239     }
240   } while (changed);
241 
242   return total_colors;
243 }
244 
245 
246 LOCAL(int)
output_value(j_decompress_ptr cinfo,int ci,int j,int maxj)247 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
248 /* Return j'th output value, where j will range from 0 to maxj */
249 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
250 {
251   /* We always provide values 0 and MAXJSAMPLE for each component;
252    * any additional values are equally spaced between these limits.
253    * (Forcing the upper and lower values to the limits ensures that
254    * dithering can't produce a color outside the selected gamut.)
255    */
256   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
257 }
258 
259 
260 LOCAL(int)
largest_input_value(j_decompress_ptr cinfo,int ci,int j,int maxj)261 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
262 /* Return largest input value that should map to j'th output value */
263 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
264 {
265   /* Breakpoints are halfway between values returned by output_value */
266   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
267 }
268 
269 
270 /*
271  * Create the colormap.
272  */
273 
274 LOCAL(void)
create_colormap(j_decompress_ptr cinfo)275 create_colormap (j_decompress_ptr cinfo)
276 {
277   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
278   JSAMPARRAY colormap;          /* Created colormap */
279   int total_colors;             /* Number of distinct output colors */
280   int i,j,k, nci, blksize, blkdist, ptr, val;
281 
282   /* Select number of colors for each component */
283   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
284 
285   /* Report selected color counts */
286   if (cinfo->out_color_components == 3)
287     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
288              total_colors, cquantize->Ncolors[0],
289              cquantize->Ncolors[1], cquantize->Ncolors[2]);
290   else
291     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
292 
293   /* Allocate and fill in the colormap. */
294   /* The colors are ordered in the map in standard row-major order, */
295   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
296 
297   colormap = (*cinfo->mem->alloc_sarray)
298     ((j_common_ptr) cinfo, JPOOL_IMAGE,
299      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
300 
301   /* blksize is number of adjacent repeated entries for a component */
302   /* blkdist is distance between groups of identical entries for a component */
303   blkdist = total_colors;
304 
305   for (i = 0; i < cinfo->out_color_components; i++) {
306     /* fill in colormap entries for i'th color component */
307     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
308     blksize = blkdist / nci;
309     for (j = 0; j < nci; j++) {
310       /* Compute j'th output value (out of nci) for component */
311       val = output_value(cinfo, i, j, nci-1);
312       /* Fill in all colormap entries that have this value of this component */
313       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
314         /* fill in blksize entries beginning at ptr */
315         for (k = 0; k < blksize; k++)
316           colormap[i][ptr+k] = (JSAMPLE) val;
317       }
318     }
319     blkdist = blksize;          /* blksize of this color is blkdist of next */
320   }
321 
322   /* Save the colormap in private storage,
323    * where it will survive color quantization mode changes.
324    */
325   cquantize->sv_colormap = colormap;
326   cquantize->sv_actual = total_colors;
327 }
328 
329 
330 /*
331  * Create the color index table.
332  */
333 
334 LOCAL(void)
create_colorindex(j_decompress_ptr cinfo)335 create_colorindex (j_decompress_ptr cinfo)
336 {
337   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
338   JSAMPROW indexptr;
339   int i,j,k, nci, blksize, val, pad;
340 
341   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
342    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
343    * This is not necessary in the other dithering modes.  However, we
344    * flag whether it was done in case user changes dithering mode.
345    */
346   if (cinfo->dither_mode == JDITHER_ORDERED) {
347     pad = MAXJSAMPLE*2;
348     cquantize->is_padded = TRUE;
349   } else {
350     pad = 0;
351     cquantize->is_padded = FALSE;
352   }
353 
354   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
355     ((j_common_ptr) cinfo, JPOOL_IMAGE,
356      (JDIMENSION) (MAXJSAMPLE+1 + pad),
357      (JDIMENSION) cinfo->out_color_components);
358 
359   /* blksize is number of adjacent repeated entries for a component */
360   blksize = cquantize->sv_actual;
361 
362   for (i = 0; i < cinfo->out_color_components; i++) {
363     /* fill in colorindex entries for i'th color component */
364     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
365     blksize = blksize / nci;
366 
367     /* adjust colorindex pointers to provide padding at negative indexes. */
368     if (pad)
369       cquantize->colorindex[i] += MAXJSAMPLE;
370 
371     /* in loop, val = index of current output value, */
372     /* and k = largest j that maps to current val */
373     indexptr = cquantize->colorindex[i];
374     val = 0;
375     k = largest_input_value(cinfo, i, 0, nci-1);
376     for (j = 0; j <= MAXJSAMPLE; j++) {
377       while (j > k)             /* advance val if past boundary */
378         k = largest_input_value(cinfo, i, ++val, nci-1);
379       /* premultiply so that no multiplication needed in main processing */
380       indexptr[j] = (JSAMPLE) (val * blksize);
381     }
382     /* Pad at both ends if necessary */
383     if (pad)
384       for (j = 1; j <= MAXJSAMPLE; j++) {
385         indexptr[-j] = indexptr[0];
386         indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
387       }
388   }
389 }
390 
391 
392 /*
393  * Create an ordered-dither array for a component having ncolors
394  * distinct output values.
