1 /*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 * Optimization module for tcpdump intermediate representation.
22 */
23
24 #ifdef HAVE_CONFIG_H
25 #include "config.h"
26 #endif
27
28 #ifdef WIN32
29 #include <pcap-stdinc.h>
30 #else /* WIN32 */
31 #if HAVE_INTTYPES_H
32 #include <inttypes.h>
33 #elif HAVE_STDINT_H
34 #include <stdint.h>
35 #endif
36 #ifdef HAVE_SYS_BITYPES_H
37 #include <sys/bitypes.h>
38 #endif
39 #include <sys/types.h>
40 #endif /* WIN32 */
41
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <memory.h>
45 #include <string.h>
46
47 #include <errno.h>
48
49 #include "pcap-int.h"
50
51 #include "gencode.h"
52
53 #ifdef HAVE_OS_PROTO_H
54 #include "os-proto.h"
55 #endif
56
57 #ifdef BDEBUG
58 extern int dflag;
59 #endif
60
61 #if defined(MSDOS) && !defined(__DJGPP__)
62 extern int _w32_ffs (int mask);
63 #define ffs _w32_ffs
64 #endif
65
66 #if defined(WIN32) && defined (_MSC_VER)
67 int ffs(int mask);
68 #endif
69
70 /*
71 * Represents a deleted instruction.
72 */
73 #define NOP -1
74
75 /*
76 * Register numbers for use-def values.
77 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
78 * location. A_ATOM is the accumulator and X_ATOM is the index
79 * register.
80 */
81 #define A_ATOM BPF_MEMWORDS
82 #define X_ATOM (BPF_MEMWORDS+1)
83
84 /*
85 * This define is used to represent *both* the accumulator and
86 * x register in use-def computations.
87 * Currently, the use-def code assumes only one definition per instruction.
88 */
89 #define AX_ATOM N_ATOMS
90
91 /*
92 * A flag to indicate that further optimization is needed.
93 * Iterative passes are continued until a given pass yields no
94 * branch movement.
95 */
96 static int done;
97
98 /*
99 * A block is marked if only if its mark equals the current mark.
100 * Rather than traverse the code array, marking each item, 'cur_mark' is
101 * incremented. This automatically makes each element unmarked.
102 */
103 static int cur_mark;
104 #define isMarked(p) ((p)->mark == cur_mark)
105 #define unMarkAll() cur_mark += 1
106 #define Mark(p) ((p)->mark = cur_mark)
107
108 static void opt_init(struct block *);
109 static void opt_cleanup(void);
110
111 static void intern_blocks(struct block *);
112
113 static void find_inedges(struct block *);
114 #ifdef BDEBUG
115 static void opt_dump(struct block *);
116 #endif
117
118 static int n_blocks;
119 struct block **blocks;
120 static int n_edges;
121 struct edge **edges;
122
123 /*
124 * A bit vector set representation of the dominators.
125 * We round up the set size to the next power of two.
126 */
127 static int nodewords;
128 static int edgewords;
129 struct block **levels;
130 bpf_u_int32 *space;
131 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
132 /*
133 * True if a is in uset {p}
134 */
135 #define SET_MEMBER(p, a) \
136 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
137
138 /*
139 * Add 'a' to uset p.
140 */
141 #define SET_INSERT(p, a) \
142 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
143
144 /*
145 * Delete 'a' from uset p.
146 */
147 #define SET_DELETE(p, a) \
148 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
149
150 /*
151 * a := a intersect b
152 */
153 #define SET_INTERSECT(a, b, n)\
154 {\
155 register bpf_u_int32 *_x = a, *_y = b;\
156 register int _n = n;\
157 while (--_n >= 0) *_x++ &= *_y++;\
158 }
159
160 /*
161 * a := a - b
162 */
163 #define SET_SUBTRACT(a, b, n)\
164 {\
165 register bpf_u_int32 *_x = a, *_y = b;\
166 register int _n = n;\
167 while (--_n >= 0) *_x++ &=~ *_y++;\
168 }
169
170 /*
171 * a := a union b
172 */
173 #define SET_UNION(a, b, n)\
174 {\
175 register bpf_u_int32 *_x = a, *_y = b;\
176 register int _n = n;\
177 while (--_n >= 0) *_x++ |= *_y++;\
178 }
179
180 static uset all_dom_sets;
181 static uset all_closure_sets;
182 static uset all_edge_sets;
183
184 #ifndef MAX
185 #define MAX(a,b) ((a)>(b)?(a):(b))
186 #endif
187
188 static void
find_levels_r(struct block * b)189 find_levels_r(struct block *b)
190 {
191 int level;
192
193 if (isMarked(b))
194 return;
195
196 Mark(b);
197 b->link = 0;
198
199 if (JT(b)) {
200 find_levels_r(JT(b));
201 find_levels_r(JF(b));
202 level = MAX(JT(b)->level, JF(b)->level) + 1;
203 } else
204 level = 0;
205 b->level = level;
206 b->link = levels[level];
207 levels[level] = b;
208 }
209
210 /*
211 * Level graph. The levels go from 0 at the leaves to
212 * N_LEVELS at the root. The levels[] array points to the
213 * first node of the level list, whose elements are linked
214 * with the 'link' field of the struct block.
215 */
216 static void
find_levels(struct block * root)217 find_levels(struct block *root)
218 {
219 memset((char *)levels, 0, n_blocks * sizeof(*levels));
220 unMarkAll();
221 find_levels_r(root);
222 }
223
224 /*
225 * Find dominator relationships.
226 * Assumes graph has been leveled.
227 */
228 static void
find_dom(struct block * root)229 find_dom(struct block *root)
230 {
231 int i;
232 struct block *b;
233 bpf_u_int32 *x;
234
235 /*
236 * Initialize sets to contain all nodes.
237 */
238 x = all_dom_sets;
239 i = n_blocks * nodewords;
240 while (--i >= 0)
241 *x++ = ~0;
242 /* Root starts off empty. */
243 for (i = nodewords; --i >= 0;)
244 root->dom[i] = 0;
245
246 /* root->level is the highest level no found. */
247 for (i = root->level; i >= 0; --i) {
248 for (b = levels[i]; b; b = b->link) {
249 SET_INSERT(b->dom, b->id);
250 if (JT(b) == 0)
251 continue;
252 SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
253 SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
254 }
255 }
256 }
257
258 static void
propedom(struct edge * ep)259 propedom(struct edge *ep)
260 {
261 SET_INSERT(ep->edom, ep->id);
262 if (ep->succ) {
263 SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
264 SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
265 }
266 }
267
268 /*
269 * Compute edge dominators.
270 * Assumes graph has been leveled and predecessors established.
271 */
272 static void
find_edom(struct block * root)273 find_edom(struct block *root)
274 {
275 int i;
276 uset x;
277 struct block *b;
278
279 x = all_edge_sets;
280 for (i = n_edges * edgewords; --i >= 0; )
281 x[i] = ~0;
282
283 /* root->level is the highest level no found. */
284 memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
285 memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
286 for (i = root->level; i >= 0; --i) {
287 for (b = levels[i]; b != 0; b = b->link) {
288 propedom(&b->et);
289 propedom(&b->ef);
290 }
291 }
292 }
293
294 /*
295 * Find the backwards transitive closure of the flow graph. These sets
296 * are backwards in the sense that we find the set of nodes that reach
297 * a given node, not the set of nodes that can be reached by a node.
298 *
299 * Assumes graph has been leveled.
300 */
301 static void
find_closure(struct block * root)302 find_closure(struct block *root)
303 {
304 int i;
305 struct block *b;
306
307 /*
308 * Initialize sets to contain no nodes.
309 */
310 memset((char *)all_closure_sets, 0,
311 n_blocks * nodewords * sizeof(*all_closure_sets));
312
313 /* root->level is the highest level no found. */
314 for (i = root->level; i >= 0; --i) {
315 for (b = levels[i]; b; b = b->link) {
316 SET_INSERT(b->closure, b->id);
317 if (JT(b) == 0)
318 continue;
319 SET_UNION(JT(b)->closure, b->closure, nodewords);
320 SET_UNION(JF(b)->closure, b->closure, nodewords);
321 }
322 }
323 }
324
325 /*
326 * Return the register number that is used by s. If A and X are both
327 * used, return AX_ATOM. If no register is used, return -1.
328 *
329 * The implementation should probably change to an array access.
