1 /*
2  * jquant2.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1996, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009, 2014, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README file.
9  *
10  * This file contains 2-pass color quantization (color mapping) routines.
11  * These routines provide selection of a custom color map for an image,
12  * followed by mapping of the image to that color map, with optional
13  * Floyd-Steinberg dithering.
14  * It is also possible to use just the second pass to map to an arbitrary
15  * externally-given color map.
16  *
17  * Note: ordered dithering is not supported, since there isn't any fast
18  * way to compute intercolor distances; it's unclear that ordered dither's
19  * fundamental assumptions even hold with an irregularly spaced color map.
20  */
21 
22 #define JPEG_INTERNALS
23 #include "jinclude.h"
24 #include "jpeglib.h"
25 
26 #ifdef QUANT_2PASS_SUPPORTED
27 
28 
29 /*
30  * This module implements the well-known Heckbert paradigm for color
31  * quantization.  Most of the ideas used here can be traced back to
32  * Heckbert's seminal paper
33  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
34  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
35  *
36  * In the first pass over the image, we accumulate a histogram showing the
37  * usage count of each possible color.  To keep the histogram to a reasonable
38  * size, we reduce the precision of the input; typical practice is to retain
39  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
40  * in the same histogram cell.
41  *
42  * Next, the color-selection step begins with a box representing the whole
43  * color space, and repeatedly splits the "largest" remaining box until we
44  * have as many boxes as desired colors.  Then the mean color in each
45  * remaining box becomes one of the possible output colors.
46  *
47  * The second pass over the image maps each input pixel to the closest output
48  * color (optionally after applying a Floyd-Steinberg dithering correction).
49  * This mapping is logically trivial, but making it go fast enough requires
50  * considerable care.
51  *
52  * Heckbert-style quantizers vary a good deal in their policies for choosing
53  * the "largest" box and deciding where to cut it.  The particular policies
54  * used here have proved out well in experimental comparisons, but better ones
55  * may yet be found.
56  *
57  * In earlier versions of the IJG code, this module quantized in YCbCr color
58  * space, processing the raw upsampled data without a color conversion step.
59  * This allowed the color conversion math to be done only once per colormap
60  * entry, not once per pixel.  However, that optimization precluded other
61  * useful optimizations (such as merging color conversion with upsampling)
62  * and it also interfered with desired capabilities such as quantizing to an
63  * externally-supplied colormap.  We have therefore abandoned that approach.
64  * The present code works in the post-conversion color space, typically RGB.
65  *
66  * To improve the visual quality of the results, we actually work in scaled
67  * RGB space, giving G distances more weight than R, and R in turn more than
68  * B.  To do everything in integer math, we must use integer scale factors.
69  * The 2/3/1 scale factors used here correspond loosely to the relative
70  * weights of the colors in the NTSC grayscale equation.
71  * If you want to use this code to quantize a non-RGB color space, you'll
72  * probably need to change these scale factors.
73  */
74 
75 #define R_SCALE 2               /* scale R distances by this much */
76 #define G_SCALE 3               /* scale G distances by this much */
77 #define B_SCALE 1               /* and B by this much */
78 
79 static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
80 #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
81 #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
82 #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
83 
84 /*
85  * First we have the histogram data structure and routines for creating it.
86  *
87  * The number of bits of precision can be adjusted by changing these symbols.
88  * We recommend keeping 6 bits for G and 5 each for R and B.
89  * If you have plenty of memory and cycles, 6 bits all around gives marginally
90  * better results; if you are short of memory, 5 bits all around will save
91  * some space but degrade the results.
92  * To maintain a fully accurate histogram, we'd need to allocate a "long"
93  * (preferably unsigned long) for each cell.  In practice this is overkill;
94  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
95  * and clamping those that do overflow to the maximum value will give close-
96  * enough results.  This reduces the recommended histogram size from 256Kb
97  * to 128Kb, which is a useful savings on PC-class machines.
98  * (In the second pass the histogram space is re-used for pixel mapping data;
99  * in that capacity, each cell must be able to store zero to the number of
100  * desired colors.  16 bits/cell is plenty for that too.)
101  * Since the JPEG code is intended to run in small memory model on 80x86
102  * machines, we can't just allocate the histogram in one chunk.  Instead
103  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
104  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
105  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.
106  */
107 
108 #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
109 
110 /* These will do the right thing for either R,G,B or B,G,R color order,
111  * but you may not like the results for other color orders.
112  */
113 #define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
114 #define HIST_C1_BITS  6         /* bits of precision in G histogram */
115 #define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
116 
117 /* Number of elements along histogram axes. */
118 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
119 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
120 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
121 
122 /* These are the amounts to shift an input value to get a histogram index. */
123 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
124 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
125 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
126 
127 
128 typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
129 
130 typedef histcell * histptr; /* for pointers to histogram cells */
131 
132 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
133 typedef hist1d * hist2d;    /* type for the 2nd-level pointers */
134 typedef hist2d * hist3d;        /* type for top-level pointer */
135 
136 
137 /* Declarations for Floyd-Steinberg dithering.
138  *
139  * Errors are accumulated into the array fserrors[], at a resolution of
140  * 1/16th of a pixel count.  The error at a given pixel is propagated
141  * to its not-yet-processed neighbors using the standard F-S fractions,
142  *              ...     (here)  7/16
143  *              3/16    5/16    1/16
144  * We work left-to-right on even rows, right-to-left on odd rows.
145  *
146  * We can get away with a single array (holding one row's worth of errors)
147  * by using it to store the current row's errors at pixel columns not yet
148  * processed, but the next row's errors at columns already processed.  We
149  * need only a few extra variables to hold the errors immediately around the
150  * current column.  (If we are lucky, those variables are in registers, but
151  * even if not, they're probably cheaper to access than array elements are.)
152  *
153  * The fserrors[] array has (#columns + 2) entries; the extra entry at
154  * each end saves us from special-casing the first and last pixels.