395  */
396 
397 LOCAL(ODITHER_MATRIX_PTR)
make_odither_array(j_decompress_ptr cinfo,int ncolors)398 make_odither_array (j_decompress_ptr cinfo, int ncolors)
399 {
400   ODITHER_MATRIX_PTR odither;
401   int j,k;
402   INT32 num,den;
403 
404   odither = (ODITHER_MATRIX_PTR)
405     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
406                                 sizeof(ODITHER_MATRIX));
407   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
408    * Hence the dither value for the matrix cell with fill order f
409    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
410    * On 16-bit-int machine, be careful to avoid overflow.
411    */
412   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
413   for (j = 0; j < ODITHER_SIZE; j++) {
414     for (k = 0; k < ODITHER_SIZE; k++) {
415       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
416             * MAXJSAMPLE;
417       /* Ensure round towards zero despite C's lack of consistency
418        * about rounding negative values in integer division...
419        */
420       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
421     }
422   }
423   return odither;
424 }
425 
426 
427 /*
428  * Create the ordered-dither tables.
429  * Components having the same number of representative colors may
430  * share a dither table.
431  */
432 
433 LOCAL(void)
create_odither_tables(j_decompress_ptr cinfo)434 create_odither_tables (j_decompress_ptr cinfo)
435 {
436   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
437   ODITHER_MATRIX_PTR odither;
438   int i, j, nci;
439 
440   for (i = 0; i < cinfo->out_color_components; i++) {
441     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
442     odither = NULL;             /* search for matching prior component */
443     for (j = 0; j < i; j++) {
444       if (nci == cquantize->Ncolors[j]) {
445         odither = cquantize->odither[j];
446         break;
447       }
448     }
449     if (odither == NULL)        /* need a new table? */
450       odither = make_odither_array(cinfo, nci);
451     cquantize->odither[i] = odither;
452   }
453 }
454 
455 
456 /*
457  * Map some rows of pixels to the output colormapped representation.
458  */
459 
460 METHODDEF(void)
color_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)461 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
462                 JSAMPARRAY output_buf, int num_rows)
463 /* General case, no dithering */
464 {
465   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
466   JSAMPARRAY colorindex = cquantize->colorindex;
467   register int pixcode, ci;
468   register JSAMPROW ptrin, ptrout;
469   int row;
470   JDIMENSION col;
471   JDIMENSION width = cinfo->output_width;
472   register int nc = cinfo->out_color_components;
473 
474   for (row = 0; row < num_rows; row++) {
475     ptrin = input_buf[row];
476     ptrout = output_buf[row];
477     for (col = width; col > 0; col--) {
478       pixcode = 0;
479       for (ci = 0; ci < nc; ci++) {
480         pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
481       }
482       *ptrout++ = (JSAMPLE) pixcode;
483     }
484   }
485 }
486 
487 
488 METHODDEF(void)
color_quantize3(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)489 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
490                  JSAMPARRAY output_buf, int num_rows)
491 /* Fast path for out_color_components==3, no dithering */
492 {
493   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
494   register int pixcode;
495   register JSAMPROW ptrin, ptrout;
496   JSAMPROW colorindex0 = cquantize->colorindex[0];
497   JSAMPROW colorindex1 = cquantize->colorindex[1];
498   JSAMPROW colorindex2 = cquantize->colorindex[2];
499   int row;
500   JDIMENSION col;
501   JDIMENSION width = cinfo->output_width;
502 
503   for (row = 0; row < num_rows; row++) {
504     ptrin = input_buf[row];
505     ptrout = output_buf[row];
506     for (col = width; col > 0; col--) {
507       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
508       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
509       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
510       *ptrout++ = (JSAMPLE) pixcode;
511     }
512   }
513 }
514 
515 
516 METHODDEF(void)
quantize_ord_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)517 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
518                      JSAMPARRAY output_buf, int num_rows)
519 /* General case, with ordered dithering */
520 {
521   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
522   register JSAMPROW input_ptr;
523   register JSAMPROW output_ptr;
524   JSAMPROW colorindex_ci;
