1 /*
2 * jquant2.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1996, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009, 2014, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README file.
9 *
10 * This file contains 2-pass color quantization (color mapping) routines.
11 * These routines provide selection of a custom color map for an image,
12 * followed by mapping of the image to that color map, with optional
13 * Floyd-Steinberg dithering.
14 * It is also possible to use just the second pass to map to an arbitrary
15 * externally-given color map.
16 *
17 * Note: ordered dithering is not supported, since there isn't any fast
18 * way to compute intercolor distances; it's unclear that ordered dither's
19 * fundamental assumptions even hold with an irregularly spaced color map.
20 */
21
22 #define JPEG_INTERNALS
23 #include "jinclude.h"
24 #include "jpeglib.h"
25
26 #ifdef QUANT_2PASS_SUPPORTED
27
28
29 /*
30 * This module implements the well-known Heckbert paradigm for color
31 * quantization. Most of the ideas used here can be traced back to
32 * Heckbert's seminal paper
33 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
34 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
35 *
36 * In the first pass over the image, we accumulate a histogram showing the
37 * usage count of each possible color. To keep the histogram to a reasonable
38 * size, we reduce the precision of the input; typical practice is to retain
39 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
40 * in the same histogram cell.
41 *
42 * Next, the color-selection step begins with a box representing the whole
43 * color space, and repeatedly splits the "largest" remaining box until we
44 * have as many boxes as desired colors. Then the mean color in each
45 * remaining box becomes one of the possible output colors.
46 *
47 * The second pass over the image maps each input pixel to the closest output
48 * color (optionally after applying a Floyd-Steinberg dithering correction).
49 * This mapping is logically trivial, but making it go fast enough requires
50 * considerable care.
51 *
52 * Heckbert-style quantizers vary a good deal in their policies for choosing
53 * the "largest" box and deciding where to cut it. The particular policies
54 * used here have proved out well in experimental comparisons, but better ones
55 * may yet be found.
56 *
57 * In earlier versions of the IJG code, this module quantized in YCbCr color
58 * space, processing the raw upsampled data without a color conversion step.
59 * This allowed the color conversion math to be done only once per colormap
60 * entry, not once per pixel. However, that optimization precluded other
61 * useful optimizations (such as merging color conversion with upsampling)
62 * and it also interfered with desired capabilities such as quantizing to an
63 * externally-supplied colormap. We have therefore abandoned that approach.
64 * The present code works in the post-conversion color space, typically RGB.
65 *
66 * To improve the visual quality of the results, we actually work in scaled
67 * RGB space, giving G distances more weight than R, and R in turn more than
68 * B. To do everything in integer math, we must use integer scale factors.
69 * The 2/3/1 scale factors used here correspond loosely to the relative
70 * weights of the colors in the NTSC grayscale equation.
71 * If you want to use this code to quantize a non-RGB color space, you'll
72 * probably need to change these scale factors.
73 */
74
75 #define R_SCALE 2 /* scale R distances by this much */
76 #define G_SCALE 3 /* scale G distances by this much */
77 #define B_SCALE 1 /* and B by this much */
78
79 static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
80 #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
81 #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
82 #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
83
84 /*
85 * First we have the histogram data structure and routines for creating it.
86 *
87 * The number of bits of precision can be adjusted by changing these symbols.
88 * We recommend keeping 6 bits for G and 5 each for R and B.
89 * If you have plenty of memory and cycles, 6 bits all around gives marginally
90 * better results; if you are short of memory, 5 bits all around will save
91 * some space but degrade the results.
92 * To maintain a fully accurate histogram, we'd need to allocate a "long"
93 * (preferably unsigned long) for each cell. In practice this is overkill;
94 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
95 * and clamping those that do overflow to the maximum value will give close-
96 * enough results. This reduces the recommended histogram size from 256Kb
97 * to 128Kb, which is a useful savings on PC-class machines.
98 * (In the second pass the histogram space is re-used for pixel mapping data;
99 * in that capacity, each cell must be able to store zero to the number of
100 * desired colors. 16 bits/cell is plenty for that too.)
101 * Since the JPEG code is intended to run in small memory model on 80x86
102 * machines, we can't just allocate the histogram in one chunk. Instead
103 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
104 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
105 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.
106 */
107
108 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
109
110 /* These will do the right thing for either R,G,B or B,G,R color order,
111 * but you may not like the results for other color orders.
112 */
113 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
114 #define HIST_C1_BITS 6 /* bits of precision in G histogram */
115 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
116
117 /* Number of elements along histogram axes. */
118 #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
119 #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
120 #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
121
122 /* These are the amounts to shift an input value to get a histogram index. */
123 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
124 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
125 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
126
127
128 typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
129
130 typedef histcell * histptr; /* for pointers to histogram cells */
131
132 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
133 typedef hist1d * hist2d; /* type for the 2nd-level pointers */
134 typedef hist2d * hist3d; /* type for top-level pointer */
135
136
137 /* Declarations for Floyd-Steinberg dithering.
138 *
139 * Errors are accumulated into the array fserrors[], at a resolution of
140 * 1/16th of a pixel count. The error at a given pixel is propagated
141 * to its not-yet-processed neighbors using the standard F-S fractions,
142 * ... (here) 7/16
143 * 3/16 5/16 1/16
144 * We work left-to-right on even rows, right-to-left on odd rows.
145 *
146 * We can get away with a single array (holding one row's worth of errors)
147 * by using it to store the current row's errors at pixel columns not yet
148 * processed, but the next row's errors at columns already processed. We
149 * need only a few extra variables to hold the errors immediately around the
150 * current column. (If we are lucky, those variables are in registers, but
151 * even if not, they're probably cheaper to access than array elements are.)
152 *
153 * The fserrors[] array has (#columns + 2) entries; the extra entry at
154 * each end saves us from special-casing the first and last pixels.