155  * Each entry is three values long, one value for each color component.
156  */
157 
158 #if BITS_IN_JSAMPLE == 8
159 typedef INT16 FSERROR;          /* 16 bits should be enough */
160 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
161 #else
162 typedef INT32 FSERROR;          /* may need more than 16 bits */
163 typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
164 #endif
165 
166 typedef FSERROR *FSERRPTR;      /* pointer to error array */
167 
168 
169 /* Private subobject */
170 
171 typedef struct {
172   struct jpeg_color_quantizer pub; /* public fields */
173 
174   /* Space for the eventually created colormap is stashed here */
175   JSAMPARRAY sv_colormap;       /* colormap allocated at init time */
176   int desired;                  /* desired # of colors = size of colormap */
177 
178   /* Variables for accumulating image statistics */
179   hist3d histogram;             /* pointer to the histogram */
180 
181   boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
182 
183   /* Variables for Floyd-Steinberg dithering */
184   FSERRPTR fserrors;            /* accumulated errors */
185   boolean on_odd_row;           /* flag to remember which row we are on */
186   int * error_limiter;          /* table for clamping the applied error */
187 } my_cquantizer;
188 
189 typedef my_cquantizer * my_cquantize_ptr;
190 
191 
192 /*
193  * Prescan some rows of pixels.
194  * In this module the prescan simply updates the histogram, which has been
195  * initialized to zeroes by start_pass.
196  * An output_buf parameter is required by the method signature, but no data
197  * is actually output (in fact the buffer controller is probably passing a
198  * NULL pointer).
199  */
200 
201 METHODDEF(void)
prescan_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)202 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
203                   JSAMPARRAY output_buf, int num_rows)
204 {
205   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
206   register JSAMPROW ptr;
207   register histptr histp;
208   register hist3d histogram = cquantize->histogram;
209   int row;
210   JDIMENSION col;
211   JDIMENSION width = cinfo->output_width;
212 
213   for (row = 0; row < num_rows; row++) {
214     ptr = input_buf[row];
215     for (col = width; col > 0; col--) {
216       /* get pixel value and index into the histogram */
217       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
218                          [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
219                          [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
220       /* increment, check for overflow and undo increment if so. */
221       if (++(*histp) <= 0)
222         (*histp)--;
223       ptr += 3;
224     }
225   }
226 }
227 
228 
229 /*
230  * Next we have the really interesting routines: selection of a colormap
231  * given the completed histogram.
232  * These routines work with a list of "boxes", each representing a rectangular
233  * subset of the input color space (to histogram precision).
234  */
235 
236 typedef struct {
237   /* The bounds of the box (inclusive); expressed as histogram indexes */
238   int c0min, c0max;
239   int c1min, c1max;
240   int c2min, c2max;
241   /* The volume (actually 2-norm) of the box */
242   INT32 volume;
243   /* The number of nonzero histogram cells within this box */
244   long colorcount;
245 } box;
246 
247 typedef box * boxptr;
248 
249 
250 LOCAL(boxptr)
find_biggest_color_pop(boxptr boxlist,int numboxes)251 find_biggest_color_pop (boxptr boxlist, int numboxes)
252 /* Find the splittable box with the largest color population */
253 /* Returns NULL if no splittable boxes remain */
254 {
255   register boxptr boxp;
256   register int i;
257   register long maxc = 0;
258   boxptr which = NULL;
259 
260   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
261     if (boxp->colorcount > maxc && boxp->volume > 0) {
262       which = boxp;
263       maxc = boxp->colorcount;
264     }
265   }
266   return which;
267 }
268 
269 
270 LOCAL(boxptr)
find_biggest_volume(boxptr boxlist,int numboxes)271 find_biggest_volume (boxptr boxlist, int numboxes)
272 /* Find the splittable box with the largest (scaled) volume */
273 /* Returns NULL if no splittable boxes remain */
274 {
275   register boxptr boxp;
276   register int i;
277   register INT32 maxv = 0;
278   boxptr which = NULL;
279 
280   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
281     if (boxp->volume > maxv) {
282       which = boxp;
283       maxv = boxp->volume;
284     }
285   }
286   return which;
287 }
288 
289 
290 LOCAL(void)
update_box(j_decompress_ptr cinfo,boxptr boxp)291 update_box (j_decompress_ptr cinfo, boxptr boxp)
292 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
293 /* and recompute its volume and population */
294 {
295   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
296   hist3d histogram = cquantize->histogram;
297   histptr histp;
298   int c0,c1,c2;
299   int c0min,c0max,c1min,c1max,c2min,c2max;
300   INT32 dist0,dist1,dist2;
301   long ccount;
302 
303   c0min = boxp->c0min;  c0max = boxp->c0max;
304   c1min = boxp->c1min;  c1max = boxp->c1max;
305   c2min = boxp->c2min;  c2max = boxp->c2max;
306 
307   if (c0max > c0min)
308     for (c0 = c0min; c0 <= c0max; c0++)
309       for (c1 = c1min; c1 <= c1max; c1++) {
310         histp = & histogram[c0][c1][c2min];
311         for (c2 = c2min; c2 <= c2max; c2++)
312           if (*histp++ != 0) {
313             boxp->c0min = c0min = c0;
314             goto have_c0min;
315           }
316       }
317  have_c0min:
318   if (c0max > c0min)
319     for (c0 = c0max; c0 >= c0min; c0--)
320       for (c1 = c1min; c1 <= c1max; c1++) {
321         histp = & histogram[c0][c1][c2min];
322         for (c2 = c2min; c2 <= c2max; c2++)
323           if (*histp++ != 0) {
324             boxp->c0max = c0max = c0;
325             goto have_c0max;
326           }
327       }
328  have_c0max:
329   if (c1max > c1min)
330     for (c1 = c1min; c1 <= c1max; c1++)
331       for (c0 = c0min; c0 <= c0max; c0++) {
332         histp = & histogram[c0][c1][c2min];
333         for (c2 = c2min; c2 <= c2max; c2++)
334           if (*histp++ != 0) {
335             boxp->c1min = c1min = c1;
336             goto have_c1min;
337           }
338       }
339  have_c1min:
340   if (c1max > c1min)
341     for (c1 = c1max; c1 >= c1min; c1--)
342       for (c0 = c0min; c0 <= c0max; c0++) {
343         histp = & histogram[c0][c1][c2min];
344         for (c2 = c2min; c2 <= c2max; c2++)
345           if (*histp++ != 0) {
346             boxp->c1max = c1max = c1;
347             goto have_c1max;
348           }
349       }
350  have_c1max:
351   if (c2max > c2min)
352     for (c2 = c2min; c2 <= c2max; c2++)
353       for (c0 = c0min; c0 <= c0max; c0++) {
354         histp = & histogram[c0][c1min][c2];
355         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
356           if (*histp != 0) {
357             boxp->c2min = c2min = c2;
358             goto have_c2min;
359           }
360       }
361  have_c2min:
362   if (c2max > c2min)
363     for (c2 = c2max; c2 >= c2min; c2--)
364       for (c0 = c0min; c0 <= c0max; c0++) {
365         histp = & histogram[c0][c1min][c2];
366         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
367           if (*histp != 0) {
368             boxp->c2max = c2max = c2;
369             goto have_c2max;
370           }
371       }
372  have_c2max:
373 
374   /* Update box volume.