525   int * dither;                 /* points to active row of dither matrix */
526   int row_index, col_index;     /* current indexes into dither matrix */
527   int nc = cinfo->out_color_components;
528   int ci;
529   int row;
530   JDIMENSION col;
531   JDIMENSION width = cinfo->output_width;
532 
533   for (row = 0; row < num_rows; row++) {
534     /* Initialize output values to 0 so can process components separately */
535     jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
536     row_index = cquantize->row_index;
537     for (ci = 0; ci < nc; ci++) {
538       input_ptr = input_buf[row] + ci;
539       output_ptr = output_buf[row];
540       colorindex_ci = cquantize->colorindex[ci];
541       dither = cquantize->odither[ci][row_index];
542       col_index = 0;
543 
544       for (col = width; col > 0; col--) {
545         /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
546          * select output value, accumulate into output code for this pixel.
547          * Range-limiting need not be done explicitly, as we have extended
548          * the colorindex table to produce the right answers for out-of-range
549          * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
550          * required amount of padding.
551          */
552         *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
553         input_ptr += nc;
554         output_ptr++;
555         col_index = (col_index + 1) & ODITHER_MASK;
556       }
557     }
558     /* Advance row index for next row */
559     row_index = (row_index + 1) & ODITHER_MASK;
560     cquantize->row_index = row_index;
561   }
562 }
563 
564 
565 METHODDEF(void)
quantize3_ord_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)566 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
567                       JSAMPARRAY output_buf, int num_rows)
568 /* Fast path for out_color_components==3, with ordered dithering */
569 {
570   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
571   register int pixcode;
572   register JSAMPROW input_ptr;
573   register JSAMPROW output_ptr;
574   JSAMPROW colorindex0 = cquantize->colorindex[0];
575   JSAMPROW colorindex1 = cquantize->colorindex[1];
576   JSAMPROW colorindex2 = cquantize->colorindex[2];
577   int * dither0;                /* points to active row of dither matrix */
578   int * dither1;
579   int * dither2;
580   int row_index, col_index;     /* current indexes into dither matrix */
581   int row;
582   JDIMENSION col;
583   JDIMENSION width = cinfo->output_width;
584 
585   for (row = 0; row < num_rows; row++) {
586     row_index = cquantize->row_index;
587     input_ptr = input_buf[row];
588     output_ptr = output_buf[row];
589     dither0 = cquantize->odither[0][row_index];
590     dither1 = cquantize->odither[1][row_index];
591     dither2 = cquantize->odither[2][row_index];
592     col_index = 0;
593 
594     for (col = width; col > 0; col--) {
595       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
596                                         dither0[col_index]]);
597       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
598                                         dither1[col_index]]);
599       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
600                                         dither2[col_index]]);
601       *output_ptr++ = (JSAMPLE) pixcode;
602       col_index = (col_index + 1) & ODITHER_MASK;
603     }
604     row_index = (row_index + 1) & ODITHER_MASK;
605     cquantize->row_index = row_index;
606   }
607 }
608 
609 
610 METHODDEF(void)
quantize_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)611 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
612                     JSAMPARRAY output_buf, int num_rows)
613 /* General case, with Floyd-Steinberg dithering */
614 {
615   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
616   register LOCFSERROR cur;      /* current error or pixel value */
617   LOCFSERROR belowerr;          /* error for pixel below cur */
618   LOCFSERROR bpreverr;          /* error for below/prev col */
619   LOCFSERROR bnexterr;          /* error for below/next col */
620   LOCFSERROR delta;
621   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
622   register JSAMPROW input_ptr;
623   register JSAMPROW output_ptr;
624   JSAMPROW colorindex_ci;
625   JSAMPROW colormap_ci;
626   int pixcode;
627   int nc = cinfo->out_color_components;
628   int dir;                      /* 1 for left-to-right, -1 for right-to-left */
629   int dirnc;                    /* dir * nc */
630   int ci;
631   int row;
632   JDIMENSION col;
633   JDIMENSION width = cinfo->output_width;