155 * Each entry is three values long, one value for each color component.
156 */
157
158 #if BITS_IN_JSAMPLE == 8
159 typedef INT16 FSERROR; /* 16 bits should be enough */
160 typedef int LOCFSERROR; /* use 'int' for calculation temps */
161 #else
162 typedef INT32 FSERROR; /* may need more than 16 bits */
163 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
164 #endif
165
166 typedef FSERROR *FSERRPTR; /* pointer to error array */
167
168
169 /* Private subobject */
170
171 typedef struct {
172 struct jpeg_color_quantizer pub; /* public fields */
173
174 /* Space for the eventually created colormap is stashed here */
175 JSAMPARRAY sv_colormap; /* colormap allocated at init time */
176 int desired; /* desired # of colors = size of colormap */
177
178 /* Variables for accumulating image statistics */
179 hist3d histogram; /* pointer to the histogram */
180
181 boolean needs_zeroed; /* TRUE if next pass must zero histogram */
182
183 /* Variables for Floyd-Steinberg dithering */
184 FSERRPTR fserrors; /* accumulated errors */
185 boolean on_odd_row; /* flag to remember which row we are on */
186 int * error_limiter; /* table for clamping the applied error */
187 } my_cquantizer;
188
189 typedef my_cquantizer * my_cquantize_ptr;
190
191
192 /*
193 * Prescan some rows of pixels.
194 * In this module the prescan simply updates the histogram, which has been
195 * initialized to zeroes by start_pass.
196 * An output_buf parameter is required by the method signature, but no data
197 * is actually output (in fact the buffer controller is probably passing a
198 * NULL pointer).
199 */
200
201 METHODDEF(void)
prescan_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)202 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
203 JSAMPARRAY output_buf, int num_rows)
204 {
205 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
206 register JSAMPROW ptr;
207 register histptr histp;
208 register hist3d histogram = cquantize->histogram;
209 int row;
210 JDIMENSION col;
211 JDIMENSION width = cinfo->output_width;
212
213 for (row = 0; row < num_rows; row++) {
214 ptr = input_buf[row];
215 for (col = width; col > 0; col--) {
216 /* get pixel value and index into the histogram */
217 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
218 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
219 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
220 /* increment, check for overflow and undo increment if so. */
221 if (++(*histp) <= 0)
222 (*histp)--;
223 ptr += 3;
224 }
225 }
226 }
227
228
229 /*
230 * Next we have the really interesting routines: selection of a colormap
231 * given the completed histogram.
232 * These routines work with a list of "boxes", each representing a rectangular
233 * subset of the input color space (to histogram precision).
234 */
235
236 typedef struct {
237 /* The bounds of the box (inclusive); expressed as histogram indexes */
238 int c0min, c0max;
239 int c1min, c1max;
240 int c2min, c2max;
241 /* The volume (actually 2-norm) of the box */
242 INT32 volume;
243 /* The number of nonzero histogram cells within this box */
244 long colorcount;
245 } box;
246
247 typedef box * boxptr;
248
249
250 LOCAL(boxptr)
find_biggest_color_pop(boxptr boxlist,int numboxes)251 find_biggest_color_pop (boxptr boxlist, int numboxes)
252 /* Find the splittable box with the largest color population */
253 /* Returns NULL if no splittable boxes remain */
254 {
255 register boxptr boxp;
256 register int i;
257 register long maxc = 0;
258 boxptr which = NULL;
259
260 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
261 if (boxp->colorcount > maxc && boxp->volume > 0) {
262 which = boxp;
263 maxc = boxp->colorcount;
264 }
265 }
266 return which;
267 }
268
269
270 LOCAL(boxptr)
find_biggest_volume(boxptr boxlist,int numboxes)271 find_biggest_volume (boxptr boxlist, int numboxes)
272 /* Find the splittable box with the largest (scaled) volume */
273 /* Returns NULL if no splittable boxes remain */
274 {
275 register boxptr boxp;
276 register int i;
277 register INT32 maxv = 0;
278 boxptr which = NULL;
279
280 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
281 if (boxp->volume > maxv) {
282 which = boxp;
283 maxv = boxp->volume;
284 }
285 }
286 return which;
287 }
288
289
290 LOCAL(void)
update_box(j_decompress_ptr cinfo,boxptr boxp)291 update_box (j_decompress_ptr cinfo, boxptr boxp)
292 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
293 /* and recompute its volume and population */
294 {
295 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
296 hist3d histogram = cquantize->histogram;
297 histptr histp;
298 int c0,c1,c2;
299 int c0min,c0max,c1min,c1max,c2min,c2max;
300 INT32 dist0,dist1,dist2;
301 long ccount;
302
303 c0min = boxp->c0min; c0max = boxp->c0max;
304 c1min = boxp->c1min; c1max = boxp->c1max;
305 c2min = boxp->c2min; c2max = boxp->c2max;
306
307 if (c0max > c0min)
308 for (c0 = c0min; c0 <= c0max; c0++)
309 for (c1 = c1min; c1 <= c1max; c1++) {
310 histp = & histogram[c0][c1][c2min];
311 for (c2 = c2min; c2 <= c2max; c2++)
312 if (*histp++ != 0) {
313 boxp->c0min = c0min = c0;
314 goto have_c0min;
315 }
316 }
317 have_c0min:
318 if (c0max > c0min)
319 for (c0 = c0max; c0 >= c0min; c0--)
320 for (c1 = c1min; c1 <= c1max; c1++) {
321 histp = & histogram[c0][c1][c2min];
322 for (c2 = c2min; c2 <= c2max; c2++)
323 if (*histp++ != 0) {
324 boxp->c0max = c0max = c0;
325 goto have_c0max;
326 }
327 }
328 have_c0max:
329 if (c1max > c1min)
330 for (c1 = c1min; c1 <= c1max; c1++)
331 for (c0 = c0min; c0 <= c0max; c0++) {
332 histp = & histogram[c0][c1][c2min];
333 for (c2 = c2min; c2 <= c2max; c2++)
334 if (*histp++ != 0) {
335 boxp->c1min = c1min = c1;
336 goto have_c1min;
337 }
338 }
339 have_c1min:
340 if (c1max > c1min)
341 for (c1 = c1max; c1 >= c1min; c1--)
342 for (c0 = c0min; c0 <= c0max; c0++) {
343 histp = & histogram[c0][c1][c2min];
344 for (c2 = c2min; c2 <= c2max; c2++)
345 if (*histp++ != 0) {
346 boxp->c1max = c1max = c1;
347 goto have_c1max;
348 }
349 }
350 have_c1max:
351 if (c2max > c2min)
352 for (c2 = c2min; c2 <= c2max; c2++)
353 for (c0 = c0min; c0 <= c0max; c0++) {
354 histp = & histogram[c0][c1min][c2];
355 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
356 if (*histp != 0) {
357 boxp->c2min = c2min = c2;
358 goto have_c2min;
359 }
360 }
361 have_c2min:
362 if (c2max > c2min)
363 for (c2 = c2max; c2 >= c2min; c2--)
364 for (c0 = c0min; c0 <= c0max; c0++) {
365 histp = & histogram[c0][c1min][c2];
366 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
367 if (*histp != 0) {
368 boxp->c2max = c2max = c2;
369 goto have_c2max;
370 }
371 }
372 have_c2max:
373
374 /* Update box volume.