375    * We use 2-norm rather than real volume here; this biases the method
376    * against making long narrow boxes, and it has the side benefit that
377    * a box is splittable iff norm > 0.
378    * Since the differences are expressed in histogram-cell units,
379    * we have to shift back to JSAMPLE units to get consistent distances;
380    * after which, we scale according to the selected distance scale factors.
381    */
382   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
383   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
384   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
385   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
386 
387   /* Now scan remaining volume of box and compute population */
388   ccount = 0;
389   for (c0 = c0min; c0 <= c0max; c0++)
390     for (c1 = c1min; c1 <= c1max; c1++) {
391       histp = & histogram[c0][c1][c2min];
392       for (c2 = c2min; c2 <= c2max; c2++, histp++)
393         if (*histp != 0) {
394           ccount++;
395         }
396     }
397   boxp->colorcount = ccount;
398 }
399 
400 
401 LOCAL(int)
median_cut(j_decompress_ptr cinfo,boxptr boxlist,int numboxes,int desired_colors)402 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
403             int desired_colors)
404 /* Repeatedly select and split the largest box until we have enough boxes */
405 {
406   int n,lb;
407   int c0,c1,c2,cmax;
408   register boxptr b1,b2;
409 
410   while (numboxes < desired_colors) {
411     /* Select box to split.
412      * Current algorithm: by population for first half, then by volume.
413      */
414     if (numboxes*2 <= desired_colors) {
415       b1 = find_biggest_color_pop(boxlist, numboxes);
416     } else {
417       b1 = find_biggest_volume(boxlist, numboxes);
418     }
419     if (b1 == NULL)             /* no splittable boxes left! */
420       break;
421     b2 = &boxlist[numboxes];    /* where new box will go */
422     /* Copy the color bounds to the new box. */
423     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
424     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
425     /* Choose which axis to split the box on.
426      * Current algorithm: longest scaled axis.
427      * See notes in update_box about scaling distances.
428      */
429     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
430     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
431     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
432     /* We want to break any ties in favor of green, then red, blue last.
433      * This code does the right thing for R,G,B or B,G,R color orders only.
434      */
435     if (rgb_red[cinfo->out_color_space] == 0) {
436       cmax = c1; n = 1;
437       if (c0 > cmax) { cmax = c0; n = 0; }
438       if (c2 > cmax) { n = 2; }
439     }
440     else {
441       cmax = c1; n = 1;
442       if (c2 > cmax) { cmax = c2; n = 2; }
443       if (c0 > cmax) { n = 0; }
444     }
445     /* Choose split point along selected axis, and update box bounds.
446      * Current algorithm: split at halfway point.
447      * (Since the box has been shrunk to minimum volume,
448      * any split will produce two nonempty subboxes.)
449      * Note that lb value is max for lower box, so must be < old max.
