1 /********************************************************************
2 * *
3 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
4 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
5 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
6 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
7 * *
8 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 *
9 * by the Xiph.Org Foundation http://www.xiph.org/ *
10 * *
11 ********************************************************************
12
13 function: LSP (also called LSF) conversion routines
14 last mod: $Id: lsp.c 16227 2009-07-08 06:58:46Z xiphmont $
15
16 The LSP generation code is taken (with minimal modification and a
17 few bugfixes) from "On the Computation of the LSP Frequencies" by
18 Joseph Rothweiler (see http://www.rothweiler.us for contact info).
19 The paper is available at:
20
21 http://www.myown1.com/joe/lsf
22
23 ********************************************************************/
24
25 /* Note that the lpc-lsp conversion finds the roots of polynomial with
26 an iterative root polisher (CACM algorithm 283). It *is* possible
27 to confuse this algorithm into not converging; that should only
28 happen with absurdly closely spaced roots (very sharp peaks in the
29 LPC f response) which in turn should be impossible in our use of
30 the code. If this *does* happen anyway, it's a bug in the floor
31 finder; find the cause of the confusion (probably a single bin
32 spike or accidental near-float-limit resolution problems) and
33 correct it. */
34
35 #include <math.h>
36 #include <string.h>
37 #include <stdlib.h>
38 #include "lsp.h"
39 #include "os.h"
40 #include "misc.h"
41 #include "lookup.h"
42 #include "scales.h"
43
44 /* three possible LSP to f curve functions; the exact computation
45 (float), a lookup based float implementation, and an integer
46 implementation. The float lookup is likely the optimal choice on
47 any machine with an FPU. The integer implementation is *not* fixed
48 point (due to the need for a large dynamic range and thus a
49 seperately tracked exponent) and thus much more complex than the
50 relatively simple float implementations. It's mostly for future
51 work on a fully fixed point implementation for processors like the
52 ARM family. */
53
54 /* define either of these (preferably FLOAT_LOOKUP) to have faster
55 but less precise implementation. */
56 #undef FLOAT_LOOKUP
57 #undef INT_LOOKUP
58
59 #ifdef FLOAT_LOOKUP
60 #include "lookup.c" /* catch this in the build system; we #include for
61 compilers (like gcc) that can't inline across
62 modules */
63
64 /* side effect: changes *lsp to cosines of lsp */
vorbis_lsp_to_curve(float * curve,int * map,int n,int ln,float * lsp,int m,float amp,float ampoffset)65 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
66 float amp,float ampoffset){
67 int i;
68 float wdel=M_PI/ln;
69 vorbis_fpu_control fpu;
70
71 vorbis_fpu_setround(&fpu);
72 for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
73
74 i=0;
75 while(i<n){
76 int k=map[i];
77 int qexp;
78 float p=.7071067812f;
79 float q=.7071067812f;
80 float w=vorbis_coslook(wdel*k);
81 float *ftmp=lsp;
82 int c=m>>1;
83
84 do{
85 q*=ftmp[0]-w;
86 p*=ftmp[1]-w;
87 ftmp+=2;
88 }while(--c);
89
90 if(m&1){
91 /* odd order filter; slightly assymetric */
92 /* the last coefficient */
93 q*=ftmp[0]-w;
94 q*=q;
95 p*=p*(1.f-w*w);
96 }else{
97 /* even order filter; still symmetric */
98 q*=q*(1.f+w);
99 p*=p*(1.f-w);
100 }
101
102 q=frexp(p+q,&qexp);
103 q=vorbis_fromdBlook(amp*
104 vorbis_invsqlook(q)*
105 vorbis_invsq2explook(qexp+m)-
106 ampoffset);
107
108 do{
109 curve[i++]*=q;
110 }while(map[i]==k);
111 }
112 vorbis_fpu_restore(fpu);
113 }
114
115 #else
116
117 #ifdef INT_LOOKUP
118 #include "lookup.c" /* catch this in the build system; we #include for
119 compilers (like gcc) that can't inline across
120 modules */
121
122 static const int MLOOP_1[64]={
123 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
124 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
125 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
126 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
127 };
128
129 static const int MLOOP_2[64]={
130 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