375 * We use 2-norm rather than real volume here; this biases the method
376 * against making long narrow boxes, and it has the side benefit that
377 * a box is splittable iff norm > 0.
378 * Since the differences are expressed in histogram-cell units,
379 * we have to shift back to JSAMPLE units to get consistent distances;
380 * after which, we scale according to the selected distance scale factors.
381 */
382 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
383 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
384 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
385 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
386
387 /* Now scan remaining volume of box and compute population */
388 ccount = 0;
389 for (c0 = c0min; c0 <= c0max; c0++)
390 for (c1 = c1min; c1 <= c1max; c1++) {
391 histp = & histogram[c0][c1][c2min];
392 for (c2 = c2min; c2 <= c2max; c2++, histp++)
393 if (*histp != 0) {
394 ccount++;
395 }
396 }
397 boxp->colorcount = ccount;
398 }
399
400
401 LOCAL(int)
median_cut(j_decompress_ptr cinfo,boxptr boxlist,int numboxes,int desired_colors)402 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
403 int desired_colors)
404 /* Repeatedly select and split the largest box until we have enough boxes */
405 {
406 int n,lb;
407 int c0,c1,c2,cmax;
408 register boxptr b1,b2;
409
410 while (numboxes < desired_colors) {
411 /* Select box to split.
412 * Current algorithm: by population for first half, then by volume.
413 */
414 if (numboxes*2 <= desired_colors) {
415 b1 = find_biggest_color_pop(boxlist, numboxes);
416 } else {
417 b1 = find_biggest_volume(boxlist, numboxes);
418 }
419 if (b1 == NULL) /* no splittable boxes left! */
420 break;
421 b2 = &boxlist[numboxes]; /* where new box will go */
422 /* Copy the color bounds to the new box. */
423 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
424 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
425 /* Choose which axis to split the box on.
426 * Current algorithm: longest scaled axis.
427 * See notes in update_box about scaling distances.
428 */
429 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
430 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
431 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
432 /* We want to break any ties in favor of green, then red, blue last.
433 * This code does the right thing for R,G,B or B,G,R color orders only.
434 */
435 if (rgb_red[cinfo->out_color_space] == 0) {
436 cmax = c1; n = 1;
437 if (c0 > cmax) { cmax = c0; n = 0; }
438 if (c2 > cmax) { n = 2; }
439 }
440 else {
441 cmax = c1; n = 1;
442 if (c2 > cmax) { cmax = c2; n = 2; }
443 if (c0 > cmax) { n = 0; }
444 }
445 /* Choose split point along selected axis, and update box bounds.
446 * Current algorithm: split at halfway point.
447 * (Since the box has been shrunk to minimum volume,
448 * any split will produce two nonempty subboxes.)
449 * Note that lb value is max for lower box, so must be < old max.