450      */
451     switch (n) {
452     case 0:
453       lb = (b1->c0max + b1->c0min) / 2;
454       b1->c0max = lb;
455       b2->c0min = lb+1;
456       break;
457     case 1:
458       lb = (b1->c1max + b1->c1min) / 2;
459       b1->c1max = lb;
460       b2->c1min = lb+1;
461       break;
462     case 2:
463       lb = (b1->c2max + b1->c2min) / 2;
464       b1->c2max = lb;
465       b2->c2min = lb+1;
466       break;
467     }
468     /* Update stats for boxes */
469     update_box(cinfo, b1);
470     update_box(cinfo, b2);
471     numboxes++;
472   }
473   return numboxes;
474 }
475 
476 
477 LOCAL(void)
compute_color(j_decompress_ptr cinfo,boxptr boxp,int icolor)478 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
479 /* Compute representative color for a box, put it in colormap[icolor] */
480 {
481   /* Current algorithm: mean weighted by pixels (not colors) */
482   /* Note it is important to get the rounding correct! */
483   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
484   hist3d histogram = cquantize->histogram;
485   histptr histp;
486   int c0,c1,c2;
487   int c0min,c0max,c1min,c1max,c2min,c2max;
488   long count;
489   long total = 0;
490   long c0total = 0;
491   long c1total = 0;
492   long c2total = 0;
493 
494   c0min = boxp->c0min;  c0max = boxp->c0max;
495   c1min = boxp->c1min;  c1max = boxp->c1max;
496   c2min = boxp->c2min;  c2max = boxp->c2max;
497 
498   for (c0 = c0min; c0 <= c0max; c0++)
499     for (c1 = c1min; c1 <= c1max; c1++) {
500       histp = & histogram[c0][c1][c2min];
501       for (c2 = c2min; c2 <= c2max; c2++) {
502         if ((count = *histp++) != 0) {
503           total += count;
504           c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
505           c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
506           c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
507         }
508       }
509     }
510 
511   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
512   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
513   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
514 }
515 
516 
517 LOCAL(void)
select_colors(j_decompress_ptr cinfo,int desired_colors)518 select_colors (j_decompress_ptr cinfo, int desired_colors)
519 /* Master routine for color selection */
520 {
521   boxptr boxlist;
522   int numboxes;
523   int i;
524 
525   /* Allocate workspace for box list */
526   boxlist = (boxptr) (*cinfo->mem->alloc_small)
527     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * sizeof(box));
528   /* Initialize one box containing whole space */
529   numboxes = 1;
530   boxlist[0].c0min = 0;
531   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
532   boxlist[0].c1min = 0;
533   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
534   boxlist[0].c2min = 0;
535   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
536   /* Shrink it to actually-used volume and set its statistics */
537   update_box(cinfo, & boxlist[0]);
538   /* Perform median-cut to produce final box list */
539   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
540   /* Compute the representative color for each box, fill colormap */
541   for (i = 0; i < numboxes; i++)
542     compute_color(cinfo, & boxlist[i], i);
543   cinfo->actual_number_of_colors = numboxes;
544   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
545 }
546 
547 
548 /*
549  * These routines are concerned with the time-critical task of mapping input
550  * colors to the nearest color in the selected colormap.
551  *
552  * We re-use the histogram space as an "inverse color map", essentially a
553  * cache for the results of nearest-color searches.  All colors within a
554  * histogram cell will be mapped to the same colormap entry, namely the one
555  * closest to the cell's center.  This may not be quite the closest entry to
556  * the actual input color, but it's almost as good.  A zero in the cache
557  * indicates we haven't found the nearest color for that cell yet; the array
558  * is cleared to zeroes before starting the mapping pass.  When we find the
559  * nearest color for a cell, its colormap index plus one is recorded in the
560  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
561  * when they need to use an unfilled entry in the cache.
562  *
563  * Our method of efficiently finding nearest colors is based on the "locally
564  * sorted search" idea described by Heckbert and on the incremental distance
565  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
566  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
567  * the distances from a given colormap entry to each cell of the histogram can
568  * be computed quickly using an incremental method: the differences between
569  * distances to adjacent cells themselves differ by a constant.  This allows a
570  * fairly fast implementation of the "brute force" approach of computing the
571  * distance from every colormap entry to every histogram cell.  Unfortunately,
572  * it needs a work array to hold the best-distance-so-far for each histogram
573  * cell (because the inner loop has to be over cells, not colormap entries).
574  * The work array elements have to be INT32s, so the work array would need
575  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
576  *
577  * To get around these problems, we apply Thomas' method to compute the
578  * nearest colors for only the cells within a small subbox of the histogram.
579  * The work array need be only as big as the subbox, so the memory usage
580  * problem is solved.  Furthermore, we need not fill subboxes that are never
581  * referenced in pass2; many images use only part of the color gamut, so a
582  * fair amount of work is saved.  An additional advantage of this
583  * approach is that we can apply Heckbert's locality criterion to quickly
584  * eliminate colormap entries that are far away from the subbox; typically
585  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
586  * and we need not compute their distances to individual cells in the subbox.
587  * The speed of this approach is heavily influenced by the subbox size: too
588  * small means too much overhead, too big loses because Heckbert's criterion
589  * can't eliminate as many colormap entries.  Empirically the best subbox
590  * size seems to be about 1/512th of the histogram (1/8th in each direction).
591  *
592  * Thomas' article also describes a refined method which is asymptotically
593  * faster than the brute-force method, but it is also far more complex and
594  * cannot efficiently be applied to small subboxes.  It is therefore not
595  * useful for programs intended to be portable to DOS machines.  On machines
596  * with plenty of memory, filling the whole histogram in one shot with Thomas'
597  * refined method might be faster than the present code --- but then again,
598  * it might not be any faster, and it's certainly more complicated.
599  */
600 
601 
602 /* log2(histogram cells in update box) for each axis; this can be adjusted */
603 #define BOX_C0_LOG  (HIST_C0_BITS-3)
604 #define BOX_C1_LOG  (HIST_C1_BITS-3)
605 #define BOX_C2_LOG  (HIST_C2_BITS-3)
606 
607 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
608 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
609 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
610 
611 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
612 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
613 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
614 
615 
616 /*
617  * The next three routines implement inverse colormap filling.  They could
618  * all be folded into one big routine, but splitting them up this way saves
619  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
620  * and may allow some compilers to produce better code by registerizing more
621  * inner-loop variables.
622  */
623 
624 LOCAL(int)
find_nearby_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,JSAMPLE colorlist[])625 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
626                     JSAMPLE colorlist[])
627 /* Locate the colormap entries close enough to an update box to be candidates
628  * for the nearest entry to some cell(s) in the update box.  The update box
629  * is specified by the center coordinates of its first cell.  The number of
630  * candidate colormap entries is returned, and their colormap indexes are
631  * placed in colorlist[].
632  * This routine uses Heckbert's "locally sorted search" criterion to select
633  * the colors that need further consideration.
634  */
635 {
636   int numcolors = cinfo->actual_number_of_colors;
637   int maxc0, maxc1, maxc2;
638   int centerc0, centerc1, centerc2;
639   int i, x, ncolors;
640   INT32 minmaxdist, min_dist, max_dist, tdist;
641   INT32 mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
642 
643   /* Compute true coordinates of update box's upper corner and center.
644    * Actually we compute the coordinates of the center of the upper-corner
645    * histogram cell, which are the upper bounds of the volume we care about.