634   JSAMPLE *range_limit = cinfo->sample_range_limit;
635   SHIFT_TEMPS
636 
637   for (row = 0; row < num_rows; row++) {
638     /* Initialize output values to 0 so can process components separately */
639     jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
640     for (ci = 0; ci < nc; ci++) {
641       input_ptr = input_buf[row] + ci;
642       output_ptr = output_buf[row];
643       if (cquantize->on_odd_row) {
644         /* work right to left in this row */
645         input_ptr += (width-1) * nc; /* so point to rightmost pixel */
646         output_ptr += width-1;
647         dir = -1;
648         dirnc = -nc;
649         errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
650       } else {
651         /* work left to right in this row */
652         dir = 1;
653         dirnc = nc;
654         errorptr = cquantize->fserrors[ci]; /* => entry before first column */
655       }
656       colorindex_ci = cquantize->colorindex[ci];
657       colormap_ci = cquantize->sv_colormap[ci];
658       /* Preset error values: no error propagated to first pixel from left */
659       cur = 0;
660       /* and no error propagated to row below yet */
661       belowerr = bpreverr = 0;
662 
663       for (col = width; col > 0; col--) {
664         /* cur holds the error propagated from the previous pixel on the
665          * current line.  Add the error propagated from the previous line
666          * to form the complete error correction term for this pixel, and
667          * round the error term (which is expressed * 16) to an integer.
668          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
669          * for either sign of the error value.
670          * Note: errorptr points to *previous* column's array entry.
671          */
672         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
673         /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
674          * The maximum error is +- MAXJSAMPLE; this sets the required size
675          * of the range_limit array.
676          */
677         cur += GETJSAMPLE(*input_ptr);
678         cur = GETJSAMPLE(range_limit[cur]);
679         /* Select output value, accumulate into output code for this pixel */
680         pixcode = GETJSAMPLE(colorindex_ci[cur]);
681         *output_ptr += (JSAMPLE) pixcode;
682         /* Compute actual representation error at this pixel */
683         /* Note: we can do this even though we don't have the final */
684         /* pixel code, because the colormap is orthogonal. */
685         cur -= GETJSAMPLE(colormap_ci[pixcode]);
686         /* Compute error fractions to be propagated to adjacent pixels.
687          * Add these into the running sums, and simultaneously shift the
688          * next-line error sums left by 1 column.
689          */
690         bnexterr = cur;
691         delta = cur * 2;
692         cur += delta;           /* form error * 3 */
693         errorptr[0] = (FSERROR) (bpreverr + cur);
694         cur += delta;           /* form error * 5 */
695         bpreverr = belowerr + cur;
696         belowerr = bnexterr;
697         cur += delta;           /* form error * 7 */
698         /* At this point cur contains the 7/16 error value to be propagated
699          * to the next pixel on the current line, and all the errors for the
700          * next line have been shifted over. We are therefore ready to move on.
701          */
702         input_ptr += dirnc;     /* advance input ptr to next column */
703         output_ptr += dir;      /* advance output ptr to next column */
704         errorptr += dir;        /* advance errorptr to current column */
705       }
706       /* Post-loop cleanup: we must unload the final error value into the
707        * final fserrors[] entry.  Note we need not unload belowerr because
708        * it is for the dummy column before or after the actual array.
709        */
710       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
711     }
712     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
713   }
714 }
715 
716 
717 /*
718  * Allocate workspace for Floyd-Steinberg errors.
719  */
720 
721 LOCAL(void)
alloc_fs_workspace(j_decompress_ptr cinfo)722 alloc_fs_workspace (j_decompress_ptr cinfo)
723 {
724   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
725   size_t arraysize;
726   int i;
727 
728   arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
729   for (i = 0; i < cinfo->out_color_components; i++) {
730     cquantize->fserrors[i] = (FSERRPTR)
731       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
732   }
733 }
734 
735 
736 /*
737  * Initialize for one-pass color quantization.