450 */
451 switch (n) {
452 case 0:
453 lb = (b1->c0max + b1->c0min) / 2;
454 b1->c0max = lb;
455 b2->c0min = lb+1;
456 break;
457 case 1:
458 lb = (b1->c1max + b1->c1min) / 2;
459 b1->c1max = lb;
460 b2->c1min = lb+1;
461 break;
462 case 2:
463 lb = (b1->c2max + b1->c2min) / 2;
464 b1->c2max = lb;
465 b2->c2min = lb+1;
466 break;
467 }
468 /* Update stats for boxes */
469 update_box(cinfo, b1);
470 update_box(cinfo, b2);
471 numboxes++;
472 }
473 return numboxes;
474 }
475
476
477 LOCAL(void)
compute_color(j_decompress_ptr cinfo,boxptr boxp,int icolor)478 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
479 /* Compute representative color for a box, put it in colormap[icolor] */
480 {
481 /* Current algorithm: mean weighted by pixels (not colors) */
482 /* Note it is important to get the rounding correct! */
483 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
484 hist3d histogram = cquantize->histogram;
485 histptr histp;
486 int c0,c1,c2;
487 int c0min,c0max,c1min,c1max,c2min,c2max;
488 long count;
489 long total = 0;
490 long c0total = 0;
491 long c1total = 0;
492 long c2total = 0;
493
494 c0min = boxp->c0min; c0max = boxp->c0max;
495 c1min = boxp->c1min; c1max = boxp->c1max;
496 c2min = boxp->c2min; c2max = boxp->c2max;
497
498 for (c0 = c0min; c0 <= c0max; c0++)
499 for (c1 = c1min; c1 <= c1max; c1++) {
500 histp = & histogram[c0][c1][c2min];
501 for (c2 = c2min; c2 <= c2max; c2++) {
502 if ((count = *histp++) != 0) {
503 total += count;
504 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
505 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
506 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
507 }
508 }
509 }
510
511 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
512 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
513 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
514 }
515
516
517 LOCAL(void)
select_colors(j_decompress_ptr cinfo,int desired_colors)518 select_colors (j_decompress_ptr cinfo, int desired_colors)
519 /* Master routine for color selection */
520 {
521 boxptr boxlist;
522 int numboxes;
523 int i;
524
525 /* Allocate workspace for box list */
526 boxlist = (boxptr) (*cinfo->mem->alloc_small)
527 ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * sizeof(box));
528 /* Initialize one box containing whole space */
529 numboxes = 1;
530 boxlist[0].c0min = 0;
531 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
532 boxlist[0].c1min = 0;
533 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
534 boxlist[0].c2min = 0;
535 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
536 /* Shrink it to actually-used volume and set its statistics */
537 update_box(cinfo, & boxlist[0]);
538 /* Perform median-cut to produce final box list */
539 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
540 /* Compute the representative color for each box, fill colormap */
541 for (i = 0; i < numboxes; i++)
542 compute_color(cinfo, & boxlist[i], i);
543 cinfo->actual_number_of_colors = numboxes;
544 TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
545 }
546
547
548 /*
549 * These routines are concerned with the time-critical task of mapping input
550 * colors to the nearest color in the selected colormap.
551 *
552 * We re-use the histogram space as an "inverse color map", essentially a
553 * cache for the results of nearest-color searches. All colors within a
554 * histogram cell will be mapped to the same colormap entry, namely the one
555 * closest to the cell's center. This may not be quite the closest entry to
556 * the actual input color, but it's almost as good. A zero in the cache
557 * indicates we haven't found the nearest color for that cell yet; the array
558 * is cleared to zeroes before starting the mapping pass. When we find the
559 * nearest color for a cell, its colormap index plus one is recorded in the
560 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
561 * when they need to use an unfilled entry in the cache.
562 *
563 * Our method of efficiently finding nearest colors is based on the "locally
564 * sorted search" idea described by Heckbert and on the incremental distance
565 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
566 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
567 * the distances from a given colormap entry to each cell of the histogram can
568 * be computed quickly using an incremental method: the differences between
569 * distances to adjacent cells themselves differ by a constant. This allows a
570 * fairly fast implementation of the "brute force" approach of computing the
571 * distance from every colormap entry to every histogram cell. Unfortunately,
572 * it needs a work array to hold the best-distance-so-far for each histogram
573 * cell (because the inner loop has to be over cells, not colormap entries).
574 * The work array elements have to be INT32s, so the work array would need
575 * 256Kb at our recommended precision. This is not feasible in DOS machines.
576 *
577 * To get around these problems, we apply Thomas' method to compute the
578 * nearest colors for only the cells within a small subbox of the histogram.
579 * The work array need be only as big as the subbox, so the memory usage
580 * problem is solved. Furthermore, we need not fill subboxes that are never
581 * referenced in pass2; many images use only part of the color gamut, so a
582 * fair amount of work is saved. An additional advantage of this
583 * approach is that we can apply Heckbert's locality criterion to quickly
584 * eliminate colormap entries that are far away from the subbox; typically
585 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
586 * and we need not compute their distances to individual cells in the subbox.
587 * The speed of this approach is heavily influenced by the subbox size: too
588 * small means too much overhead, too big loses because Heckbert's criterion
589 * can't eliminate as many colormap entries. Empirically the best subbox
590 * size seems to be about 1/512th of the histogram (1/8th in each direction).
591 *
592 * Thomas' article also describes a refined method which is asymptotically
593 * faster than the brute-force method, but it is also far more complex and
594 * cannot efficiently be applied to small subboxes. It is therefore not
595 * useful for programs intended to be portable to DOS machines. On machines
596 * with plenty of memory, filling the whole histogram in one shot with Thomas'
597 * refined method might be faster than the present code --- but then again,
598 * it might not be any faster, and it's certainly more complicated.
599 */
600
601
602 /* log2(histogram cells in update box) for each axis; this can be adjusted */
603 #define BOX_C0_LOG (HIST_C0_BITS-3)
604 #define BOX_C1_LOG (HIST_C1_BITS-3)
605 #define BOX_C2_LOG (HIST_C2_BITS-3)
606
607 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
608 #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
609 #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
610
611 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
612 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
613 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
614
615
616 /*
617 * The next three routines implement inverse colormap filling. They could
618 * all be folded into one big routine, but splitting them up this way saves
619 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
620 * and may allow some compilers to produce better code by registerizing more
621 * inner-loop variables.
622 */
623
624 LOCAL(int)
find_nearby_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,JSAMPLE colorlist[])625 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
626 JSAMPLE colorlist[])
627 /* Locate the colormap entries close enough to an update box to be candidates
628 * for the nearest entry to some cell(s) in the update box. The update box
629 * is specified by the center coordinates of its first cell. The number of
630 * candidate colormap entries is returned, and their colormap indexes are
631 * placed in colorlist[].
632 * This routine uses Heckbert's "locally sorted search" criterion to select
633 * the colors that need further consideration.
634 */
635 {
636 int numcolors = cinfo->actual_number_of_colors;
637 int maxc0, maxc1, maxc2;
638 int centerc0, centerc1, centerc2;
639 int i, x, ncolors;
640 INT32 minmaxdist, min_dist, max_dist, tdist;
641 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
642
643 /* Compute true coordinates of update box's upper corner and center.
644 * Actually we compute the coordinates of the center of the upper-corner
645 * histogram cell, which are the upper bounds of the volume we care about.