646    * Note that since ">>" rounds down, the "center" values may be closer to
647    * min than to max; hence comparisons to them must be "<=", not "<".
648    */
649   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
650   centerc0 = (minc0 + maxc0) >> 1;
651   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
652   centerc1 = (minc1 + maxc1) >> 1;
653   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
654   centerc2 = (minc2 + maxc2) >> 1;
655 
656   /* For each color in colormap, find:
657    *  1. its minimum squared-distance to any point in the update box
658    *     (zero if color is within update box);
659    *  2. its maximum squared-distance to any point in the update box.
660    * Both of these can be found by considering only the corners of the box.
661    * We save the minimum distance for each color in mindist[];
662    * only the smallest maximum distance is of interest.
663    */
664   minmaxdist = 0x7FFFFFFFL;
665 
666   for (i = 0; i < numcolors; i++) {
667     /* We compute the squared-c0-distance term, then add in the other two. */
668     x = GETJSAMPLE(cinfo->colormap[0][i]);
669     if (x < minc0) {
670       tdist = (x - minc0) * C0_SCALE;
671       min_dist = tdist*tdist;
672       tdist = (x - maxc0) * C0_SCALE;
673       max_dist = tdist*tdist;
674     } else if (x > maxc0) {
675       tdist = (x - maxc0) * C0_SCALE;
676       min_dist = tdist*tdist;
677       tdist = (x - minc0) * C0_SCALE;
678       max_dist = tdist*tdist;
679     } else {
680       /* within cell range so no contribution to min_dist */
681       min_dist = 0;
682       if (x <= centerc0) {
683         tdist = (x - maxc0) * C0_SCALE;
684         max_dist = tdist*tdist;
685       } else {
686         tdist = (x - minc0) * C0_SCALE;
687         max_dist = tdist*tdist;
688       }
689     }
690 
691     x = GETJSAMPLE(cinfo->colormap[1][i]);
692     if (x < minc1) {
693       tdist = (x - minc1) * C1_SCALE;
694       min_dist += tdist*tdist;
695       tdist = (x - maxc1) * C1_SCALE;
696       max_dist += tdist*tdist;
697     } else if (x > maxc1) {
698       tdist = (x - maxc1) * C1_SCALE;
699       min_dist += tdist*tdist;
700       tdist = (x - minc1) * C1_SCALE;
701       max_dist += tdist*tdist;
702     } else {
703       /* within cell range so no contribution to min_dist */
704       if (x <= centerc1) {
705         tdist = (x - maxc1) * C1_SCALE;
706         max_dist += tdist*tdist;
707       } else {
708         tdist = (x - minc1) * C1_SCALE;
709         max_dist += tdist*tdist;
710       }
711     }
712 
713     x = GETJSAMPLE(cinfo->colormap[2][i]);
714     if (x < minc2) {
715       tdist = (x - minc2) * C2_SCALE;
716       min_dist += tdist*tdist;
717       tdist = (x - maxc2) * C2_SCALE;
718       max_dist += tdist*tdist;
719     } else if (x > maxc2) {
720       tdist = (x - maxc2) * C2_SCALE;
721       min_dist += tdist*tdist;
722       tdist = (x - minc2) * C2_SCALE;
723       max_dist += tdist*tdist;
724     } else {
725       /* within cell range so no contribution to min_dist */
726       if (x <= centerc2) {
727         tdist = (x - maxc2) * C2_SCALE;
728         max_dist += tdist*tdist;
729       } else {
730         tdist = (x - minc2) * C2_SCALE;
731         max_dist += tdist*tdist;
732       }
733     }
734 
735     mindist[i] = min_dist;      /* save away the results */
736     if (max_dist < minmaxdist)
737       minmaxdist = max_dist;
738   }
739 
740   /* Now we know that no cell in the update box is more than minmaxdist
741    * away from some colormap entry.  Therefore, only colors that are
742    * within minmaxdist of some part of the box need be considered.
743    */
744   ncolors = 0;
745   for (i = 0; i < numcolors; i++) {
746     if (mindist[i] <= minmaxdist)
747       colorlist[ncolors++] = (JSAMPLE) i;
748   }
749   return ncolors;
750 }
751 
752 
753 LOCAL(void)
find_best_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,int numcolors,JSAMPLE colorlist[],JSAMPLE bestcolor[])754 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
755                   int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
756 /* Find the closest colormap entry for each cell in the update box,
757  * given the list of candidate colors prepared by find_nearby_colors.
758  * Return the indexes of the closest entries in the bestcolor[] array.
759  * This routine uses Thomas' incremental distance calculation method to
760  * find the distance from a colormap entry to successive cells in the box.
761  */
762 {
763   int ic0, ic1, ic2;
764   int i, icolor;
765   register INT32 * bptr;        /* pointer into bestdist[] array */
766   JSAMPLE * cptr;               /* pointer into bestcolor[] array */
767   INT32 dist0, dist1;           /* initial distance values */
768   register INT32 dist2;         /* current distance in inner loop */
769   INT32 xx0, xx1;               /* distance increments */
770   register INT32 xx2;
771   INT32 inc0, inc1, inc2;       /* initial values for increments */
772   /* This array holds the distance to the nearest-so-far color for each cell */
773   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
774 
775   /* Initialize best-distance for each cell of the update box */
776   bptr = bestdist;
777   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
778     *bptr++ = 0x7FFFFFFFL;
779 
780   /* For each color selected by find_nearby_colors,
781    * compute its distance to the center of each cell in the box.
782    * If that's less than best-so-far, update best distance and color number.