330 */
331 static int
atomuse(struct stmt * s)332 atomuse(struct stmt *s)
333 {
334 register int c = s->code;
335
336 if (c == NOP)
337 return -1;
338
339 switch (BPF_CLASS(c)) {
340
341 case BPF_RET:
342 return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
343 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
344
345 case BPF_LD:
346 case BPF_LDX:
347 return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
348 (BPF_MODE(c) == BPF_MEM) ? s->k : -1;
349
350 case BPF_ST:
351 return A_ATOM;
352
353 case BPF_STX:
354 return X_ATOM;
355
356 case BPF_JMP:
357 case BPF_ALU:
358 if (BPF_SRC(c) == BPF_X)
359 return AX_ATOM;
360 return A_ATOM;
361
362 case BPF_MISC:
363 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
364 }
365 abort();
366 /* NOTREACHED */
367 }
368
369 /*
370 * Return the register number that is defined by 's'. We assume that
371 * a single stmt cannot define more than one register. If no register
372 * is defined, return -1.
373 *
374 * The implementation should probably change to an array access.
375 */
376 static int
atomdef(struct stmt * s)377 atomdef(struct stmt *s)
378 {
379 if (s->code == NOP)
380 return -1;
381
382 switch (BPF_CLASS(s->code)) {
383
384 case BPF_LD:
385 case BPF_ALU:
386 return A_ATOM;
387
388 case BPF_LDX:
389 return X_ATOM;
390
391 case BPF_ST:
392 case BPF_STX:
393 return s->k;
394
395 case BPF_MISC:
396 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
397 }
398 return -1;
399 }
400
401 /*
402 * Compute the sets of registers used, defined, and killed by 'b'.
403 *
404 * "Used" means that a statement in 'b' uses the register before any
405 * statement in 'b' defines it, i.e. it uses the value left in
406 * that register by a predecessor block of this block.
407 * "Defined" means that a statement in 'b' defines it.
408 * "Killed" means that a statement in 'b' defines it before any
409 * statement in 'b' uses it, i.e. it kills the value left in that
410 * register by a predecessor block of this block.
411 */
412 static void
compute_local_ud(struct block * b)413 compute_local_ud(struct block *b)
414 {
415 struct slist *s;
416 atomset def = 0, use = 0, kill = 0;
417 int atom;
418
419 for (s = b->stmts; s; s = s->next) {
420 if (s->s.code == NOP)
421 continue;
422 atom = atomuse(&s->s);
423 if (atom >= 0) {
424 if (atom == AX_ATOM) {
425 if (!ATOMELEM(def, X_ATOM))
426 use |= ATOMMASK(X_ATOM);
427 if (!ATOMELEM(def, A_ATOM))
428 use |= ATOMMASK(A_ATOM);
429 }
430 else if (atom < N_ATOMS) {
431 if (!ATOMELEM(def, atom))
432 use |= ATOMMASK(atom);
433 }
434 else
435 abort();
436 }
437 atom = atomdef(&s->s);
438 if (atom >= 0) {
439 if (!ATOMELEM(use, atom))
440 kill |= ATOMMASK(atom);
441 def |= ATOMMASK(atom);
442 }
443 }
444 if (BPF_CLASS(b->s.code) == BPF_JMP) {
445 /*
446 * XXX - what about RET?
447 */
448 atom = atomuse(&b->s);
449 if (atom >= 0) {
450 if (atom == AX_ATOM) {
451 if (!ATOMELEM(def, X_ATOM))
452 use |= ATOMMASK(X_ATOM);
453 if (!ATOMELEM(def, A_ATOM))
454 use |= ATOMMASK(A_ATOM);
455 }
456 else if (atom < N_ATOMS) {
457 if (!ATOMELEM(def, atom))
458 use |= ATOMMASK(atom);
459 }
460 else
461 abort();
462 }
463 }
464
465 b->def = def;
466 b->kill = kill;
467 b->in_use = use;
468 }
469
470 /*
471 * Assume graph is already leveled.
472 */
473 static void
find_ud(struct block * root)474 find_ud(struct block *root)
475 {
476 int i, maxlevel;
477 struct block *p;
478
479 /*
480 * root->level is the highest level no found;
481 * count down from there.
482 */
483 maxlevel = root->level;
484 for (i = maxlevel; i >= 0; --i)
485 for (p = levels[i]; p; p = p->link) {
486 compute_local_ud(p);
487 p->out_use = 0;
488 }
489
490 for (i = 1; i <= maxlevel; ++i) {
491 for (p = levels[i]; p; p = p->link) {
492 p->out_use |= JT(p)->in_use | JF(p)->in_use;
493 p->in_use |= p->out_use &~ p->kill;
494 }
495 }
496 }
497
498 /*
499 * These data structures are used in a Cocke and Shwarz style
500 * value numbering scheme. Since the flowgraph is acyclic,
501 * exit values can be propagated from a node's predecessors
502 * provided it is uniquely defined.
503 */
504 struct valnode {
505 int code;
506 int v0, v1;
507 int val;
508 struct valnode *next;
509 };
510
511 #define MODULUS 213
512 static struct valnode *hashtbl[MODULUS];
513 static int curval;
514 static int maxval;
515
516 /* Integer constants mapped with the load immediate opcode. */
517 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
518
519 struct vmapinfo {
520 int is_const;
521 bpf_int32 const_val;
522 };
523
524 struct vmapinfo *vmap;
525 struct valnode *vnode_base;
526 struct valnode *next_vnode;
527
528 static void
init_val(void)529 init_val(void)
530 {
531 curval = 0;
532 next_vnode = vnode_base;
533 memset((char *)vmap, 0, maxval * sizeof(*vmap));
534 memset((char *)hashtbl, 0, sizeof hashtbl);
535 }
536
537 /* Because we really don't have an IR, this stuff is a little messy. */
538 static int
F(int code,int v0,int v1)539 F(int code, int v0, int v1)
540 {
541 u_int hash;
542 int val;
543 struct valnode *p;
544
545 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
546 hash %= MODULUS;
547
548 for (p = hashtbl[hash]; p; p = p->next)
549 if (p->code == code && p->v0 == v0 && p->v1 == v1)
550 return p->val;
551
552 val = ++curval;
553 if (BPF_MODE(code) == BPF_IMM &&
554 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
555 vmap[val].const_val = v0;
556 vmap[val].is_const = 1;
557 }
558 p = next_vnode++;
559 p->val = val;
560 p->code = code;
561 p->v0 = v0;
562 p->v1 = v1;
563 p->next = hashtbl[hash];
564 hashtbl[hash] = p;
565
566 return val;
567 }
568
569 static inline void
vstore(struct stmt * s,int * valp,int newval,int alter)570 vstore(struct stmt *s, int *valp, int newval, int alter)
571 {
572 if (alter && *valp == newval)
573 s->code = NOP;
574 else
575 *valp = newval;
576 }
577
578 /*
579 * Do constant-folding on binary operators.
580 * (Unary operators are handled elsewhere.)
581 */
582 static void
fold_op(struct stmt * s,int v0,int v1)583 fold_op(struct stmt *s, int v0, int v1)
584 {
585 bpf_u_int32 a, b;
586
587 a = vmap[v0].const_val;
588 b = vmap[v1].const_val;
589
590 switch (BPF_OP(s->code)) {
591 case BPF_ADD:
592 a += b;
593 break;
594
595 case BPF_SUB:
596 a -= b;
597 break;
598
599 case BPF_MUL:
600 a *= b;
601 break;
602
603 case BPF_DIV:
604 if (b == 0)
605 bpf_error("division by zero");
606 a /= b;
607 break;
608
609 case BPF_MOD:
610 if (b == 0)
611 bpf_error("modulus by zero");
612 a %= b;
613 break;
614
615 case BPF_AND:
616 a &= b;
617 break;
618
619 case BPF_OR:
620 a |= b;
621 break;
622
623 case BPF_XOR:
624 a ^= b;
625 break;
626
627 case BPF_LSH:
628 a <<= b;
629 break;
630
631 case BPF_RSH:
632 a >>= b;
633 break;
634
635 default:
636 abort();
637 }
638 s->k = a;
639 s->code = BPF_LD|BPF_IMM;
640 done = 0;
641 }
642
643 static inline struct slist *
this_op(struct slist * s)644 this_op(struct slist *s)
645 {
646 while (s != 0 && s->s.code == NOP)
647 s = s->next;
648 return s;
649 }
650
651 static void
opt_not(struct block * b)652 opt_not(struct block *b)
653 {
654 struct block *tmp = JT(b);
655
656 JT(b) = JF(b);
657 JF(b) = tmp;
658 }
659
660 static void
opt_peep(struct block * b)661 opt_peep(struct block *b)
662 {
663 struct slist *s;
664 struct slist *next, *last;
665 int val;
666
667 s = b->stmts;
668 if (s == 0)
669 return;
670
671 last = s;
672 for (/*empty*/; /*empty*/; s = next) {
673 /*
674 * Skip over nops.