646 * Note that since ">>" rounds down, the "center" values may be closer to
647 * min than to max; hence comparisons to them must be "<=", not "<".
648 */
649 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
650 centerc0 = (minc0 + maxc0) >> 1;
651 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
652 centerc1 = (minc1 + maxc1) >> 1;
653 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
654 centerc2 = (minc2 + maxc2) >> 1;
655
656 /* For each color in colormap, find:
657 * 1. its minimum squared-distance to any point in the update box
658 * (zero if color is within update box);
659 * 2. its maximum squared-distance to any point in the update box.
660 * Both of these can be found by considering only the corners of the box.
661 * We save the minimum distance for each color in mindist[];
662 * only the smallest maximum distance is of interest.
663 */
664 minmaxdist = 0x7FFFFFFFL;
665
666 for (i = 0; i < numcolors; i++) {
667 /* We compute the squared-c0-distance term, then add in the other two. */
668 x = GETJSAMPLE(cinfo->colormap[0][i]);
669 if (x < minc0) {
670 tdist = (x - minc0) * C0_SCALE;
671 min_dist = tdist*tdist;
672 tdist = (x - maxc0) * C0_SCALE;
673 max_dist = tdist*tdist;
674 } else if (x > maxc0) {
675 tdist = (x - maxc0) * C0_SCALE;
676 min_dist = tdist*tdist;
677 tdist = (x - minc0) * C0_SCALE;
678 max_dist = tdist*tdist;
679 } else {
680 /* within cell range so no contribution to min_dist */
681 min_dist = 0;
682 if (x <= centerc0) {
683 tdist = (x - maxc0) * C0_SCALE;
684 max_dist = tdist*tdist;
685 } else {
686 tdist = (x - minc0) * C0_SCALE;
687 max_dist = tdist*tdist;
688 }
689 }
690
691 x = GETJSAMPLE(cinfo->colormap[1][i]);
692 if (x < minc1) {
693 tdist = (x - minc1) * C1_SCALE;
694 min_dist += tdist*tdist;
695 tdist = (x - maxc1) * C1_SCALE;
696 max_dist += tdist*tdist;
697 } else if (x > maxc1) {
698 tdist = (x - maxc1) * C1_SCALE;
699 min_dist += tdist*tdist;
700 tdist = (x - minc1) * C1_SCALE;
701 max_dist += tdist*tdist;
702 } else {
703 /* within cell range so no contribution to min_dist */
704 if (x <= centerc1) {
705 tdist = (x - maxc1) * C1_SCALE;
706 max_dist += tdist*tdist;
707 } else {
708 tdist = (x - minc1) * C1_SCALE;
709 max_dist += tdist*tdist;
710 }
711 }
712
713 x = GETJSAMPLE(cinfo->colormap[2][i]);
714 if (x < minc2) {
715 tdist = (x - minc2) * C2_SCALE;
716 min_dist += tdist*tdist;
717 tdist = (x - maxc2) * C2_SCALE;
718 max_dist += tdist*tdist;
719 } else if (x > maxc2) {
720 tdist = (x - maxc2) * C2_SCALE;
721 min_dist += tdist*tdist;
722 tdist = (x - minc2) * C2_SCALE;
723 max_dist += tdist*tdist;
724 } else {
725 /* within cell range so no contribution to min_dist */
726 if (x <= centerc2) {
727 tdist = (x - maxc2) * C2_SCALE;
728 max_dist += tdist*tdist;
729 } else {
730 tdist = (x - minc2) * C2_SCALE;
731 max_dist += tdist*tdist;
732 }
733 }
734
735 mindist[i] = min_dist; /* save away the results */
736 if (max_dist < minmaxdist)
737 minmaxdist = max_dist;
738 }
739
740 /* Now we know that no cell in the update box is more than minmaxdist
741 * away from some colormap entry. Therefore, only colors that are
742 * within minmaxdist of some part of the box need be considered.
743 */
744 ncolors = 0;
745 for (i = 0; i < numcolors; i++) {
746 if (mindist[i] <= minmaxdist)
747 colorlist[ncolors++] = (JSAMPLE) i;
748 }
749 return ncolors;
750 }
751
752
753 LOCAL(void)
find_best_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,int numcolors,JSAMPLE colorlist[],JSAMPLE bestcolor[])754 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
755 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
756 /* Find the closest colormap entry for each cell in the update box,
757 * given the list of candidate colors prepared by find_nearby_colors.
758 * Return the indexes of the closest entries in the bestcolor[] array.
759 * This routine uses Thomas' incremental distance calculation method to
760 * find the distance from a colormap entry to successive cells in the box.
761 */
762 {
763 int ic0, ic1, ic2;
764 int i, icolor;
765 register INT32 * bptr; /* pointer into bestdist[] array */
766 JSAMPLE * cptr; /* pointer into bestcolor[] array */
767 INT32 dist0, dist1; /* initial distance values */
768 register INT32 dist2; /* current distance in inner loop */
769 INT32 xx0, xx1; /* distance increments */
770 register INT32 xx2;
771 INT32 inc0, inc1, inc2; /* initial values for increments */
772 /* This array holds the distance to the nearest-so-far color for each cell */
773 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
774
775 /* Initialize best-distance for each cell of the update box */
776 bptr = bestdist;
777 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
778 *bptr++ = 0x7FFFFFFFL;
779
780 /* For each color selected by find_nearby_colors,
781 * compute its distance to the center of each cell in the box.
782 * If that's less than best-so-far, update best distance and color number.