783    */
784 
785   /* Nominal steps between cell centers ("x" in Thomas article) */
786 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
787 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
788 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
789 
790   for (i = 0; i < numcolors; i++) {
791     icolor = GETJSAMPLE(colorlist[i]);
792     /* Compute (square of) distance from minc0/c1/c2 to this color */
793     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
794     dist0 = inc0*inc0;
795     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
796     dist0 += inc1*inc1;
797     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
798     dist0 += inc2*inc2;
799     /* Form the initial difference increments */
800     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
801     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
802     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
803     /* Now loop over all cells in box, updating distance per Thomas method */
804     bptr = bestdist;
805     cptr = bestcolor;
806     xx0 = inc0;
807     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
808       dist1 = dist0;
809       xx1 = inc1;
810       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
811         dist2 = dist1;
812         xx2 = inc2;
813         for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
814           if (dist2 < *bptr) {
815             *bptr = dist2;
816             *cptr = (JSAMPLE) icolor;
817           }
818           dist2 += xx2;
819           xx2 += 2 * STEP_C2 * STEP_C2;
820           bptr++;
821           cptr++;
822         }
823         dist1 += xx1;
824         xx1 += 2 * STEP_C1 * STEP_C1;
825       }
826       dist0 += xx0;
827       xx0 += 2 * STEP_C0 * STEP_C0;
828     }
829   }
830 }
831 
832 
833 LOCAL(void)
fill_inverse_cmap(j_decompress_ptr cinfo,int c0,int c1,int c2)834 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
835 /* Fill the inverse-colormap entries in the update box that contains */
836 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
837 /* we can fill as many others as we wish.) */
838 {
839   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
840   hist3d histogram = cquantize->histogram;
841   int minc0, minc1, minc2;      /* lower left corner of update box */
842   int ic0, ic1, ic2;
843   register JSAMPLE * cptr;      /* pointer into bestcolor[] array */
844   register histptr cachep;      /* pointer into main cache array */
845   /* This array lists the candidate colormap indexes. */
846   JSAMPLE colorlist[MAXNUMCOLORS];
847   int numcolors;                /* number of candidate colors */
848   /* This array holds the actually closest colormap index for each cell. */
849   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
850 
851   /* Convert cell coordinates to update box ID */
852   c0 >>= BOX_C0_LOG;
853   c1 >>= BOX_C1_LOG;
854   c2 >>= BOX_C2_LOG;
855 
856   /* Compute true coordinates of update box's origin corner.
857    * Actually we compute the coordinates of the center of the corner
858    * histogram cell, which are the lower bounds of the volume we care about.
859    */
860   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
861   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
862   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
863 
864   /* Determine which colormap entries are close enough to be candidates
865    * for the nearest entry to some cell in the update box.
866    */
867   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
868 
869   /* Determine the actually nearest colors. */
870   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
871                    bestcolor);
872 
873   /* Save the best color numbers (plus 1) in the main cache array */
874   c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */
875   c1 <<= BOX_C1_LOG;
876   c2 <<= BOX_C2_LOG;
877   cptr = bestcolor;
878   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
879     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
880       cachep = & histogram[c0+ic0][c1+ic1][c2];
881       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
882         *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
883       }
884     }
885   }
886 }
887 
888 
889 /*
890  * Map some rows of pixels to the output colormapped representation.
891  */
892 
893 METHODDEF(void)
pass2_no_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)894 pass2_no_dither (j_decompress_ptr cinfo,
895                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
896 /* This version performs no dithering */
897 {
898   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
899   hist3d histogram = cquantize->histogram;
900   register JSAMPROW inptr, outptr;
901   register histptr cachep;
902   register int c0, c1, c2;
903   int row;
904   JDIMENSION col;
905   JDIMENSION width = cinfo->output_width;
906 
907   for (row = 0; row < num_rows; row++) {
908     inptr = input_buf[row];
909     outptr = output_buf[row];
910     for (col = width; col > 0; col--) {
911       /* get pixel value and index into the cache */
912       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
913       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
914       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
915       cachep = & histogram[c0][c1][c2];
916       /* If we have not seen this color before, find nearest colormap entry */
917       /* and update the cache */
918       if (*cachep == 0)
919         fill_inverse_cmap(cinfo, c0,c1,c2);
920       /* Now emit the colormap index for this cell */
921       *outptr++ = (JSAMPLE) (*cachep - 1);
922     }
923   }
924 }
925 
926 
927 METHODDEF(void)
pass2_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)928 pass2_fs_dither (j_decompress_ptr cinfo,
929                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
930 /* This version performs Floyd-Steinberg dithering */
931 {
932   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
933   hist3d histogram = cquantize->histogram;
934   register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
935   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
936   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
937   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
938   JSAMPROW inptr;               /* => current input pixel */
939   JSAMPROW outptr;              /* => current output pixel */
940   histptr cachep;
941   int dir;                      /* +1 or -1 depending on direction */
942   int dir3;                     /* 3*dir, for advancing inptr & errorptr */
943   int row;
944   JDIMENSION col;
945   JDIMENSION width = cinfo->output_width;
946   JSAMPLE *range_limit = cinfo->sample_range_limit;
947   int *error_limit = cquantize->error_limiter;
948   JSAMPROW colormap0 = cinfo->colormap[0];
949   JSAMPROW colormap1 = cinfo->colormap[1];
950   JSAMPROW colormap2 = cinfo->colormap[2];
951   SHIFT_TEMPS
952 
953   for (row = 0; row < num_rows; row++) {
954     inptr = input_buf[row];
955     outptr = output_buf[row];
956     if (cquantize->on_odd_row) {
957       /* work right to left in this row */
958       inptr += (width-1) * 3;   /* so point to rightmost pixel */
959       outptr += width-1;
960       dir = -1;
961       dir3 = -3;
962       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
963       cquantize->on_odd_row = FALSE; /* flip for next time */
964     } else {
965       /* work left to right in this row */
966       dir = 1;
967       dir3 = 3;
968       errorptr = cquantize->fserrors; /* => entry before first real column */
969       cquantize->on_odd_row = TRUE; /* flip for next time */
970     }
971     /* Preset error values: no error propagated to first pixel from left */
972     cur0 = cur1 = cur2 = 0;
973     /* and no error propagated to row below yet */
974     belowerr0 = belowerr1 = belowerr2 = 0;
975     bpreverr0 = bpreverr1 = bpreverr2 = 0;
976 
977     for (col = width; col > 0; col--) {
978       /* curN holds the error propagated from the previous pixel on the
979        * current line.  Add the error propagated from the previous line
980        * to form the complete error correction term for this pixel, and
981        * round the error term (which is expressed * 16) to an integer.