131 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
132 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
133 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
134 };
135
136 static const int MLOOP_3[8]={0,1,2,2,3,3,3,3};
137
138
139 /* side effect: changes *lsp to cosines of lsp */
vorbis_lsp_to_curve(float * curve,int * map,int n,int ln,float * lsp,int m,float amp,float ampoffset)140 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
141 float amp,float ampoffset){
142
143 /* 0 <= m < 256 */
144
145 /* set up for using all int later */
146 int i;
147 int ampoffseti=rint(ampoffset*4096.f);
148 int ampi=rint(amp*16.f);
149 long *ilsp=alloca(m*sizeof(*ilsp));
150 for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);
151
152 i=0;
153 while(i<n){
154 int j,k=map[i];
155 unsigned long pi=46341; /* 2**-.5 in 0.16 */
156 unsigned long qi=46341;
157 int qexp=0,shift;
158 long wi=vorbis_coslook_i(k*65536/ln);
159
160 qi*=labs(ilsp[0]-wi);
161 pi*=labs(ilsp[1]-wi);
162
163 for(j=3;j<m;j+=2){
164 if(!(shift=MLOOP_1[(pi|qi)>>25]))
165 if(!(shift=MLOOP_2[(pi|qi)>>19]))
166 shift=MLOOP_3[(pi|qi)>>16];
167 qi=(qi>>shift)*labs(ilsp[j-1]-wi);
168 pi=(pi>>shift)*labs(ilsp[j]-wi);
169 qexp+=shift;
170 }
171 if(!(shift=MLOOP_1[(pi|qi)>>25]))
172 if(!(shift=MLOOP_2[(pi|qi)>>19]))
173 shift=MLOOP_3[(pi|qi)>>16];
174
175 /* pi,qi normalized collectively, both tracked using qexp */
176
177 if(m&1){
178 /* odd order filter; slightly assymetric */
179 /* the last coefficient */
180 qi=(qi>>shift)*labs(ilsp[j-1]-wi);
181 pi=(pi>>shift)<<14;
182 qexp+=shift;
183
184 if(!(shift=MLOOP_1[(pi|qi)>>25]))
185 if(!(shift=MLOOP_2[(pi|qi)>>19]))
186 shift=MLOOP_3[(pi|qi)>>16];
187
188 pi>>=shift;
189 qi>>=shift;
190 qexp+=shift-14*((m+1)>>1);
191
192 pi=((pi*pi)>>16);
193 qi=((qi*qi)>>16);
194 qexp=qexp*2+m;
195
196 pi*=(1<<14)-((wi*wi)>>14);
197 qi+=pi>>14;
198
199 }else{
200 /* even order filter; still symmetric */
201
202 /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
203 worth tracking step by step */
204
205 pi>>=shift;
206 qi>>=shift;
207 qexp+=shift-7*m;
208
209 pi=((pi*pi)>>16);
210 qi=((qi*qi)>>16);
211 qexp=qexp*2+m;
212
213 pi*=(1<<14)-wi;
214 qi*=(1<<14)+wi;
215 qi=(qi+pi)>>14;
216
217 }
218
219
220 /* we've let the normalization drift because it wasn't important;
221 however, for the lookup, things must be normalized again. We
222 need at most one right shift or a number of left shifts */
223
224 if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
225 qi>>=1; qexp++;
226 }else
227 while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
228 qi<<=1; qexp--;
229 }
230
231 amp=vorbis_fromdBlook_i(ampi* /* n.4 */
232 vorbis_invsqlook_i(qi,qexp)-
233 /* m.8, m+n<=8 */
234 ampoffseti); /* 8.12[0] */
235
236 curve[i]*=amp;
237 while(map[++i]==k)curve[i]*=amp;
238 }
239 }
240
241 #else
242
243 /* old, nonoptimized but simple version for any poor sap who needs to
244 figure out what the hell this code does, or wants the other
245 fraction of a dB precision */
246
247 /* side effect: changes *lsp to cosines of lsp */
vorbis_lsp_to_curve(float * curve,int * map,int n,int ln,float * lsp,int m,float amp,float ampoffset)248 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
249 float amp,float ampoffset){
250 int i;
251 float wdel=M_PI/ln;
252 for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);
253
254 i=0;
255 while(i<n){
256 int j,k=map[i];
257 float p=.5f;
258 float q=.5f;
259 float w=2.f*cos(wdel*k);
260 for(j=1;j<m;j+=2){
261 q *= w-lsp[j-1];
262 p *= w-lsp[j];
263 }
264 if(j==m){
265 /* odd order filter; slightly assymetric */
266 /* the last coefficient */
267 q*=w-lsp[j-1];
268 p*=p*(4.f-w*w);
269 q*=q;
270 }else{
271 /* even order filter; still symmetric */
272 p*=p*(2.f-w);
273 q*=q*(2.f+w);
274 }
275
276 q=fromdB(amp/sqrt(p+q)-ampoffset);
277
278 curve[i]*=q;
279 while(map[++i]==k)curve[i]*=q;
280 }
281 }
282
283 #endif
284 #endif
285
cheby(float * g,int ord)286 static void cheby(float *g, int ord) {
287 int i, j;
288
289 g[0] *= .5f;
290 for(i=2; i<= ord; i++) {
291 for(j=ord; j >= i; j--) {
292 g[j-2] -= g[j];
293 g[j] += g[j];
294 }
295 }
296 }
297
comp(const void * a,const void * b)298 static int comp(const void *a,const void *b){
299 return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