675 */
676 s = this_op(s);
677 if (s == 0)
678 break; /* nothing left in the block */
679
680 /*
681 * Find the next real instruction after that one
682 * (skipping nops).
683 */
684 next = this_op(s->next);
685 if (next == 0)
686 break; /* no next instruction */
687 last = next;
688
689 /*
690 * st M[k] --> st M[k]
691 * ldx M[k] tax
692 */
693 if (s->s.code == BPF_ST &&
694 next->s.code == (BPF_LDX|BPF_MEM) &&
695 s->s.k == next->s.k) {
696 done = 0;
697 next->s.code = BPF_MISC|BPF_TAX;
698 }
699 /*
700 * ld #k --> ldx #k
701 * tax txa
702 */
703 if (s->s.code == (BPF_LD|BPF_IMM) &&
704 next->s.code == (BPF_MISC|BPF_TAX)) {
705 s->s.code = BPF_LDX|BPF_IMM;
706 next->s.code = BPF_MISC|BPF_TXA;
707 done = 0;
708 }
709 /*
710 * This is an ugly special case, but it happens
711 * when you say tcp[k] or udp[k] where k is a constant.
712 */
713 if (s->s.code == (BPF_LD|BPF_IMM)) {
714 struct slist *add, *tax, *ild;
715
716 /*
717 * Check that X isn't used on exit from this
718 * block (which the optimizer might cause).
719 * We know the code generator won't generate
720 * any local dependencies.
721 */
722 if (ATOMELEM(b->out_use, X_ATOM))
723 continue;
724
725 /*
726 * Check that the instruction following the ldi
727 * is an addx, or it's an ldxms with an addx
728 * following it (with 0 or more nops between the
729 * ldxms and addx).
730 */
731 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
732 add = next;
733 else
734 add = this_op(next->next);
735 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
736 continue;
737
738 /*
739 * Check that a tax follows that (with 0 or more
740 * nops between them).
741 */
742 tax = this_op(add->next);
743 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
744 continue;
745
746 /*
747 * Check that an ild follows that (with 0 or more
748 * nops between them).
749 */
750 ild = this_op(tax->next);
751 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
752 BPF_MODE(ild->s.code) != BPF_IND)
753 continue;
754 /*
755 * We want to turn this sequence:
756 *
757 * (004) ldi #0x2 {s}
758 * (005) ldxms [14] {next} -- optional
759 * (006) addx {add}
760 * (007) tax {tax}
761 * (008) ild [x+0] {ild}
762 *
763 * into this sequence:
764 *
765 * (004) nop
766 * (005) ldxms [14]
767 * (006) nop
768 * (007) nop
769 * (008) ild [x+2]
770 *
771 * XXX We need to check that X is not
772 * subsequently used, because we want to change
773 * what'll be in it after this sequence.
774 *
775 * We know we can eliminate the accumulator
776 * modifications earlier in the sequence since
777 * it is defined by the last stmt of this sequence
778 * (i.e., the last statement of the sequence loads
779 * a value into the accumulator, so we can eliminate
780 * earlier operations on the accumulator).
781 */
782 ild->s.k += s->s.k;
783 s->s.code = NOP;
784 add->s.code = NOP;
785 tax->s.code = NOP;
786 done = 0;
787 }
788 }
789 /*
790 * If the comparison at the end of a block is an equality
791 * comparison against a constant, and nobody uses the value
792 * we leave in the A register at the end of a block, and
793 * the operation preceding the comparison is an arithmetic
794 * operation, we can sometime optimize it away.
795 */
796 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
797 !ATOMELEM(b->out_use, A_ATOM)) {
798 /*
799 * We can optimize away certain subtractions of the
800 * X register.
801 */
802 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
803 val = b->val[X_ATOM];
804 if (vmap[val].is_const) {
805 /*
806 * If we have a subtract to do a comparison,
807 * and the X register is a known constant,
808 * we can merge this value into the
809 * comparison:
810 *
811 * sub x -> nop
812 * jeq #y jeq #(x+y)
813 */
814 b->s.k += vmap[val].const_val;
815 last->s.code = NOP;
816 done = 0;
817 } else if (b->s.k == 0) {
818 /*
819 * If the X register isn't a constant,
820 * and the comparison in the test is
821 * against 0, we can compare with the
822 * X register, instead:
823 *
824 * sub x -> nop
825 * jeq #0 jeq x
826 */
827 last->s.code = NOP;
828 b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
829 done = 0;
830 }
831 }
832 /*
833 * Likewise, a constant subtract can be simplified:
834 *
835 * sub #x -> nop
836 * jeq #y -> jeq #(x+y)
837 */
838 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
839 last->s.code = NOP;
840 b->s.k += last->s.k;
841 done = 0;
842 }
843 /*
844 * And, similarly, a constant AND can be simplified
845 * if we're testing against 0, i.e.:
846 *
847 * and #k nop
848 * jeq #0 -> jset #k
849 */
850 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
851 b->s.k == 0) {
852 b->s.k = last->s.k;
853 b->s.code = BPF_JMP|BPF_K|BPF_JSET;
854 last->s.code = NOP;
855 done = 0;
856 opt_not(b);
857 }
858 }
859 /*
860 * jset #0 -> never
861 * jset #ffffffff -> always
862 */
863 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
864 if (b->s.k == 0)
865 JT(b) = JF(b);
866 if (b->s.k == 0xffffffff)
867 JF(b) = JT(b);
868 }
869 /*
870 * If we're comparing against the index register, and the index
871 * register is a known constant, we can just compare against that
872 * constant.
873 */
874 val = b->val[X_ATOM];
875 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
876 bpf_int32 v = vmap[val].const_val;
877 b->s.code &= ~BPF_X;
878 b->s.k = v;
879 }
880 /*
881 * If the accumulator is a known constant, we can compute the
882 * comparison result.
883 */
884 val = b->val[A_ATOM];
885 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
886 bpf_int32 v = vmap[val].const_val;
887 switch (BPF_OP(b->s.code)) {
888
889 case BPF_JEQ:
890 v = v == b->s.k;
891 break;
892
893 case BPF_JGT:
894 v = (unsigned)v > b->s.k;
895 break;
896
897 case BPF_JGE:
898 v = (unsigned)v >= b->s.k;
899 break;
900
901 case BPF_JSET:
902 v &= b->s.k;
903 break;
904
905 default:
906 abort();
907 }
908 if (JF(b) != JT(b))
909 done = 0;
910 if (v)
911 JF(b) = JT(b);
912 else
913 JT(b) = JF(b);
914 }
915 }
916
917 /*
918 * Compute the symbolic value of expression of 's', and update
919 * anything it defines in the value table 'val'. If 'alter' is true,
920 * do various optimizations. This code would be cleaner if symbolic
921 * evaluation and code transformations weren't folded together.