982        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
983        * for either sign of the error value.
984        * Note: errorptr points to *previous* column's array entry.
985        */
986       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
987       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
988       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
989       /* Limit the error using transfer function set by init_error_limit.
990        * See comments with init_error_limit for rationale.
991        */
992       cur0 = error_limit[cur0];
993       cur1 = error_limit[cur1];
994       cur2 = error_limit[cur2];
995       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
996        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
997        * this sets the required size of the range_limit array.
998        */
999       cur0 += GETJSAMPLE(inptr[0]);
1000       cur1 += GETJSAMPLE(inptr[1]);
1001       cur2 += GETJSAMPLE(inptr[2]);
1002       cur0 = GETJSAMPLE(range_limit[cur0]);
1003       cur1 = GETJSAMPLE(range_limit[cur1]);
1004       cur2 = GETJSAMPLE(range_limit[cur2]);
1005       /* Index into the cache with adjusted pixel value */
1006       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1007       /* If we have not seen this color before, find nearest colormap */
1008       /* entry and update the cache */
1009       if (*cachep == 0)
1010         fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1011       /* Now emit the colormap index for this cell */
1012       { register int pixcode = *cachep - 1;
1013         *outptr = (JSAMPLE) pixcode;
1014         /* Compute representation error for this pixel */
1015         cur0 -= GETJSAMPLE(colormap0[pixcode]);
1016         cur1 -= GETJSAMPLE(colormap1[pixcode]);
1017         cur2 -= GETJSAMPLE(colormap2[pixcode]);
1018       }
1019       /* Compute error fractions to be propagated to adjacent pixels.
1020        * Add these into the running sums, and simultaneously shift the
1021        * next-line error sums left by 1 column.
1022        */
1023       { register LOCFSERROR bnexterr;
1024 
1025         bnexterr = cur0;        /* Process component 0 */
1026         errorptr[0] = (FSERROR) (bpreverr0 + cur0 * 3);
1027         bpreverr0 = belowerr0 + cur0 * 5;
1028         belowerr0 = bnexterr;
1029         cur0 *= 7;
1030         bnexterr = cur1;        /* Process component 1 */
1031         errorptr[1] = (FSERROR) (bpreverr1 + cur1 * 3);
1032         bpreverr1 = belowerr1 + cur1 * 5;
1033         belowerr1 = bnexterr;
1034         cur1 *= 7;
1035         bnexterr = cur2;        /* Process component 2 */
1036         errorptr[2] = (FSERROR) (bpreverr2 + cur2 * 3);
1037         bpreverr2 = belowerr2 + cur2 * 5;
1038         belowerr2 = bnexterr;
1039         cur2 *= 7;
1040       }
1041       /* At this point curN contains the 7/16 error value to be propagated
1042        * to the next pixel on the current line, and all the errors for the
1043        * next line have been shifted over.  We are therefore ready to move on.
1044        */
1045       inptr += dir3;            /* Advance pixel pointers to next column */
1046       outptr += dir;
1047       errorptr += dir3;         /* advance errorptr to current column */
1048     }
1049     /* Post-loop cleanup: we must unload the final error values into the
1050      * final fserrors[] entry.  Note we need not unload belowerrN because
1051      * it is for the dummy column before or after the actual array.
1052      */
1053     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1054     errorptr[1] = (FSERROR) bpreverr1;
1055     errorptr[2] = (FSERROR) bpreverr2;
1056   }
1057 }
1058 
1059 
1060 /*
1061  * Initialize the error-limiting transfer function (lookup table).
1062  * The raw F-S error computation can potentially compute error values of up to
1063  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1064  * much less, otherwise obviously wrong pixels will be created.  (Typical
1065  * effects include weird fringes at color-area boundaries, isolated bright
1066  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1067  * is to ensure that the "corners" of the color cube are allocated as output
1068  * colors; then repeated errors in the same direction cannot cause cascading
1069  * error buildup.  However, that only prevents the error from getting
1070  * completely out of hand; Aaron Giles reports that error limiting improves
1071  * the results even with corner colors allocated.
1072  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1073  * well, but the smoother transfer function used below is even better.  Thanks
1074  * to Aaron Giles for this idea.
1075  */
1076 
1077 LOCAL(void)
init_error_limit(j_decompress_ptr cinfo)1078 init_error_limit (j_decompress_ptr cinfo)
1079 /* Allocate and fill in the error_limiter table */
1080 {
1081   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1082   int * table;
1083   int in, out;
1084 
1085   table = (int *) (*cinfo->mem->alloc_small)
1086     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * sizeof(int));
1087   table += MAXJSAMPLE;          /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1088   cquantize->error_limiter = table;
1089 
1090 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1091   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1092   out = 0;
1093   for (in = 0; in < STEPSIZE; in++, out++) {
1094     table[in] = out; table[-in] = -out;
1095   }
1096   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1097   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1098     table[in] = out; table[-in] = -out;
1099   }
1100   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1101   for (; in <= MAXJSAMPLE; in++) {
1102     table[in] = out; table[-in] = -out;
1103   }
1104 #undef STEPSIZE
1105 }
1106 
1107 
1108 /*
1109  * Finish up at the end of each pass.
