1; 2; jfdctfst.asm - fast integer FDCT (MMX) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; 6; Based on 7; x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; This file contains a fast, not so accurate integer implementation of 18; the forward DCT (Discrete Cosine Transform). The following code is 19; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c 20; for more details. 21; 22; [TAB8] 23 24%include "jsimdext.inc" 25%include "jdct.inc" 26 27; -------------------------------------------------------------------------- 28 29%define CONST_BITS 8 ; 14 is also OK. 30 31%if CONST_BITS == 8 32F_0_382 equ 98 ; FIX(0.382683433) 33F_0_541 equ 139 ; FIX(0.541196100) 34F_0_707 equ 181 ; FIX(0.707106781) 35F_1_306 equ 334 ; FIX(1.306562965) 36%else 37; NASM cannot do compile-time arithmetic on floating-point constants. 38%define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) 39F_0_382 equ DESCALE( 410903207,30-CONST_BITS) ; FIX(0.382683433) 40F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) 41F_0_707 equ DESCALE( 759250124,30-CONST_BITS) ; FIX(0.707106781) 42F_1_306 equ DESCALE(1402911301,30-CONST_BITS) ; FIX(1.306562965) 43%endif 44 45; -------------------------------------------------------------------------- 46 SECTION SEG_CONST 47 48; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) 49; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) 50 51%define PRE_MULTIPLY_SCALE_BITS 2 52%define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) 53 54 alignz 16 55 global EXTN(jconst_fdct_ifast_mmx) 56 57EXTN(jconst_fdct_ifast_mmx): 58 59PW_F0707 times 4 dw F_0_707 << CONST_SHIFT 60PW_F0382 times 4 dw F_0_382 << CONST_SHIFT 61PW_F0541 times 4 dw F_0_541 << CONST_SHIFT 62PW_F1306 times 4 dw F_1_306 << CONST_SHIFT 63 64 alignz 16 65 66; -------------------------------------------------------------------------- 67 SECTION SEG_TEXT 68 BITS 32 69; 70; Perform the forward DCT on one block of samples. 71; 72; GLOBAL(void) 73; jsimd_fdct_ifast_mmx (DCTELEM * data) 74; 75 76%define data(b) (b)+8 ; DCTELEM * data 77 78%define original_ebp ebp+0 79%define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] 80%define WK_NUM 2 81 82 align 16 83 global EXTN(jsimd_fdct_ifast_mmx) 84 85EXTN(jsimd_fdct_ifast_mmx): 86 push ebp 87 mov eax,esp ; eax = original ebp 88 sub esp, byte 4 89 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits 90 mov [esp],eax 91 mov ebp,esp ; ebp = aligned ebp 92 lea esp, [wk(0)] 93 pushpic ebx 94; push ecx ; need not be preserved 95; push edx ; need not be preserved 96; push esi ; unused 97; push edi ; unused 98 99 get_GOT ebx ; get GOT address 100 101 ; ---- Pass 1: process rows. 102 103 mov edx, POINTER [data(eax)] ; (DCTELEM *) 104 mov ecx, DCTSIZE/4 105 alignx 16,7 106.rowloop: 107 108 movq mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)] 109 movq mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)] 110 movq mm2, MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)] 111 movq mm3, MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)] 112 113 ; mm0=(20 21 22 23), mm2=(24 25 26 27) 114 ; mm1=(30 31 32 33), mm3=(34 35 36 37) 115 116 movq mm4,mm0 ; transpose coefficients(phase 1) 117 punpcklwd mm0,mm1 ; mm0=(20 30 21 31) 118 punpckhwd mm4,mm1 ; mm4=(22 32 23 33) 119 movq mm5,mm2 ; transpose coefficients(phase 1) 120 punpcklwd mm2,mm3 ; mm2=(24 34 25 35) 121 punpckhwd mm5,mm3 ; mm5=(26 36 27 37) 122 123 movq mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)] 124 movq mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)] 125 movq mm1, MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)] 126 movq mm3, MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)] 127 128 ; mm6=(00 01 02 03), mm1=(04 05 06 07) 129 ; mm7=(10 11 12 13), mm3=(14 15 16 17) 130 131 movq MMWORD [wk(0)], mm4 ; wk(0)=(22 32 23 33) 132 movq MMWORD [wk(1)], mm2 ; wk(1)=(24 34 25 35) 133 134 movq mm4,mm6 ; transpose coefficients(phase 1) 135 punpcklwd mm6,mm7 ; mm6=(00 10 01 11) 136 punpckhwd mm4,mm7 ; mm4=(02 12 03 13) 137 movq mm2,mm1 ; transpose coefficients(phase 1) 138 punpcklwd mm1,mm3 ; mm1=(04 14 05 15) 139 punpckhwd mm2,mm3 ; mm2=(06 16 07 17) 140 141 movq mm7,mm6 ; transpose coefficients(phase 2) 142 punpckldq mm6,mm0 ; mm6=(00 10 20 30)=data0 143 punpckhdq mm7,mm0 ; mm7=(01 11 21 31)=data1 144 movq mm3,mm2 ; transpose coefficients(phase 2) 145 punpckldq mm2,mm5 ; mm2=(06 16 26 36)=data6 146 punpckhdq mm3,mm5 ; mm3=(07 17 27 37)=data7 147 148 movq mm0,mm7 149 movq mm5,mm6 150 psubw mm7,mm2 ; mm7=data1-data6=tmp6 151 psubw mm6,mm3 ; mm6=data0-data7=tmp7 152 paddw mm0,mm2 ; mm0=data1+data6=tmp1 153 paddw mm5,mm3 ; mm5=data0+data7=tmp0 154 155 movq mm2, MMWORD [wk(0)] ; mm2=(22 32 23 33) 156 movq mm3, MMWORD [wk(1)] ; mm3=(24 34 25 35) 157 movq MMWORD [wk(0)], mm7 ; wk(0)=tmp6 158 movq MMWORD [wk(1)], mm6 ; wk(1)=tmp7 159 160 movq mm7,mm4 ; transpose coefficients(phase 2) 161 punpckldq mm4,mm2 ; mm4=(02 12 22 32)=data2 162 punpckhdq mm7,mm2 ; mm7=(03 13 23 33)=data3 163 movq mm6,mm1 ; transpose coefficients(phase 2) 164 punpckldq mm1,mm3 ; mm1=(04 14 24 34)=data4 165 punpckhdq mm6,mm3 ; mm6=(05 15 25 35)=data5 166 167 movq mm2,mm7 168 movq mm3,mm4 169 paddw mm7,mm1 ; mm7=data3+data4=tmp3 170 paddw mm4,mm6 ; mm4=data2+data5=tmp2 171 psubw mm2,mm1 ; mm2=data3-data4=tmp4 172 psubw mm3,mm6 ; mm3=data2-data5=tmp5 173 174 ; -- Even part 175 176 movq mm1,mm5 177 movq mm6,mm0 178 psubw mm5,mm7 ; mm5=tmp13 179 psubw mm0,mm4 ; mm0=tmp12 180 paddw mm1,mm7 ; mm1=tmp10 181 paddw mm6,mm4 ; mm6=tmp11 182 183 paddw mm0,mm5 184 psllw mm0,PRE_MULTIPLY_SCALE_BITS 185 pmulhw mm0,[GOTOFF(ebx,PW_F0707)] ; mm0=z1 186 187 movq mm7,mm1 188 movq mm4,mm5 189 psubw mm1,mm6 ; mm1=data4 190 psubw mm5,mm0 ; mm5=data6 191 paddw mm7,mm6 ; mm7=data0 192 paddw mm4,mm0 ; mm4=data2 193 194 movq MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)], mm1 195 movq MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)], mm5 196 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm7 197 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4 198 199 ; -- Odd part 200 201 movq mm6, MMWORD [wk(0)] ; mm6=tmp6 202 movq mm0, MMWORD [wk(1)] ; mm0=tmp7 203 204 paddw mm2,mm3 ; mm2=tmp10 205 