783 */
784
785 /* Nominal steps between cell centers ("x" in Thomas article) */
786 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
787 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
788 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
789
790 for (i = 0; i < numcolors; i++) {
791 icolor = GETJSAMPLE(colorlist[i]);
792 /* Compute (square of) distance from minc0/c1/c2 to this color */
793 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
794 dist0 = inc0*inc0;
795 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
796 dist0 += inc1*inc1;
797 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
798 dist0 += inc2*inc2;
799 /* Form the initial difference increments */
800 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
801 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
802 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
803 /* Now loop over all cells in box, updating distance per Thomas method */
804 bptr = bestdist;
805 cptr = bestcolor;
806 xx0 = inc0;
807 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
808 dist1 = dist0;
809 xx1 = inc1;
810 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
811 dist2 = dist1;
812 xx2 = inc2;
813 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
814 if (dist2 < *bptr) {
815 *bptr = dist2;
816 *cptr = (JSAMPLE) icolor;
817 }
818 dist2 += xx2;
819 xx2 += 2 * STEP_C2 * STEP_C2;
820 bptr++;
821 cptr++;
822 }
823 dist1 += xx1;
824 xx1 += 2 * STEP_C1 * STEP_C1;
825 }
826 dist0 += xx0;
827 xx0 += 2 * STEP_C0 * STEP_C0;
828 }
829 }
830 }
831
832
833 LOCAL(void)
fill_inverse_cmap(j_decompress_ptr cinfo,int c0,int c1,int c2)834 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
835 /* Fill the inverse-colormap entries in the update box that contains */
836 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
837 /* we can fill as many others as we wish.) */
838 {
839 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
840 hist3d histogram = cquantize->histogram;
841 int minc0, minc1, minc2; /* lower left corner of update box */
842 int ic0, ic1, ic2;
843 register JSAMPLE * cptr; /* pointer into bestcolor[] array */
844 register histptr cachep; /* pointer into main cache array */
845 /* This array lists the candidate colormap indexes. */
846 JSAMPLE colorlist[MAXNUMCOLORS];
847 int numcolors; /* number of candidate colors */
848 /* This array holds the actually closest colormap index for each cell. */
849 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
850
851 /* Convert cell coordinates to update box ID */
852 c0 >>= BOX_C0_LOG;
853 c1 >>= BOX_C1_LOG;
854 c2 >>= BOX_C2_LOG;
855
856 /* Compute true coordinates of update box's origin corner.
857 * Actually we compute the coordinates of the center of the corner
858 * histogram cell, which are the lower bounds of the volume we care about.
859 */
860 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
861 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
862 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
863
864 /* Determine which colormap entries are close enough to be candidates
865 * for the nearest entry to some cell in the update box.
866 */
867 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
868
869 /* Determine the actually nearest colors. */
870 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
871 bestcolor);
872
873 /* Save the best color numbers (plus 1) in the main cache array */
874 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
875 c1 <<= BOX_C1_LOG;
876 c2 <<= BOX_C2_LOG;
877 cptr = bestcolor;
878 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
879 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
880 cachep = & histogram[c0+ic0][c1+ic1][c2];
881 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
882 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
883 }
884 }
885 }
886 }
887
888
889 /*
890 * Map some rows of pixels to the output colormapped representation.
891 */
892
893 METHODDEF(void)
pass2_no_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)894 pass2_no_dither (j_decompress_ptr cinfo,
895 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
896 /* This version performs no dithering */
897 {
898 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
899 hist3d histogram = cquantize->histogram;
900 register JSAMPROW inptr, outptr;
901 register histptr cachep;
902 register int c0, c1, c2;
903 int row;
904 JDIMENSION col;
905 JDIMENSION width = cinfo->output_width;
906
907 for (row = 0; row < num_rows; row++) {
908 inptr = input_buf[row];
909 outptr = output_buf[row];
910 for (col = width; col > 0; col--) {
911 /* get pixel value and index into the cache */
912 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
913 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
914 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
915 cachep = & histogram[c0][c1][c2];
916 /* If we have not seen this color before, find nearest colormap entry */
917 /* and update the cache */
918 if (*cachep == 0)
919 fill_inverse_cmap(cinfo, c0,c1,c2);
920 /* Now emit the colormap index for this cell */
921 *outptr++ = (JSAMPLE) (*cachep - 1);
922 }
923 }
924 }
925
926
927 METHODDEF(void)
pass2_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)928 pass2_fs_dither (j_decompress_ptr cinfo,
929 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
930 /* This version performs Floyd-Steinberg dithering */
931 {
932 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
933 hist3d histogram = cquantize->histogram;
934 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
935 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
936 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
937 register FSERRPTR errorptr; /* => fserrors[] at column before current */
938 JSAMPROW inptr; /* => current input pixel */
939 JSAMPROW outptr; /* => current output pixel */
940 histptr cachep;
941 int dir; /* +1 or -1 depending on direction */
942 int dir3; /* 3*dir, for advancing inptr & errorptr */
943 int row;
944 JDIMENSION col;
945 JDIMENSION width = cinfo->output_width;
946 JSAMPLE *range_limit = cinfo->sample_range_limit;
947 int *error_limit = cquantize->error_limiter;
948 JSAMPROW colormap0 = cinfo->colormap[0];
949 JSAMPROW colormap1 = cinfo->colormap[1];
950 JSAMPROW colormap2 = cinfo->colormap[2];
951 SHIFT_TEMPS
952
953 for (row = 0; row < num_rows; row++) {
954 inptr = input_buf[row];
955 outptr = output_buf[row];
956 if (cquantize->on_odd_row) {
957 /* work right to left in this row */
958 inptr += (width-1) * 3; /* so point to rightmost pixel */
959 outptr += width-1;
960 dir = -1;
961 dir3 = -3;
962 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
963 cquantize->on_odd_row = FALSE; /* flip for next time */
964 } else {
965 /* work left to right in this row */
966 dir = 1;
967 dir3 = 3;
968 errorptr = cquantize->fserrors; /* => entry before first real column */
969 cquantize->on_odd_row = TRUE; /* flip for next time */
970 }
971 /* Preset error values: no error propagated to first pixel from left */
972 cur0 = cur1 = cur2 = 0;
973 /* and no error propagated to row below yet */
974 belowerr0 = belowerr1 = belowerr2 = 0;
975 bpreverr0 = bpreverr1 = bpreverr2 = 0;
976
977 for (col = width; col > 0; col--) {
978 /* curN holds the error propagated from the previous pixel on the
979 * current line. Add the error propagated from the previous line
980 * to form the complete error correction term for this pixel, and
981 * round the error term (which is expressed * 16) to an integer.