1110  */
1111 
1112 METHODDEF(void)
finish_pass1(j_decompress_ptr cinfo)1113 finish_pass1 (j_decompress_ptr cinfo)
1114 {
1115   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1116 
1117   /* Select the representative colors and fill in cinfo->colormap */
1118   cinfo->colormap = cquantize->sv_colormap;
1119   select_colors(cinfo, cquantize->desired);
1120   /* Force next pass to zero the color index table */
1121   cquantize->needs_zeroed = TRUE;
1122 }
1123 
1124 
1125 METHODDEF(void)
finish_pass2(j_decompress_ptr cinfo)1126 finish_pass2 (j_decompress_ptr cinfo)
1127 {
1128   /* no work */
1129 }
1130 
1131 
1132 /*
1133  * Initialize for each processing pass.
1134  */
1135 
1136 METHODDEF(void)
start_pass_2_quant(j_decompress_ptr cinfo,boolean is_pre_scan)1137 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1138 {
1139   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1140   hist3d histogram = cquantize->histogram;
1141   int i;
1142 
1143   /* Only F-S dithering or no dithering is supported. */
1144   /* If user asks for ordered dither, give him F-S. */
1145   if (cinfo->dither_mode != JDITHER_NONE)
1146     cinfo->dither_mode = JDITHER_FS;
1147 
1148   if (is_pre_scan) {
1149     /* Set up method pointers */
1150     cquantize->pub.color_quantize = prescan_quantize;
1151     cquantize->pub.finish_pass = finish_pass1;
1152     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1153   } else {
1154     /* Set up method pointers */
1155     if (cinfo->dither_mode == JDITHER_FS)
1156       cquantize->pub.color_quantize = pass2_fs_dither;
1157     else
1158       cquantize->pub.color_quantize = pass2_no_dither;
1159     cquantize->pub.finish_pass = finish_pass2;
1160 
1161     /* Make sure color count is acceptable */
1162     i = cinfo->actual_number_of_colors;
1163     if (i < 1)
1164       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1165     if (i > MAXNUMCOLORS)
1166       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1167 
1168     if (cinfo->dither_mode == JDITHER_FS) {
1169       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1170                                    (3 * sizeof(FSERROR)));
1171       /* Allocate Floyd-Steinberg workspace if we didn't already. */
1172       if (cquantize->fserrors == NULL)
1173         cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1174           ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1175       /* Initialize the propagated errors to zero. */
1176       jzero_far((void *) cquantize->fserrors, arraysize);
1177       /* Make the error-limit table if we didn't already. */
1178       if (cquantize->error_limiter == NULL)
1179         init_error_limit(cinfo);
1180       cquantize->on_odd_row = FALSE;
1181     }
1182 
1183   }
1184   /* Zero the histogram or inverse color map, if necessary */
1185   if (cquantize->needs_zeroed) {
1186     for (i = 0; i < HIST_C0_ELEMS; i++) {
1187       jzero_far((void *) histogram[i],
1188                 HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1189     }
1190     cquantize->needs_zeroed = FALSE;
1191   }
1192 }
1193 
1194 
1195 /*
1196  * Switch to a new external colormap between output passes.
1197  */
1198 
1199 METHODDEF(void)
new_color_map_2_quant(j_decompress_ptr cinfo)1200 new_color_map_2_quant (j_decompress_ptr cinfo)
1201 {
1202   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1203 
1204   /* Reset the inverse color map */
1205   cquantize->needs_zeroed = TRUE;
1206 }
1207 
1208 
1209 /*
1210  * Module initialization routine for 2-pass color quantization.
1211  */
1212 
1213 GLOBAL(void)
jinit_2pass_quantizer(j_decompress_ptr cinfo)1214 jinit_2pass_quantizer (j_decompress_ptr cinfo)
1215 {
1216   my_cquantize_ptr cquantize;
1217   int i;
1218 
1219   cquantize = (my_cquantize_ptr)
1220     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1221                                 sizeof(my_cquantizer));
1222   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1223   cquantize->pub.start_pass = start_pass_2_quant;
1224   cquantize->pub.new_color_map = new_color_map_2_quant;
1225   cquantize->fserrors = NULL;   /* flag optional arrays not allocated */
1226   cquantize->error_limiter = NULL;
1227 
1228   /* Make sure jdmaster didn't give me a case I can't handle */
1229   if (cinfo->out_color_components != 3)
1230     ERREXIT(cinfo, JERR_NOTIMPL);
1231 
1232   /* Allocate the histogram/inverse colormap storage */
1233   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1234     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d));
1235   for (i = 0; i < HIST_C0_ELEMS; i++) {
1236     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1237       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1238        HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1239   }
1240   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1241 
1242   /* Allocate storage for the completed colormap, if required.
1243    * We do this now since it may affect the memory manager's space
1244    * calculations.
1245    */
1246   if (cinfo->enable_2pass_quant) {
1247     /* Make sure color count is acceptable */
1248     int desired = cinfo->desired_number_of_colors;
1249     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1250     if (desired < 8)
1251       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1252     /* Make sure colormap indexes can be represented by JSAMPLEs */
1253     if (desired > MAXNUMCOLORS)
1254       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1255     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1256       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1257     cquantize->desired = desired;
1258   } else
1259     cquantize->sv_colormap = NULL;
1260 
1261   /* Only F-S dithering or no dithering is supported. */
1262   /* If user asks for ordered dither, give him F-S. */
1263   if (cinfo->dither_mode != JDITHER_NONE)
1264     cinfo->dither_mode = JDITHER_FS;
1265 
1266   /* Allocate Floyd-Steinberg workspace if necessary.
1267    * This isn't really needed until pass 2, but again it may affect the memory
1268    * manager's space calculations.  Although we will cope with a later change
1269    * in dither_mode, we do not promise to honor max_memory_to_use if
1270    * dither_mode changes.
1271    */
1272   if (cinfo->dither_mode == JDITHER_FS) {
1273     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1274       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1275        (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1276     /* Might as well create the error-limiting table too. */
1277     init_error_limit(cinfo);
1278   }
1279 }
1280 
1281 #endif /* QUANT_2PASS_SUPPORTED */
1282