300 }
301
302 /* Newton-Raphson-Maehly actually functioned as a decent root finder,
303 but there are root sets for which it gets into limit cycles
304 (exacerbated by zero suppression) and fails. We can't afford to
305 fail, even if the failure is 1 in 100,000,000, so we now use
306 Laguerre and later polish with Newton-Raphson (which can then
307 afford to fail) */
308
309 #define EPSILON 10e-7
Laguerre_With_Deflation(float * a,int ord,float * r)310 static int Laguerre_With_Deflation(float *a,int ord,float *r){
311 int i,m;
312 double lastdelta=0.f;
313 double *defl=alloca(sizeof(*defl)*(ord+1));
314 for(i=0;i<=ord;i++)defl[i]=a[i];
315
316 for(m=ord;m>0;m--){
317 double new=0.f,delta;
318
319 /* iterate a root */
320 while(1){
321 double p=defl[m],pp=0.f,ppp=0.f,denom;
322
323 /* eval the polynomial and its first two derivatives */
324 for(i=m;i>0;i--){
325 ppp = new*ppp + pp;
326 pp = new*pp + p;
327 p = new*p + defl[i-1];
328 }
329
330 /* Laguerre's method */
331 denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
332 if(denom<0)
333 return(-1); /* complex root! The LPC generator handed us a bad filter */
334
335 if(pp>0){
336 denom = pp + sqrt(denom);
337 if(denom<EPSILON)denom=EPSILON;
338 }else{
339 denom = pp - sqrt(denom);
340 if(denom>-(EPSILON))denom=-(EPSILON);
341 }
342
343 delta = m*p/denom;
344 new -= delta;
345
346 if(delta<0.f)delta*=-1;
347
348 if(fabs(delta/new)<10e-12)break;
349 lastdelta=delta;
350 }
351
352 r[m-1]=new;
353
354 /* forward deflation */
355
356 for(i=m;i>0;i--)
357 defl[i-1]+=new*defl[i];
358 defl++;
359
360 }
361 return(0);
362 }
363
364
365 /* for spit-and-polish only */
Newton_Raphson(float * a,int ord,float * r)366 static int Newton_Raphson(float *a,int ord,float *r){
367 int i, k, count=0;
368 double error=1.f;
369 double *root=alloca(ord*sizeof(*root));
370
371 for(i=0; i<ord;i++) root[i] = r[i];
372
373 while(error>1e-20){
374 error=0;
375
376 for(i=0; i<ord; i++) { /* Update each point. */
377 double pp=0.,delta;
378 double rooti=root[i];
379 double p=a[ord];
380 for(k=ord-1; k>= 0; k--) {
381
382 pp= pp* rooti + p;
383 p = p * rooti + a[k];
384 }
385
386 delta = p/pp;
387 root[i] -= delta;
388 error+= delta*delta;
389 }
390
391 if(count>40)return(-1);
392
393 count++;
394 }
395
396 /* Replaced the original bubble sort with a real sort. With your
397 help, we can eliminate the bubble sort in our lifetime. --Monty */
398
399 for(i=0; i<ord;i++) r[i] = root[i];
400 return(0);
401 }
402
403
404 /* Convert lpc coefficients to lsp coefficients */
vorbis_lpc_to_lsp(float * lpc,float * lsp,int m)405 int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
406 int order2=(m+1)>>1;
407 int g1_order,g2_order;
408 float *g1=alloca(sizeof(*g1)*(order2+1));
409 float *g2=alloca(sizeof(*g2)*(order2+1));
410 float *g1r=alloca(sizeof(*g1r)*(order2+1));
411 float *g2r=alloca(sizeof(*g2r)*(order2+1));
412 int i;
413
414 /* even and odd are slightly different base cases */
415 g1_order=(m+1)>>1;
416 g2_order=(m) >>1;
417
418 /* Compute the lengths of the x polynomials. */
419 /* Compute the first half of K & R F1 & F2 polynomials. */
420 /* Compute half of the symmetric and antisymmetric polynomials. */
421 /* Remove the roots at +1 and -1. */
422
423 g1[g1_order] = 1.f;
424 for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
425 g2[g2_order] = 1.f;
426 for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
427
428 if(g1_order>g2_order){
429 for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
430 }else{
431 for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
432 for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
433 }
434
435 /* Convert into polynomials in cos(alpha) */
436 cheby(g1,g1_order);
437 cheby(g2,g2_order);
438
439 /* Find the roots of the 2 even polynomials.*/
440 if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
441 Laguerre_With_Deflation(g2,g2_order,g2r))
442 return(-1);
443
444 Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
445 Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */
446
447 qsort(g1r,g1_order,sizeof(*g1r),comp);
448 qsort(g2r,g2_order,sizeof(*g2r),comp);
449
450 for(i=0;i<g1_order;i++)
451 lsp[i*2] = acos(g1r[i]);
452
453 for(i=0;i<g2_order;i++)
454 lsp[i*2+1] = acos(g2r[i]);
455 return(0);
456 }
457