922 */
923 static void
opt_stmt(struct stmt * s,int val[],int alter)924 opt_stmt(struct stmt *s, int val[], int alter)
925 {
926 int op;
927 int v;
928
929 switch (s->code) {
930
931 case BPF_LD|BPF_ABS|BPF_W:
932 case BPF_LD|BPF_ABS|BPF_H:
933 case BPF_LD|BPF_ABS|BPF_B:
934 v = F(s->code, s->k, 0L);
935 vstore(s, &val[A_ATOM], v, alter);
936 break;
937
938 case BPF_LD|BPF_IND|BPF_W:
939 case BPF_LD|BPF_IND|BPF_H:
940 case BPF_LD|BPF_IND|BPF_B:
941 v = val[X_ATOM];
942 if (alter && vmap[v].is_const) {
943 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
944 s->k += vmap[v].const_val;
945 v = F(s->code, s->k, 0L);
946 done = 0;
947 }
948 else
949 v = F(s->code, s->k, v);
950 vstore(s, &val[A_ATOM], v, alter);
951 break;
952
953 case BPF_LD|BPF_LEN:
954 v = F(s->code, 0L, 0L);
955 vstore(s, &val[A_ATOM], v, alter);
956 break;
957
958 case BPF_LD|BPF_IMM:
959 v = K(s->k);
960 vstore(s, &val[A_ATOM], v, alter);
961 break;
962
963 case BPF_LDX|BPF_IMM:
964 v = K(s->k);
965 vstore(s, &val[X_ATOM], v, alter);
966 break;
967
968 case BPF_LDX|BPF_MSH|BPF_B:
969 v = F(s->code, s->k, 0L);
970 vstore(s, &val[X_ATOM], v, alter);
971 break;
972
973 case BPF_ALU|BPF_NEG:
974 if (alter && vmap[val[A_ATOM]].is_const) {
975 s->code = BPF_LD|BPF_IMM;
976 s->k = -vmap[val[A_ATOM]].const_val;
977 val[A_ATOM] = K(s->k);
978 }
979 else
980 val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
981 break;
982
983 case BPF_ALU|BPF_ADD|BPF_K:
984 case BPF_ALU|BPF_SUB|BPF_K:
985 case BPF_ALU|BPF_MUL|BPF_K:
986 case BPF_ALU|BPF_DIV|BPF_K:
987 case BPF_ALU|BPF_MOD|BPF_K:
988 case BPF_ALU|BPF_AND|BPF_K:
989 case BPF_ALU|BPF_OR|BPF_K:
990 case BPF_ALU|BPF_XOR|BPF_K:
991 case BPF_ALU|BPF_LSH|BPF_K:
992 case BPF_ALU|BPF_RSH|BPF_K:
993 op = BPF_OP(s->code);
994 if (alter) {
995 if (s->k == 0) {
996 /* don't optimize away "sub #0"
997 * as it may be needed later to
998 * fixup the generated math code */
999 if (op == BPF_ADD ||
1000 op == BPF_LSH || op == BPF_RSH ||
1001 op == BPF_OR || op == BPF_XOR) {
1002 s->code = NOP;
1003 break;
1004 }
1005 if (op == BPF_MUL || op == BPF_AND) {
1006 s->code = BPF_LD|BPF_IMM;
1007 val[A_ATOM] = K(s->k);
1008 break;
1009 }
1010 }
1011 if (vmap[val[A_ATOM]].is_const) {
1012 fold_op(s, val[A_ATOM], K(s->k));
1013 val[A_ATOM] = K(s->k);
1014 break;
1015 }
1016 }
1017 val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
1018 break;
1019
1020 case BPF_ALU|BPF_ADD|BPF_X:
1021 case BPF_ALU|BPF_SUB|BPF_X:
1022 case BPF_ALU|BPF_MUL|BPF_X:
1023 case BPF_ALU|BPF_DIV|BPF_X:
1024 case BPF_ALU|BPF_MOD|BPF_X:
1025 case BPF_ALU|BPF_AND|BPF_X:
1026 case BPF_ALU|BPF_OR|BPF_X:
1027 case BPF_ALU|BPF_XOR|BPF_X:
1028 case BPF_ALU|BPF_LSH|BPF_X:
1029 case BPF_ALU|BPF_RSH|BPF_X:
1030 op = BPF_OP(s->code);
1031 if (alter && vmap[val[X_ATOM]].is_const) {
1032 if (vmap[val[A_ATOM]].is_const) {
1033 fold_op(s, val[A_ATOM], val[X_ATOM]);
1034 val[A_ATOM] = K(s->k);
1035 }
1036 else {
1037 s->code = BPF_ALU|BPF_K|op;
1038 s->k = vmap[val[X_ATOM]].const_val;
1039 done = 0;
1040 val[A_ATOM] =
1041 F(s->code, val[A_ATOM], K(s->k));
1042 }
1043 break;
1044 }
1045 /*
1046 * Check if we're doing something to an accumulator
1047 * that is 0, and simplify. This may not seem like
1048 * much of a simplification but it could open up further
1049 * optimizations.
1050 * XXX We could also check for mul by 1, etc.
1051 */
1052 if (alter && vmap[val[A_ATOM]].is_const
1053 && vmap[val[A_ATOM]].const_val == 0) {
1054 if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1055 s->code = BPF_MISC|BPF_TXA;
1056 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1057 break;
1058 }
1059 else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1060 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1061 s->code = BPF_LD|BPF_IMM;
1062 s->k = 0;
1063 vstore(s, &val[A_ATOM], K(s->k), alter);
1064 break;
1065 }
1066 else if (op == BPF_NEG) {
1067 s->code = NOP;
1068 break;
1069 }
1070 }
1071 val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1072 break;
1073
1074 case BPF_MISC|BPF_TXA:
1075 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1076 break;
1077
1078 case BPF_LD|BPF_MEM:
1079 v = val[s->k];
1080 if (alter && vmap[v].is_const) {
1081 s->code = BPF_LD|BPF_IMM;
1082 s->k = vmap[v].const_val;
1083 done = 0;
1084 }
1085 vstore(s, &val[A_ATOM], v, alter);
1086 break;
1087
1088 case BPF_MISC|BPF_TAX:
1089 vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1090 break;
1091
1092 case BPF_LDX|BPF_MEM:
1093 v = val[s->k];
1094 if (alter && vmap[v].is_const) {
1095 s->code = BPF_LDX|BPF_IMM;
1096 s->k = vmap[v].const_val;
1097 done = 0;
1098 }
1099 vstore(s, &val[X_ATOM], v, alter);
1100 break;
1101
1102 case BPF_ST:
1103 vstore(s, &val[s->k], val[A_ATOM], alter);
1104 break;
1105
1106 case BPF_STX:
1107 vstore(s, &val[s->k], val[X_ATOM], alter);
1108 break;
1109 }
1110 }
1111
1112 static void
deadstmt(register struct stmt * s,register struct stmt * last[])1113 deadstmt(register struct stmt *s, register struct stmt *last[])
1114 {
1115 register int atom;
1116
1117 atom = atomuse(s);
1118 if (atom >= 0) {
1119 if (atom == AX_ATOM) {
1120 last[X_ATOM] = 0;
1121 last[A_ATOM] = 0;
1122 }
1123 else
1124 last[atom] = 0;
1125 }
1126 atom = atomdef(s);
1127 if (atom >= 0) {
1128 if (last[atom]) {
1129 done = 0;
1130 last[atom]->code = NOP;
1131 }
1132 last[atom] = s;
1133 }
1134 }
1135
1136 static void
opt_deadstores(register struct block * b)1137 opt_deadstores(register struct block *b)
1138 {
1139 register struct slist *s;
1140 register int atom;
1141 struct stmt *last[N_ATOMS];
1142
1143 memset((char *)last, 0, sizeof last);
1144
1145 for (s = b->stmts; s != 0; s = s->next)
1146 deadstmt(&s->s, last);
1147 deadstmt(&b->s, last);
1148
1149 for (atom = 0; atom < N_ATOMS; ++atom)
1150 if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1151 last[atom]->code = NOP;
1152 done = 0;
1153 }
1154 }
1155
1156 static void
opt_blk(struct block * b,int do_stmts)1157 opt_blk(struct block *b, int do_stmts)
1158 {
1159 struct slist *s;
1160 struct edge *p;
1161 int i;
1162 bpf_int32 aval, xval;
1163
1164 #if 0
1165 for (s = b->stmts; s && s->next; s = s->next)
1166 if (BPF_CLASS(s->s.code) == BPF_JMP) {
1167 do_stmts = 0;
1168 break;
1169 }
1170 #endif
1171
1172 /*
1173 * Initialize the atom values.
1174 */
1175 p = b->in_edges;
1176 if (p == 0) {
1177 /*
1178 * We have no predecessors, so everything is undefined
1179 * upon entry to this block.
1180 */
1181 memset((char *)b->val, 0, sizeof(b->val));
1182 } else {
1183 /*
1184 * Inherit values from our predecessors.
1185 *
1186 * First, get the values from the predecessor along the
1187 * first edge leading to this node.
1188 */
1189 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1190 /*
1191 * Now look at all the other nodes leading to this node.
1192 * If, for the predecessor along that edge, a register
1193 * has a different value from the one we have (i.e.,
1194 * control paths are merging, and the merging paths
1195 * assign different values to that register), give the
1196 * register the undefined value of 0.
1197 */
1198 while ((p = p->next) != NULL) {
1199 for (i = 0; i < N_ATOMS; ++i)
1200 if (b->val[i] != p->pred->val[i])
1201 b->val[i] = 0;
1202 }
1203 }
1204 aval = b->val[A_ATOM];
1205 xval = b->val[X_ATOM];
1206 for (s = b->stmts; s; s = s->next)
1207 opt_stmt(&s->s, b->val, do_stmts);
1208
1209 /*
1210 * This is a special case: if we don't use anything from this
1211 * block, and we load the accumulator or index register with a
1212 * value that is already there, or if this block is a return,
1213 * eliminate all the statements.
1214 *
1215 * XXX - what if it does a store?
1216 *
1217 * XXX - why does it matter whether we use anything from this
1218 * block? If the accumulator or index register doesn't change
1219 * its value, isn't that OK even if we use that value?
1220 *
1221 * XXX - if we load the accumulator with a different value,
1222 * and the block ends with a conditional branch, we obviously
1223 * can't eliminate it, as the branch depends on that value.