738  */
739 
740 METHODDEF(void)
start_pass_1_quant(j_decompress_ptr cinfo,boolean is_pre_scan)741 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
742 {
743   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
744   size_t arraysize;
745   int i;
746 
747   /* Install my colormap. */
748   cinfo->colormap = cquantize->sv_colormap;
749   cinfo->actual_number_of_colors = cquantize->sv_actual;
750 
751   /* Initialize for desired dithering mode. */
752   switch (cinfo->dither_mode) {
753   case JDITHER_NONE:
754     if (cinfo->out_color_components == 3)
755       cquantize->pub.color_quantize = color_quantize3;
756     else
757       cquantize->pub.color_quantize = color_quantize;
758     break;
759   case JDITHER_ORDERED:
760     if (cinfo->out_color_components == 3)
761       cquantize->pub.color_quantize = quantize3_ord_dither;
762     else
763       cquantize->pub.color_quantize = quantize_ord_dither;
764     cquantize->row_index = 0;   /* initialize state for ordered dither */
765     /* If user changed to ordered dither from another mode,
766      * we must recreate the color index table with padding.
767      * This will cost extra space, but probably isn't very likely.
768      */
769     if (! cquantize->is_padded)
770       create_colorindex(cinfo);
771     /* Create ordered-dither tables if we didn't already. */
772     if (cquantize->odither[0] == NULL)
773       create_odither_tables(cinfo);
774     break;
775   case JDITHER_FS:
776     cquantize->pub.color_quantize = quantize_fs_dither;
777     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
778     /* Allocate Floyd-Steinberg workspace if didn't already. */
779     if (cquantize->fserrors[0] == NULL)
780       alloc_fs_workspace(cinfo);
781     /* Initialize the propagated errors to zero. */
782     arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
783     for (i = 0; i < cinfo->out_color_components; i++)
784       jzero_far((void *) cquantize->fserrors[i], arraysize);
785     break;
786   default:
787     ERREXIT(cinfo, JERR_NOT_COMPILED);
788     break;
789   }
790 }
791 
792 
793 /*
794  * Finish up at the end of the pass.
795  */
796 
797 METHODDEF(void)
finish_pass_1_quant(j_decompress_ptr cinfo)798 finish_pass_1_quant (j_decompress_ptr cinfo)
799 {
800   /* no work in 1-pass case */
801 }
802 
803 
804 /*
805  * Switch to a new external colormap between output passes.
806  * Shouldn't get to this module!
807  */
808 
809 METHODDEF(void)
new_color_map_1_quant(j_decompress_ptr cinfo)810 new_color_map_1_quant (j_decompress_ptr cinfo)
811 {
812   ERREXIT(cinfo, JERR_MODE_CHANGE);
813 }
814 
815 
816 /*
817  * Module initialization routine for 1-pass color quantization.
818  */
819 
820 GLOBAL(void)
jinit_1pass_quantizer(j_decompress_ptr cinfo)821 jinit_1pass_quantizer (j_decompress_ptr cinfo)
822 {
823   my_cquantize_ptr cquantize;
824 
825   cquantize = (my_cquantize_ptr)
826     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
827                                 sizeof(my_cquantizer));
828   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
829   cquantize->pub.start_pass = start_pass_1_quant;
830   cquantize->pub.finish_pass = finish_pass_1_quant;
831   cquantize->pub.new_color_map = new_color_map_1_quant;
832   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
833   cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
834 
835   /* Make sure my internal arrays won't overflow */
836   if (cinfo->out_color_components > MAX_Q_COMPS)
837     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
838   /* Make sure colormap indexes can be represented by JSAMPLEs */
839   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
840     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
841 
842   /* Create the colormap and color index table. */
843   create_colormap(cinfo);
844   create_colorindex(cinfo);
845 
846   /* Allocate Floyd-Steinberg workspace now if requested.
847    * We do this now since it may affect the memory manager's space
848    * calculations.  If the user changes to FS dither mode in a later pass, we
849    * will allocate the space then, and will possibly overrun the
850    * max_memory_to_use setting.
851    */
852   if (cinfo->dither_mode == JDITHER_FS)
853     alloc_fs_workspace(cinfo);
854 }
855 
856 #endif /* QUANT_1PASS_SUPPORTED */
857