paddw mm3,mm6 ; mm3=tmp11 206 paddw mm6,mm0 ; mm6=tmp12, mm0=tmp7 207 208 psllw mm2,PRE_MULTIPLY_SCALE_BITS 209 psllw mm6,PRE_MULTIPLY_SCALE_BITS 210 211 psllw mm3,PRE_MULTIPLY_SCALE_BITS 212 pmulhw mm3,[GOTOFF(ebx,PW_F0707)] ; mm3=z3 213 214 movq mm1,mm2 ; mm1=tmp10 215 psubw mm2,mm6 216 pmulhw mm2,[GOTOFF(ebx,PW_F0382)] ; mm2=z5 217 pmulhw mm1,[GOTOFF(ebx,PW_F0541)] ; mm1=MULTIPLY(tmp10,FIX_0_54119610) 218 pmulhw mm6,[GOTOFF(ebx,PW_F1306)] ; mm6=MULTIPLY(tmp12,FIX_1_30656296) 219 paddw mm1,mm2 ; mm1=z2 220 paddw mm6,mm2 ; mm6=z4 221 222 movq mm5,mm0 223 psubw mm0,mm3 ; mm0=z13 224 paddw mm5,mm3 ; mm5=z11 225 226 movq mm7,mm0 227 movq mm4,mm5 228 psubw mm0,mm1 ; mm0=data3 229 psubw mm5,mm6 ; mm5=data7 230 paddw mm7,mm1 ; mm7=data5 231 paddw mm4,mm6 ; mm4=data1 232 233 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm0 234 movq MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)], mm5 235 movq MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)], mm7 236 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm4 237 238 add edx, byte 4*DCTSIZE*SIZEOF_DCTELEM 239 dec ecx 240 jnz near .rowloop 241 242 ; ---- Pass 2: process columns. 243 244 mov edx, POINTER [data(eax)] ; (DCTELEM *) 245 mov ecx, DCTSIZE/4 246 alignx 16,7 247.columnloop: 248 249 movq mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)] 250 movq mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)] 251 movq mm2, MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)] 252 movq mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)] 253 254 ; mm0=(02 12 22 32), mm2=(42 52 62 72) 255 ; mm1=(03 13 23 33), mm3=(43 53 63 73) 256 257 movq mm4,mm0 ; transpose coefficients(phase 1) 258 punpcklwd mm0,mm1 ; mm0=(02 03 12 13) 259 punpckhwd mm4,mm1 ; mm4=(22 23 32 33) 260 movq mm5,mm2 ; transpose coefficients(phase 1) 261 punpcklwd mm2,mm3 ; mm2=(42 43 52 53) 262 punpckhwd mm5,mm3 ; mm5=(62 63 72 73) 263 264 movq mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)] 265 movq mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)] 266 movq mm1, MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)] 267 movq mm3, MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)] 268 269 ; mm6=(00 10 20 30), mm1=(40 50 60 70) 270 ; mm7=(01 11 21 31), mm3=(41 51 61 71) 271 272 movq MMWORD [wk(0)], mm4 ; wk(0)=(22 23 32 33) 273 movq MMWORD [wk(1)], mm2 ; wk(1)=(42 43 52 53) 274 275 movq mm4,mm6 ; transpose coefficients(phase 1) 276 punpcklwd mm6,mm7 ; mm6=(00 01 10 11) 277 punpckhwd mm4,mm7 ; mm4=(20 21 30 31) 278 movq mm2,mm1 ; transpose coefficients(phase 1) 279 punpcklwd mm1,mm3 ; mm1=(40 41 50 51) 280 punpckhwd mm2,mm3 ; mm2=(60 61 70 71) 281 282 movq mm7,mm6 ; transpose coefficients(phase 2) 283 punpckldq mm6,mm0 ; mm6=(00 01 02 03)=data0 284 punpckhdq mm7,mm0 ; mm7=(10 11 12 13)=data1 285 movq mm3,mm2 ; transpose coefficients(phase 2) 286 punpckldq mm2,mm5 ; mm2=(60 61 62 63)=data6 287 punpckhdq mm3,mm5 ; mm3=(70 71 72 73)=data7 288 289 movq mm0,mm7 290 movq mm5,mm6 291 psubw mm7,mm2 ; mm7=data1-data6=tmp6 292 psubw mm6,mm3 ; mm6=data0-data7=tmp7 293 paddw mm0,mm2 ; mm0=data1+data6=tmp1 294 paddw mm5,mm3 ; mm5=data0+data7=tmp0 295 296 movq mm2, MMWORD [wk(0)] ; mm2=(22 23 32 33) 297 movq mm3, MMWORD [wk(1)] ; mm3=(42 43 52 53) 298 movq MMWORD [wk(0)], mm7 ; wk(0)=tmp6 299 movq MMWORD [wk(1)], mm6 ; wk(1)=tmp7 300 301 movq mm7,mm4 ; transpose coefficients(phase 2) 302 punpckldq mm4,mm2 ; mm4=(20 21 22 23)=data2 303 punpckhdq mm7,mm2 ; mm7=(30 31 32 33)=data3 304 movq mm6,mm1 ; transpose coefficients(phase 2) 305 punpckldq mm1,mm3 ; mm1=(40 41 42 43)=data4 306 punpckhdq mm6,mm3 ; mm6=(50 51 52 53)=data5 307 308 movq mm2,mm7 309 movq mm3,mm4 310 paddw mm7,mm1 ; mm7=data3+data4=tmp3 311 paddw mm4,mm6 ; mm4=data2+data5=tmp2 312 psubw mm2,mm1 ; mm2=data3-data4=tmp4 313 psubw mm3,mm6 ; mm3=data2-data5=tmp5 314 315 ; -- Even part 316 317 movq mm1,mm5 318 movq mm6,mm0 319 psubw mm5,mm7 ; mm5=tmp13 320 psubw mm0,mm4 ; mm0=tmp12 321 paddw mm1,mm7 ; mm1=tmp10 322 paddw mm6,mm4 ; mm6=tmp11 323 324 paddw mm0,mm5 325 psllw mm0,PRE_MULTIPLY_SCALE_BITS 326 pmulhw mm0,[GOTOFF(ebx,PW_F0707)] ; mm0=z1 327 328 movq mm7,mm1 329 movq mm4,mm5 330 psubw mm1,mm6 ; mm1=data4 331 psubw mm5,mm0 ; mm5=data6 332 paddw mm7,mm6 ; mm7=data0 333 paddw mm4,mm0 ; mm4=data2 334 335 movq MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)], mm1 336 movq MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)], mm5 337 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm7 338 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4 339 340 ; -- Odd part 341 342 movq mm6, MMWORD [wk(0)] ; mm6=tmp6 343 movq mm0, MMWORD [wk(1)] ; mm0=tmp7 344 345 paddw mm2,mm3 ; mm2=tmp10 346 paddw mm3,mm6 ; mm3=tmp11 347 paddw mm6,mm0 ; mm6=tmp12, mm0=tmp7 348 349 psllw mm2,PRE_MULTIPLY_SCALE_BITS 350 psllw mm6,PRE_MULTIPLY_SCALE_BITS 351 352 psllw mm3,PRE_MULTIPLY_SCALE_BITS 353 pmulhw mm3,[GOTOFF(ebx,PW_F0707)] ; mm3=z3 354 355 movq mm1,mm2 ; mm1=tmp10 356 psubw mm2,mm6 357 pmulhw mm2,[GOTOFF(ebx,PW_F0382)] ; mm2=z5 358 pmulhw mm1,[GOTOFF(ebx,PW_F0541)] ; mm1=MULTIPLY(tmp10,FIX_0_54119610) 359 pmulhw mm6,[GOTOFF(ebx,PW_F1306)] ; mm6=MULTIPLY(tmp12,FIX_1_30656296) 360 paddw mm1,mm2 ; mm1=z2 361 paddw mm6,mm2 ; mm6=z4 362 363 movq mm5,mm0 364 psubw mm0,mm3 ; mm0=z13 365 paddw mm5,mm3 ; mm5=z11 366 367 movq mm7,mm0 368 movq mm4,mm5 369 psubw mm0,mm1 ; mm0=data3 370 psubw mm5,mm6 ; mm5=data7 371 paddw mm7,mm1 ; mm7=data5 372 paddw mm4,mm6 ; mm4=data1 373 374 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm0 375 movq MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)], mm5 376 movq MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)], mm7 377 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm4 378 379 add edx, byte 4*SIZEOF_DCTELEM 380 dec ecx 381 jnz near .columnloop 382 383 emms ; empty MMX state 384 385; pop edi ; unused 386; pop esi ; unused 387; pop edx ; need not be preserved 388; pop ecx ; need not be preserved 389 poppic ebx 390 mov esp,ebp ; esp <- aligned ebp 391 pop esp ; esp <- original ebp 392 pop ebp 393 ret 394 395; For some reason, the OS X linker does not honor the request to align the 396; segment unless we do this. 397 align 16 398