1224 * For the index register, the conditional branch only depends
1225 * on the index register value if the test is against the index
1226 * register value rather than a constant; if nothing uses the
1227 * value we put into the index register, and we're not testing
1228 * against the index register's value, and there aren't any
1229 * other problems that would keep us from eliminating this
1230 * block, can we eliminate it?
1231 */
1232 if (do_stmts &&
1233 ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval &&
1234 xval != 0 && b->val[X_ATOM] == xval) ||
1235 BPF_CLASS(b->s.code) == BPF_RET)) {
1236 if (b->stmts != 0) {
1237 b->stmts = 0;
1238 done = 0;
1239 }
1240 } else {
1241 opt_peep(b);
1242 opt_deadstores(b);
1243 }
1244 /*
1245 * Set up values for branch optimizer.
1246 */
1247 if (BPF_SRC(b->s.code) == BPF_K)
1248 b->oval = K(b->s.k);
1249 else
1250 b->oval = b->val[X_ATOM];
1251 b->et.code = b->s.code;
1252 b->ef.code = -b->s.code;
1253 }
1254
1255 /*
1256 * Return true if any register that is used on exit from 'succ', has
1257 * an exit value that is different from the corresponding exit value
1258 * from 'b'.
1259 */
1260 static int
use_conflict(struct block * b,struct block * succ)1261 use_conflict(struct block *b, struct block *succ)
1262 {
1263 int atom;
1264 atomset use = succ->out_use;
1265
1266 if (use == 0)
1267 return 0;
1268
1269 for (atom = 0; atom < N_ATOMS; ++atom)
1270 if (ATOMELEM(use, atom))
1271 if (b->val[atom] != succ->val[atom])
1272 return 1;
1273 return 0;
1274 }
1275
1276 static struct block *
fold_edge(struct block * child,struct edge * ep)1277 fold_edge(struct block *child, struct edge *ep)
1278 {
1279 int sense;
1280 int aval0, aval1, oval0, oval1;
1281 int code = ep->code;
1282
1283 if (code < 0) {
1284 code = -code;
1285 sense = 0;
1286 } else
1287 sense = 1;
1288
1289 if (child->s.code != code)
1290 return 0;
1291
1292 aval0 = child->val[A_ATOM];
1293 oval0 = child->oval;
1294 aval1 = ep->pred->val[A_ATOM];
1295 oval1 = ep->pred->oval;
1296
1297 if (aval0 != aval1)
1298 return 0;
1299
1300 if (oval0 == oval1)
1301 /*
1302 * The operands of the branch instructions are
1303 * identical, so the result is true if a true
1304 * branch was taken to get here, otherwise false.
1305 */
1306 return sense ? JT(child) : JF(child);
1307
1308 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1309 /*
1310 * At this point, we only know the comparison if we
1311 * came down the true branch, and it was an equality
1312 * comparison with a constant.
1313 *
1314 * I.e., if we came down the true branch, and the branch
1315 * was an equality comparison with a constant, we know the
1316 * accumulator contains that constant. If we came down
1317 * the false branch, or the comparison wasn't with a
1318 * constant, we don't know what was in the accumulator.
1319 *
1320 * We rely on the fact that distinct constants have distinct
1321 * value numbers.
1322 */
1323 return JF(child);
1324
1325 return 0;
1326 }
1327
1328 static void
opt_j(struct edge * ep)1329 opt_j(struct edge *ep)
1330 {
1331 register int i, k;
1332 register struct block *target;
1333
1334 if (JT(ep->succ) == 0)
1335 return;
1336
1337 if (JT(ep->succ) == JF(ep->succ)) {
1338 /*
1339 * Common branch targets can be eliminated, provided
1340 * there is no data dependency.
1341 */
1342 if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1343 done = 0;
1344 ep->succ = JT(ep->succ);
1345 }
1346 }
1347 /*
1348 * For each edge dominator that matches the successor of this
1349 * edge, promote the edge successor to the its grandchild.
1350 *
1351 * XXX We violate the set abstraction here in favor a reasonably
1352 * efficient loop.
1353 */
1354 top:
1355 for (i = 0; i < edgewords; ++i) {
1356 register bpf_u_int32 x = ep->edom[i];
1357
1358 while (x != 0) {
1359 k = ffs(x) - 1;
1360 x &=~ (1 << k);
1361 k += i * BITS_PER_WORD;
1362
1363 target = fold_edge(ep->succ, edges[k]);
1364 /*
1365 * Check that there is no data dependency between
1366 * nodes that will be violated if we move the edge.
1367 */
1368 if (target != 0 && !use_conflict(ep->pred, target)) {
1369 done = 0;
1370 ep->succ = target;
1371 if (JT(target) != 0)
1372 /*
1373 * Start over unless we hit a leaf.
1374 */
1375 goto top;
1376 return;
1377 }
1378 }
1379 }
1380 }
1381
1382
1383 static void
or_pullup(struct block * b)1384 or_pullup(struct block *b)
1385 {
1386 int val, at_top;
1387 struct block *pull;
1388 struct block **diffp, **samep;
1389 struct edge *ep;
1390
1391 ep = b->in_edges;
1392 if (ep == 0)
1393 return;
1394
1395 /*
1396 * Make sure each predecessor loads the same value.
1397 * XXX why?
1398 */
1399 val = ep->pred->val[A_ATOM];
1400 for (ep = ep->next; ep != 0; ep = ep->next)
1401 if (val != ep->pred->val[A_ATOM])
1402 return;
1403
1404 if (JT(b->in_edges->pred) == b)
1405 diffp = &JT(b->in_edges->pred);
1406 else
1407 diffp = &JF(b->in_edges->pred);
1408
1409 at_top = 1;
1410 while (1) {
1411 if (*diffp == 0)
1412 return;
1413
1414 if (JT(*diffp) != JT(b))
1415 return;
1416
1417 if (!SET_MEMBER((*diffp)->dom, b->id))
1418 return;
1419
1420 if ((*diffp)->val[A_ATOM] != val)
1421 break;
1422
1423 diffp = &JF(*diffp);
1424 at_top = 0;
1425 }
1426 samep = &JF(*diffp);
1427 while (1) {
1428 if (*samep == 0)
1429 return;
1430
1431 if (JT(*samep) != JT(b))
1432 return;
1433
1434 if (!SET_MEMBER((*samep)->dom, b->id))
1435 return;
1436
1437 if ((*samep)->val[A_ATOM] == val)
1438 break;
1439
1440 /* XXX Need to check that there are no data dependencies
1441 between dp0 and dp1. Currently, the code generator
1442 will not produce such dependencies. */
1443 samep = &JF(*samep);
1444 }
1445 #ifdef notdef
1446 /* XXX This doesn't cover everything. */
1447 for (i = 0; i < N_ATOMS; ++i)
1448 if ((*samep)->val[i] != pred->val[i])
1449 return;
1450 #endif
1451 /* Pull up the node. */
1452 pull = *samep;
1453 *samep = JF(pull);
1454 JF(pull) = *diffp;
1455
1456 /*
1457 * At the top of the chain, each predecessor needs to point at the
1458 * pulled up node. Inside the chain, there is only one predecessor
1459 * to worry about.
1460 */
1461 if (at_top) {
1462 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1463 if (JT(ep->pred) == b)
1464 JT(ep->pred) = pull;
1465 else
1466 JF(ep->pred) = pull;
1467 }
1468 }
1469 else
1470 *diffp = pull;
1471
1472 done = 0;
1473 }
1474
1475 static void
and_pullup(struct block * b)1476 and_pullup(struct block *b)
1477 {
1478 int val, at_top;
1479 struct block *pull;
1480 struct block **diffp, **samep;
1481 struct edge *ep;
1482
1483 ep = b->in_edges;
1484 if (ep == 0)
1485 return;
1486
1487 /*
1488 * Make sure each predecessor loads the same value.
1489 */
1490 val = ep->pred->val[A_ATOM];
1491 for (ep = ep->next; ep != 0; ep = ep->next)
1492 if (val != ep->pred->val[A_ATOM])
1493 return;
1494
1495 if (JT(b->in_edges->pred) == b)
1496 diffp = &JT(b->in_edges->pred);
1497 else
1498 diffp = &JF(b->in_edges->pred);
1499
1500 at_top = 1;
1501 while (1) {
1502 if (*diffp == 0)
1503 return;
1504
1505 if (JF(*diffp) != JF(b))
1506 return;
1507
1508 if (!SET_MEMBER((*diffp)->dom, b->id))
1509 return;
1510
1511 if ((*diffp)->val[A_ATOM] != val)
1512 break;
1513
1514 diffp = &JT(*diffp);
1515 at_top = 0;
1516 }
1517 samep = &JT(*diffp);
1518 while (1) {
1519 if (*samep == 0)
1520 return;
1521
1522 if (JF(*samep) != JF(b))
1523 return;
1524
1525 if (!SET_MEMBER((*samep)->dom, b->id))
1526 return;
1527
1528 if ((*samep)->val[A_ATOM] == val)
1529 break;
1530
1531 /* XXX Need to check that there are no data dependencies
1532 between diffp and samep. Currently, the code generator
1533 will not produce such dependencies. */
1534 samep = &JT(*samep);
1535 }
1536 #ifdef notdef
1537 /* XXX This doesn't cover everything. */
1538 for (i = 0; i < N_ATOMS; ++i)
1539 if ((*samep)->val[i] != pred->val[i])
1540 return;
1541 #endif
1542 /* Pull up the node. */
1543 pull = *samep;
1544 *samep = JT(pull);
1545 JT(pull) = *diffp;
1546
1547 /*
1548 * At the top of the chain, each predecessor needs to point at the
1549 * pulled up node. Inside the chain, there is only one predecessor
1550 * to worry about.