982 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
983 * for either sign of the error value.
984 * Note: errorptr points to *previous* column's array entry.
985 */
986 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
987 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
988 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
989 /* Limit the error using transfer function set by init_error_limit.
990 * See comments with init_error_limit for rationale.
991 */
992 cur0 = error_limit[cur0];
993 cur1 = error_limit[cur1];
994 cur2 = error_limit[cur2];
995 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
996 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
997 * this sets the required size of the range_limit array.
998 */
999 cur0 += GETJSAMPLE(inptr[0]);
1000 cur1 += GETJSAMPLE(inptr[1]);
1001 cur2 += GETJSAMPLE(inptr[2]);
1002 cur0 = GETJSAMPLE(range_limit[cur0]);
1003 cur1 = GETJSAMPLE(range_limit[cur1]);
1004 cur2 = GETJSAMPLE(range_limit[cur2]);
1005 /* Index into the cache with adjusted pixel value */
1006 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1007 /* If we have not seen this color before, find nearest colormap */
1008 /* entry and update the cache */
1009 if (*cachep == 0)
1010 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1011 /* Now emit the colormap index for this cell */
1012 { register int pixcode = *cachep - 1;
1013 *outptr = (JSAMPLE) pixcode;
1014 /* Compute representation error for this pixel */
1015 cur0 -= GETJSAMPLE(colormap0[pixcode]);
1016 cur1 -= GETJSAMPLE(colormap1[pixcode]);
1017 cur2 -= GETJSAMPLE(colormap2[pixcode]);
1018 }
1019 /* Compute error fractions to be propagated to adjacent pixels.
1020 * Add these into the running sums, and simultaneously shift the
1021 * next-line error sums left by 1 column.
1022 */
1023 { register LOCFSERROR bnexterr;
1024
1025 bnexterr = cur0; /* Process component 0 */
1026 errorptr[0] = (FSERROR) (bpreverr0 + cur0 * 3);
1027 bpreverr0 = belowerr0 + cur0 * 5;
1028 belowerr0 = bnexterr;
1029 cur0 *= 7;
1030 bnexterr = cur1; /* Process component 1 */
1031 errorptr[1] = (FSERROR) (bpreverr1 + cur1 * 3);
1032 bpreverr1 = belowerr1 + cur1 * 5;
1033 belowerr1 = bnexterr;
1034 cur1 *= 7;
1035 bnexterr = cur2; /* Process component 2 */
1036 errorptr[2] = (FSERROR) (bpreverr2 + cur2 * 3);
1037 bpreverr2 = belowerr2 + cur2 * 5;
1038 belowerr2 = bnexterr;
1039 cur2 *= 7;
1040 }
1041 /* At this point curN contains the 7/16 error value to be propagated
1042 * to the next pixel on the current line, and all the errors for the
1043 * next line have been shifted over. We are therefore ready to move on.
1044 */
1045 inptr += dir3; /* Advance pixel pointers to next column */
1046 outptr += dir;
1047 errorptr += dir3; /* advance errorptr to current column */
1048 }
1049 /* Post-loop cleanup: we must unload the final error values into the
1050 * final fserrors[] entry. Note we need not unload belowerrN because
1051 * it is for the dummy column before or after the actual array.
1052 */
1053 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1054 errorptr[1] = (FSERROR) bpreverr1;
1055 errorptr[2] = (FSERROR) bpreverr2;
1056 }
1057 }
1058
1059
1060 /*
1061 * Initialize the error-limiting transfer function (lookup table).
1062 * The raw F-S error computation can potentially compute error values of up to
1063 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1064 * much less, otherwise obviously wrong pixels will be created. (Typical
1065 * effects include weird fringes at color-area boundaries, isolated bright
1066 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1067 * is to ensure that the "corners" of the color cube are allocated as output
1068 * colors; then repeated errors in the same direction cannot cause cascading
1069 * error buildup. However, that only prevents the error from getting
1070 * completely out of hand; Aaron Giles reports that error limiting improves
1071 * the results even with corner colors allocated.
1072 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1073 * well, but the smoother transfer function used below is even better. Thanks
1074 * to Aaron Giles for this idea.
1075 */
1076
1077 LOCAL(void)
init_error_limit(j_decompress_ptr cinfo)1078 init_error_limit (j_decompress_ptr cinfo)
1079 /* Allocate and fill in the error_limiter table */
1080 {
1081 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1082 int * table;
1083 int in, out;
1084
1085 table = (int *) (*cinfo->mem->alloc_small)
1086 ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * sizeof(int));
1087 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1088 cquantize->error_limiter = table;
1089
1090 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1091 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1092 out = 0;
1093 for (in = 0; in < STEPSIZE; in++, out++) {
1094 table[in] = out; table[-in] = -out;
1095 }
1096 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1097 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1098 table[in] = out; table[-in] = -out;
1099 }
1100 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1101 for (; in <= MAXJSAMPLE; in++) {
1102 table[in] = out; table[-in] = -out;
1103 }
1104 #undef STEPSIZE
1105 }
1106
1107
1108 /*
1109 * Finish up at the end of each pass.