1551 */
1552 if (at_top) {
1553 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1554 if (JT(ep->pred) == b)
1555 JT(ep->pred) = pull;
1556 else
1557 JF(ep->pred) = pull;
1558 }
1559 }
1560 else
1561 *diffp = pull;
1562
1563 done = 0;
1564 }
1565
1566 static void
opt_blks(struct block * root,int do_stmts)1567 opt_blks(struct block *root, int do_stmts)
1568 {
1569 int i, maxlevel;
1570 struct block *p;
1571
1572 init_val();
1573 maxlevel = root->level;
1574
1575 find_inedges(root);
1576 for (i = maxlevel; i >= 0; --i)
1577 for (p = levels[i]; p; p = p->link)
1578 opt_blk(p, do_stmts);
1579
1580 if (do_stmts)
1581 /*
1582 * No point trying to move branches; it can't possibly
1583 * make a difference at this point.
1584 */
1585 return;
1586
1587 for (i = 1; i <= maxlevel; ++i) {
1588 for (p = levels[i]; p; p = p->link) {
1589 opt_j(&p->et);
1590 opt_j(&p->ef);
1591 }
1592 }
1593
1594 find_inedges(root);
1595 for (i = 1; i <= maxlevel; ++i) {
1596 for (p = levels[i]; p; p = p->link) {
1597 or_pullup(p);
1598 and_pullup(p);
1599 }
1600 }
1601 }
1602
1603 static inline void
link_inedge(struct edge * parent,struct block * child)1604 link_inedge(struct edge *parent, struct block *child)
1605 {
1606 parent->next = child->in_edges;
1607 child->in_edges = parent;
1608 }
1609
1610 static void
find_inedges(struct block * root)1611 find_inedges(struct block *root)
1612 {
1613 int i;
1614 struct block *b;
1615
1616 for (i = 0; i < n_blocks; ++i)
1617 blocks[i]->in_edges = 0;
1618
1619 /*
1620 * Traverse the graph, adding each edge to the predecessor
1621 * list of its successors. Skip the leaves (i.e. level 0).
1622 */
1623 for (i = root->level; i > 0; --i) {
1624 for (b = levels[i]; b != 0; b = b->link) {
1625 link_inedge(&b->et, JT(b));
1626 link_inedge(&b->ef, JF(b));
1627 }
1628 }
1629 }
1630
1631 static void
opt_root(struct block ** b)1632 opt_root(struct block **b)
1633 {
1634 struct slist *tmp, *s;
1635
1636 s = (*b)->stmts;
1637 (*b)->stmts = 0;
1638 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1639 *b = JT(*b);
1640
1641 tmp = (*b)->stmts;
1642 if (tmp != 0)
1643 sappend(s, tmp);
1644 (*b)->stmts = s;
1645
1646 /*
1647 * If the root node is a return, then there is no
1648 * point executing any statements (since the bpf machine
1649 * has no side effects).
1650 */
1651 if (BPF_CLASS((*b)->s.code) == BPF_RET)
1652 (*b)->stmts = 0;
1653 }
1654
1655 static void
opt_loop(struct block * root,int do_stmts)1656 opt_loop(struct block *root, int do_stmts)
1657 {
1658
1659 #ifdef BDEBUG
1660 if (dflag > 1) {
1661 printf("opt_loop(root, %d) begin\n", do_stmts);
1662 opt_dump(root);
1663 }
1664 #endif
1665 do {
1666 done = 1;
1667 find_levels(root);
1668 find_dom(root);
1669 find_closure(root);
1670 find_ud(root);
1671 find_edom(root);
1672 opt_blks(root, do_stmts);
1673 #ifdef BDEBUG
1674 if (dflag > 1) {
1675 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1676 opt_dump(root);
1677 }
1678 #endif
1679 } while (!done);
1680 }
1681
1682 /*
1683 * Optimize the filter code in its dag representation.
1684 */
1685 void
bpf_optimize(struct block ** rootp)1686 bpf_optimize(struct block **rootp)
1687 {
1688 struct block *root;
1689
1690 root = *rootp;
1691
1692 opt_init(root);
1693 opt_loop(root, 0);
1694 opt_loop(root, 1);
1695 intern_blocks(root);
1696 #ifdef BDEBUG
1697 if (dflag > 1) {
1698 printf("after intern_blocks()\n");
1699 opt_dump(root);
1700 }
1701 #endif
1702 opt_root(rootp);
1703 #ifdef BDEBUG
1704 if (dflag > 1) {
1705 printf("after opt_root()\n");
1706 opt_dump(root);
1707 }
1708 #endif
1709 opt_cleanup();
1710 }
1711
1712 static void
make_marks(struct block * p)1713 make_marks(struct block *p)
1714 {
1715 if (!isMarked(p)) {
1716 Mark(p);
1717 if (BPF_CLASS(p->s.code) != BPF_RET) {
1718 make_marks(JT(p));
1719 make_marks(JF(p));
1720 }
1721 }
1722 }
1723
1724 /*
1725 * Mark code array such that isMarked(i) is true
1726 * only for nodes that are alive.
1727 */
1728 static void
mark_code(struct block * p)1729 mark_code(struct block *p)
1730 {
1731 cur_mark += 1;
1732 make_marks(p);
1733 }
1734
1735 /*
1736 * True iff the two stmt lists load the same value from the packet into
1737 * the accumulator.
1738 */
1739 static int
eq_slist(struct slist * x,struct slist * y)1740 eq_slist(struct slist *x, struct slist *y)
1741 {
1742 while (1) {
1743 while (x && x->s.code == NOP)
1744 x = x->next;
1745 while (y && y->s.code == NOP)
1746 y = y->next;
1747 if (x == 0)
1748 return y == 0;
1749 if (y == 0)
1750 return x == 0;
1751 if (x->s.code != y->s.code || x->s.k != y->s.k)
1752 return 0;
1753 x = x->next;
1754 y = y->next;
1755 }
1756 }
1757
1758 static inline int
eq_blk(struct block * b0,struct block * b1)1759 eq_blk(struct block *b0, struct block *b1)
1760 {
1761 if (b0->s.code == b1->s.code &&
1762 b0->s.k == b1->s.k &&
1763 b0->et.succ == b1->et.succ &&
1764 b0->ef.succ == b1->ef.succ)
1765 return eq_slist(b0->stmts, b1->stmts);
1766 return 0;
1767 }
1768
1769 static void
intern_blocks(struct block * root)1770 intern_blocks(struct block *root)
1771 {
1772 struct block *p;
1773 int i, j;
1774 int done1; /* don't shadow global */
1775 top:
1776 done1 = 1;
1777 for (i = 0; i < n_blocks; ++i)
1778 blocks[i]->link = 0;
1779
1780 mark_code(root);
1781
1782 for (i = n_blocks - 1; --i >= 0; ) {
1783 if (!isMarked(blocks[i]))
1784 continue;
1785 for (j = i + 1; j < n_blocks; ++j) {
1786 if (!isMarked(blocks[j]))
1787 continue;
1788 if (eq_blk(blocks[i], blocks[j])) {
1789 blocks[i]->link = blocks[j]->link ?
1790 blocks[j]->link : blocks[j];
1791 break;
1792 }
1793 }
1794 }
1795 for (i = 0; i < n_blocks; ++i) {
1796 p = blocks[i];
1797 if (JT(p) == 0)
1798 continue;
1799 if (JT(p)->link) {
1800 done1 = 0;
1801 JT(p) = JT(p)->link;
1802 }
1803 if (JF(p)->link) {
1804 done1 = 0;
1805 JF(p) = JF(p)->link;
1806 }
1807 }
1808 if (!done1)
1809 goto top;
1810 }
1811
1812 static void
opt_cleanup(void)1813 opt_cleanup(void)
1814 {
1815 free((void *)vnode_base);
1816 free((void *)vmap);
1817 free((void *)edges);
1818 free((void *)space);
1819 free((void *)levels);
1820 free((void *)blocks);
1821 }
1822
1823 /*
1824 * Return the number of stmts in 's'.
1825 */
1826 static u_int
slength(struct slist * s)1827 slength(struct slist *s)
1828 {
1829 u_int n = 0;
1830
1831 for (; s; s = s->next)
1832 if (s->s.code != NOP)
1833 ++n;
1834 return n;
1835 }
1836
1837 /*
1838 * Return the number of nodes reachable by 'p'.
1839 * All nodes should be initially unmarked.
1840 */
1841 static int
count_blocks(struct block * p)1842 count_blocks(struct block *p)
1843 {
1844 if (p == 0 || isMarked(p))
1845 return 0;
1846 Mark(p);
1847 return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1848 }
1849
1850 /*
1851 * Do a depth first search on the flow graph, numbering the
1852 * the basic blocks, and entering them into the 'blocks' array.`
1853 */
1854 static void
number_blks_r(struct block * p)1855 number_blks_r(struct block *p)
1856 {
1857 int n;
1858
1859 if (p == 0 || isMarked(p))
1860 return;
1861
1862 Mark(p);
1863 n = n_blocks++;
1864 p->id = n;
1865 blocks[n] = p;
1866
1867 number_blks_r(JT(p));
1868 number_blks_r(JF(p));
1869 }
1870
1871 /*
1872 * Return the number of stmts in the flowgraph reachable by 'p'.
1873 * The nodes should be unmarked before calling.
1874 *
1875 * Note that "stmts" means "instructions", and that this includes
1876 *
1877 * side-effect statements in 'p' (slength(p->stmts));
1878 *
1879 * statements in the true branch from 'p' (count_stmts(JT(p)));
1880 *
1881 * statements in the false branch from 'p' (count_stmts(JF(p)));
1882 *
1883 * the conditional jump itself (1);
1884 *
1885 * an extra long jump if the true branch requires it (p->longjt);
1886 *
1887 * an extra long jump if the false branch requires it (p->longjf).
1888 */
1889 static u_int
count_stmts(struct block * p)1890 count_stmts(struct block *p)
1891 {
1892 u_int n;
1893
1894 if (p == 0 || isMarked(p))
1895 return 0;
1896 Mark(p);
1897 n = count_stmts(JT(p)) + count_stmts(JF(p));
1898 return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1899 }
1900
1901 /*
1902 * Allocate memory. All allocation is done before optimization
1903 * is begun. A linear bound on the size of all data structures is computed
1904 * from the total number of blocks and/or statements.
1905 */
1906 static void
opt_init(struct block * root)1907 opt_init(struct block *root)
1908 {
1909 bpf_u_int32 *p;
1910 int i, n, max_stmts;
1911
1912 /*
1913 * First, count the blocks, so we can malloc an array to map
1914 * block number to block. Then, put the blocks into the array.
1915 */
1916 unMarkAll();
1917 n = count_blocks(root);
1918 blocks = (struct block **)calloc(n, sizeof(*blocks));
1919 if (blocks == NULL)
1920 bpf_error("malloc");
1921 unMarkAll();
1922 n_blocks = 0;
1923 number_blks_r(root);
1924
1925 n_edges = 2 * n_blocks;
1926 edges = (struct edge **)calloc(n_edges, sizeof(*edges));
1927 if (edges == NULL)
1928 bpf_error("malloc");
1929
1930 /*
1931 * The number of levels is bounded by the number of nodes.
1932 */
1933 levels = (struct block **)calloc(n_blocks, sizeof(*levels));
1934 if (levels == NULL)
1935 bpf_error("malloc");
1936
1937 edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1938 nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1939
1940 /* XXX */
1941 space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1942 + n_edges * edgewords * sizeof(*space));
1943 if (space == NULL)
1944 bpf_error("malloc");
1945 p = space;
1946 all_dom_sets = p;
1947 for (i = 0; i < n; ++i) {
1948 blocks[i]->dom = p;
1949 p += nodewords;
1950 }
1951 all_closure_sets = p;
1952 for (i = 0; i < n; ++i) {
1953 blocks[i]->closure = p;
1954 p += nodewords;
1955 }
1956 all_edge_sets = p;
1957 for (i = 0; i < n; ++i) {
1958 register struct block *b = blocks[i];
1959
1960 b->et.edom = p;
1961 p += edgewords;
1962 b->ef.edom = p;
1963 p += edgewords;
1964 b->et.id = i;
1965 edges[i] = &b->et;
1966 b->ef.id = n_blocks + i;
1967 edges[n_blocks + i] = &b->ef;
1968 b->et.pred = b;
1969 b->ef.pred = b;
1970 }
1971 max_stmts = 0;
1972 for (i = 0; i < n; ++i)
1973 max_stmts += slength(blocks[i]->stmts) + 1;
1974 /*
1975 * We allocate at most 3 value numbers per statement,
1976 * so this is an upper bound on the number of valnodes
1977 * we'll need.
1978 */
1979 maxval = 3 * max_stmts;
1980 vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap));
1981 vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base));
1982 if (vmap == NULL || vnode_base == NULL)
1983 bpf_error("malloc");
1984 }
1985
1986 /*
1987 * Some pointers used to convert the basic block form of the code,
1988 * into the array form that BPF requires. 'fstart' will point to
1989 * the malloc'd array while 'ftail' is used during the recursive traversal.
1990 */
1991 static struct bpf_insn *fstart;
1992 static struct bpf_insn *ftail;
1993
1994 #ifdef BDEBUG
1995 int bids[1000];
1996 #endif
1997
1998 /*
1999 * Returns true if successful. Returns false if a branch has
2000 * an offset that is too large. If so, we have marked that
2001 * branch so that on a subsequent iteration, it will be treated
2002 * properly.
2003 */
2004 static int
convert_code_r(struct block * p)2005 convert_code_r(struct block *p)
2006 {
2007 struct bpf_insn *dst;
2008 struct slist *src;
2009 int slen;
2010 u_int off;
2011 int extrajmps; /* number of extra jumps inserted */
2012 struct slist **offset = NULL;
2013
2014 if (p == 0 || isMarked(p))
2015 return (1);
2016 Mark(p);
2017
2018 if (convert_code_r(JF(p)) == 0)
2019 return (0);
2020 if (convert_code_r(JT(p)) == 0)
2021 return (0);
2022
2023 slen = slength(p->stmts);
2024 dst = ftail -= (slen + 1 + p->longjt + p->longjf);
2025 /* inflate length by any extra jumps */
2026
2027 p->offset = dst - fstart;
2028
2029 /* generate offset[] for convenience */
2030 if (slen) {
2031 offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2032 if (!offset) {
2033 bpf_error("not enough core");
2034 /*NOTREACHED*/
2035 }
2036 }
2037 src = p->stmts;
2038 for (off = 0; off < slen && src; off++) {
2039 #if 0
2040 printf("off=%d src=%x\n", off, src);
2041 #endif
2042 offset[off] = src;
2043 src = src->next;
2044 }
2045
2046 off = 0;
2047 for (src = p->stmts; src; src = src->next) {
2048 if (src->s.code == NOP)
2049 continue;
2050 dst->code = (u_short)src->s.code;
2051 dst->k = src->s.k;
2052
2053 /* fill block-local relative jump */
2054 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2055 #if 0
2056 if (src->s.jt || src->s.jf) {
2057 bpf_error("illegal jmp destination");
2058 /*NOTREACHED*/
2059 }
2060 #endif
2061 goto filled;
2062 }
2063 if (off == slen - 2) /*???*/
2064 goto filled;
2065
2066 {
2067 int i;
2068 int jt, jf;
2069 const char *ljerr = "%s for block-local relative jump: off=%d";
2070
2071 #if 0
2072 printf("code=%x off=%d %x %x\n", src->s.code,
2073 off, src->s.jt, src->s.jf);
2074 #endif
2075
2076 if (!src->s.jt || !src->s.jf) {
2077 bpf_error(ljerr, "no jmp destination", off);
2078 /*NOTREACHED*/
2079 }
2080
2081 jt = jf = 0;
2082 for (i = 0; i < slen; i++) {
2083 if (offset[i] == src->s.jt) {
2084 if (jt) {
2085 bpf_error(ljerr, "multiple matches", off);
2086 /*NOTREACHED*/
2087 }
2088
2089 dst->jt = i - off - 1;
2090 jt++;
2091 }
2092 if (offset[i] == src->s.jf) {
2093 if (jf) {
2094 bpf_error(ljerr, "multiple matches", off);
2095 /*NOTREACHED*/
2096 }
2097 dst->jf = i - off - 1;
2098 jf++;
2099 }
2100 }
2101 if (!jt || !jf) {
2102 bpf_error(ljerr, "no destination found", off);
2103 /*NOTREACHED*/
2104 }
2105 }
2106 filled:
2107 ++dst;
2108 ++off;
2109 }
2110 if (offset)
2111 free(offset);
2112
2113 #ifdef BDEBUG
2114 bids[dst - fstart] = p->id + 1;
2115 #endif
2116 dst->code = (u_short)p->s.code;
2117 dst->k = p->s.k;
2118 if (JT(p)) {
2119 extrajmps = 0;
2120 off = JT(p)->offset - (p->offset + slen) - 1;
2121 if (off >= 256) {
2122 /* offset too large for branch, must add a jump */
2123 if (p->longjt == 0) {
2124 /* mark this instruction and retry */
2125 p->longjt++;
2126 return(0);
2127 }
2128 /* branch if T to following jump */
2129 dst->jt = extrajmps;
2130 extrajmps++;
2131 dst[extrajmps].code = BPF_JMP|BPF_JA;
2132 dst[extrajmps].k = off - extrajmps;
2133 }
2134 else
2135 dst->jt = off;
2136 off = JF(p)->offset - (p->offset + slen) - 1;
2137 if (off >= 256) {
2138 /* offset too large for branch, must add a jump */
2139 if (p->longjf == 0) {
2140 /* mark this instruction and retry */
2141 p->longjf++;
2142 return(0);
2143 }
2144 /* branch if F to following jump */
2145 /* if two jumps are inserted, F goes to second one */
2146 dst->jf = extrajmps;
2147 extrajmps++;
2148 dst[extrajmps].code = BPF_JMP|BPF_JA;
2149 dst[extrajmps].k = off - extrajmps;
2150 }
2151 else
2152 dst->jf = off;
2153 }
2154 return (1);
2155 }
2156
2157
2158 /*
2159 * Convert flowgraph intermediate representation to the
2160 * BPF array representation. Set *lenp to the number of instructions.