1110 */
1111
1112 METHODDEF(void)
finish_pass1(j_decompress_ptr cinfo)1113 finish_pass1 (j_decompress_ptr cinfo)
1114 {
1115 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1116
1117 /* Select the representative colors and fill in cinfo->colormap */
1118 cinfo->colormap = cquantize->sv_colormap;
1119 select_colors(cinfo, cquantize->desired);
1120 /* Force next pass to zero the color index table */
1121 cquantize->needs_zeroed = TRUE;
1122 }
1123
1124
1125 METHODDEF(void)
finish_pass2(j_decompress_ptr cinfo)1126 finish_pass2 (j_decompress_ptr cinfo)
1127 {
1128 /* no work */
1129 }
1130
1131
1132 /*
1133 * Initialize for each processing pass.
1134 */
1135
1136 METHODDEF(void)
start_pass_2_quant(j_decompress_ptr cinfo,boolean is_pre_scan)1137 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1138 {
1139 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1140 hist3d histogram = cquantize->histogram;
1141 int i;
1142
1143 /* Only F-S dithering or no dithering is supported. */
1144 /* If user asks for ordered dither, give him F-S. */
1145 if (cinfo->dither_mode != JDITHER_NONE)
1146 cinfo->dither_mode = JDITHER_FS;
1147
1148 if (is_pre_scan) {
1149 /* Set up method pointers */
1150 cquantize->pub.color_quantize = prescan_quantize;
1151 cquantize->pub.finish_pass = finish_pass1;
1152 cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1153 } else {
1154 /* Set up method pointers */
1155 if (cinfo->dither_mode == JDITHER_FS)
1156 cquantize->pub.color_quantize = pass2_fs_dither;
1157 else
1158 cquantize->pub.color_quantize = pass2_no_dither;
1159 cquantize->pub.finish_pass = finish_pass2;
1160
1161 /* Make sure color count is acceptable */
1162 i = cinfo->actual_number_of_colors;
1163 if (i < 1)
1164 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1165 if (i > MAXNUMCOLORS)
1166 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1167
1168 if (cinfo->dither_mode == JDITHER_FS) {
1169 size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1170 (3 * sizeof(FSERROR)));
1171 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1172 if (cquantize->fserrors == NULL)
1173 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1174 ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1175 /* Initialize the propagated errors to zero. */
1176 jzero_far((void *) cquantize->fserrors, arraysize);
1177 /* Make the error-limit table if we didn't already. */
1178 if (cquantize->error_limiter == NULL)
1179 init_error_limit(cinfo);
1180 cquantize->on_odd_row = FALSE;
1181 }
1182
1183 }
1184 /* Zero the histogram or inverse color map, if necessary */
1185 if (cquantize->needs_zeroed) {
1186 for (i = 0; i < HIST_C0_ELEMS; i++) {
1187 jzero_far((void *) histogram[i],
1188 HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1189 }
1190 cquantize->needs_zeroed = FALSE;
1191 }
1192 }
1193
1194
1195 /*
1196 * Switch to a new external colormap between output passes.
1197 */
1198
1199 METHODDEF(void)
new_color_map_2_quant(j_decompress_ptr cinfo)1200 new_color_map_2_quant (j_decompress_ptr cinfo)
1201 {
1202 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1203
1204 /* Reset the inverse color map */
1205 cquantize->needs_zeroed = TRUE;
1206 }
1207
1208
1209 /*
1210 * Module initialization routine for 2-pass color quantization.
1211 */
1212
1213 GLOBAL(void)
jinit_2pass_quantizer(j_decompress_ptr cinfo)1214 jinit_2pass_quantizer (j_decompress_ptr cinfo)
1215 {
1216 my_cquantize_ptr cquantize;
1217 int i;
1218
1219 cquantize = (my_cquantize_ptr)
1220 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1221 sizeof(my_cquantizer));
1222 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1223 cquantize->pub.start_pass = start_pass_2_quant;
1224 cquantize->pub.new_color_map = new_color_map_2_quant;
1225 cquantize->fserrors = NULL; /* flag optional arrays not allocated */
1226 cquantize->error_limiter = NULL;
1227
1228 /* Make sure jdmaster didn't give me a case I can't handle */
1229 if (cinfo->out_color_components != 3)
1230 ERREXIT(cinfo, JERR_NOTIMPL);
1231
1232 /* Allocate the histogram/inverse colormap storage */
1233 cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1234 ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d));
1235 for (i = 0; i < HIST_C0_ELEMS; i++) {
1236 cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1237 ((j_common_ptr) cinfo, JPOOL_IMAGE,
1238 HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1239 }
1240 cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1241
1242 /* Allocate storage for the completed colormap, if required.
1243 * We do this now since it may affect the memory manager's space
1244 * calculations.
1245 */
1246 if (cinfo->enable_2pass_quant) {
1247 /* Make sure color count is acceptable */
1248 int desired = cinfo->desired_number_of_colors;
1249 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1250 if (desired < 8)
1251 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1252 /* Make sure colormap indexes can be represented by JSAMPLEs */
1253 if (desired > MAXNUMCOLORS)
1254 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1255 cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1256 ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1257 cquantize->desired = desired;
1258 } else
1259 cquantize->sv_colormap = NULL;
1260
1261 /* Only F-S dithering or no dithering is supported. */
1262 /* If user asks for ordered dither, give him F-S. */
1263 if (cinfo->dither_mode != JDITHER_NONE)
1264 cinfo->dither_mode = JDITHER_FS;
1265
1266 /* Allocate Floyd-Steinberg workspace if necessary.
1267 * This isn't really needed until pass 2, but again it may affect the memory
1268 * manager's space calculations. Although we will cope with a later change
1269 * in dither_mode, we do not promise to honor max_memory_to_use if
1270 * dither_mode changes.
1271 */
1272 if (cinfo->dither_mode == JDITHER_FS) {
1273 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1274 ((j_common_ptr) cinfo, JPOOL_IMAGE,
1275 (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1276 /* Might as well create the error-limiting table too. */
1277 init_error_limit(cinfo);
1278 }
1279 }
1280
1281 #endif /* QUANT_2PASS_SUPPORTED */
1282