2161 *
2162 * This routine does *NOT* leak the memory pointed to by fp. It *must
2163 * not* do free(fp) before returning fp; doing so would make no sense,
2164 * as the BPF array pointed to by the return value of icode_to_fcode()
2165 * must be valid - it's being returned for use in a bpf_program structure.
2166 *
2167 * If it appears that icode_to_fcode() is leaking, the problem is that
2168 * the program using pcap_compile() is failing to free the memory in
2169 * the BPF program when it's done - the leak is in the program, not in
2170 * the routine that happens to be allocating the memory. (By analogy, if
2171 * a program calls fopen() without ever calling fclose() on the FILE *,
2172 * it will leak the FILE structure; the leak is not in fopen(), it's in
2173 * the program.) Change the program to use pcap_freecode() when it's
2174 * done with the filter program. See the pcap man page.
2175 */
2176 struct bpf_insn *
icode_to_fcode(struct block * root,u_int * lenp)2177 icode_to_fcode(struct block *root, u_int *lenp)
2178 {
2179 u_int n;
2180 struct bpf_insn *fp;
2181
2182 /*
2183 * Loop doing convert_code_r() until no branches remain
2184 * with too-large offsets.
2185 */
2186 while (1) {
2187 unMarkAll();
2188 n = *lenp = count_stmts(root);
2189
2190 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2191 if (fp == NULL)
2192 bpf_error("malloc");
2193 memset((char *)fp, 0, sizeof(*fp) * n);
2194 fstart = fp;
2195 ftail = fp + n;
2196
2197 unMarkAll();
2198 if (convert_code_r(root))
2199 break;
2200 free(fp);
2201 }
2202
2203 return fp;
2204 }
2205
2206 /*
2207 * Make a copy of a BPF program and put it in the "fcode" member of
2208 * a "pcap_t".
2209 *
2210 * If we fail to allocate memory for the copy, fill in the "errbuf"
2211 * member of the "pcap_t" with an error message, and return -1;
2212 * otherwise, return 0.
2213 */
2214 int
install_bpf_program(pcap_t * p,struct bpf_program * fp)2215 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2216 {
2217 size_t prog_size;
2218
2219 /*
2220 * Validate the program.
2221 */
2222 if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2223 snprintf(p->errbuf, sizeof(p->errbuf),
2224 "BPF program is not valid");
2225 return (-1);
2226 }
2227
2228 /*
2229 * Free up any already installed program.
2230 */
2231 pcap_freecode(&p->fcode);
2232
2233 prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2234 p->fcode.bf_len = fp->bf_len;
2235 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2236 if (p->fcode.bf_insns == NULL) {
2237 snprintf(p->errbuf, sizeof(p->errbuf),
2238 "malloc: %s", pcap_strerror(errno));
2239 return (-1);
2240 }
2241 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2242 return (0);
2243 }
2244
2245 #ifdef BDEBUG
2246 static void
dot_dump_node(struct block * block,struct bpf_program * prog,FILE * out)2247 dot_dump_node(struct block *block, struct bpf_program *prog, FILE *out)
2248 {
2249 int icount, noffset;
2250 int i;
2251
2252 if (block == NULL || isMarked(block))
2253 return;
2254 Mark(block);
2255
2256 icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2257 noffset = min(block->offset + icount, (int)prog->bf_len);
2258
2259 fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id);
2260 for (i = block->offset; i < noffset; i++) {
2261 fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2262 }
2263 fprintf(out, "\" tooltip=\"");
2264 for (i = 0; i < BPF_MEMWORDS; i++)
2265 if (block->val[i] != 0)
2266 fprintf(out, "val[%d]=%d ", i, block->val[i]);
2267 fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2268 fprintf(out, "val[X]=%d", block->val[X_ATOM]);
2269 fprintf(out, "\"");
2270 if (JT(block) == NULL)
2271 fprintf(out, ", peripheries=2");
2272 fprintf(out, "];\n");
2273
2274 dot_dump_node(JT(block), prog, out);
2275 dot_dump_node(JF(block), prog, out);
2276 }
2277 static void
dot_dump_edge(struct block * block,FILE * out)2278 dot_dump_edge(struct block *block, FILE *out)
2279 {
2280 if (block == NULL || isMarked(block))
2281 return;
2282 Mark(block);
2283
2284 if (JT(block)) {
2285 fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2286 block->id, JT(block)->id);
2287 fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2288 block->id, JF(block)->id);
2289 }
2290 dot_dump_edge(JT(block), out);
2291 dot_dump_edge(JF(block), out);
2292 }
2293 /* Output the block CFG using graphviz/DOT language
2294 * In the CFG, block's code, value index for each registers at EXIT,
2295 * and the jump relationship is show.
2296 *
2297 * example DOT for BPF `ip src host 1.1.1.1' is:
2298 digraph BPF {
2299 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
2300 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
2301 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2302 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2303 "block0":se -> "block1":n [label="T"];
2304 "block0":sw -> "block3":n [label="F"];
2305 "block1":se -> "block2":n [label="T"];
2306 "block1":sw -> "block3":n [label="F"];
2307 }
2308 *
2309 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2310 * and run `dot -Tpng -O bpf.dot' to draw the graph.
2311 */
2312 static void
dot_dump(struct block * root)2313 dot_dump(struct block *root)
2314 {
2315 struct bpf_program f;
2316 FILE *out = stdout;
2317
2318 memset(bids, 0, sizeof bids);
2319 f.bf_insns = icode_to_fcode(root, &f.bf_len);
2320
2321 fprintf(out, "digraph BPF {\n");
2322 unMarkAll();
2323 dot_dump_node(root, &f, out);
2324 unMarkAll();
2325 dot_dump_edge(root, out);
2326 fprintf(out, "}\n");
2327
2328 free((char *)f.bf_insns);
2329 }
2330
2331 static void
plain_dump(struct block * root)2332 plain_dump(struct block *root)
2333 {
2334 struct bpf_program f;
2335
2336 memset(bids, 0, sizeof bids);
2337 f.bf_insns = icode_to_fcode(root, &f.bf_len);
2338 bpf_dump(&f, 1);
2339 putchar('\n');
2340 free((char *)f.bf_insns);
2341 }
2342 static void
opt_dump(struct block * root)2343 opt_dump(struct block *root)
2344 {
2345 /* if optimizer debugging is enabled, output DOT graph
2346 * `dflag=4' is equivalent to -dddd to follow -d/-dd/-ddd
2347 * convention in tcpdump command line
2348 */
2349 if (dflag > 3)
2350 dot_dump(root);
2351 else
2352 plain_dump(root);
2353 }
2354
2355 #endif
2356