1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Scopers help you manage ownership of a pointer, helping you easily manage a
6 // pointer within a scope, and automatically destroying the pointer at the end
7 // of a scope.  There are two main classes you will use, which correspond to the
8 // operators new/delete and new[]/delete[].
9 //
10 // Example usage (scoped_ptr<T>):
11 //   {
12 //     scoped_ptr<Foo> foo(new Foo("wee"));
13 //   }  // foo goes out of scope, releasing the pointer with it.
14 //
15 //   {
16 //     scoped_ptr<Foo> foo;          // No pointer managed.
17 //     foo.reset(new Foo("wee"));    // Now a pointer is managed.
18 //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
19 //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
20 //     foo->Method();                // Foo::Method() called.
21 //     foo.get()->Method();          // Foo::Method() called.
22 //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
23 //                                   // manages a pointer.
24 //     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
25 //     foo.reset();                  // Foo("wee4") destroyed, foo no longer
26 //                                   // manages a pointer.
27 //   }  // foo wasn't managing a pointer, so nothing was destroyed.
28 //
29 // Example usage (scoped_ptr<T[]>):
30 //   {
31 //     scoped_ptr<Foo[]> foo(new Foo[100]);
32 //     foo.get()->Method();  // Foo::Method on the 0th element.
33 //     foo[10].Method();     // Foo::Method on the 10th element.
34 //   }
35 //
36 // These scopers also implement part of the functionality of C++11 unique_ptr
37 // in that they are "movable but not copyable."  You can use the scopers in
38 // the parameter and return types of functions to signify ownership transfer
39 // in to and out of a function.  When calling a function that has a scoper
40 // as the argument type, it must be called with an rvalue of a scoper, which
41 // can be created by using std::move(), or the result of another function that
42 // generates a temporary; passing by copy will NOT work.  Here is an example
43 // using scoped_ptr:
44 //
45 //   void TakesOwnership(scoped_ptr<Foo> arg) {
46 //     // Do something with arg.
47 //   }
48 //   scoped_ptr<Foo> CreateFoo() {
49 //     // No need for calling std::move() for returning a move-only value, or
50 //     // when you already have an rvalue as we do here.
51 //     return scoped_ptr<Foo>(new Foo("new"));
52 //   }
53 //   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
54 //     return arg;
55 //   }
56 //
57 //   {
58 //     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
59 //     TakesOwnership(std::move(ptr));       // ptr no longer owns Foo("yay").
60 //     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
61 //     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
62 //         PassThru(std::move(ptr2));        // ptr2 is correspondingly nullptr.
63 //   }
64 //
65 // Notice that if you do not call std::move() when returning from PassThru(), or
66 // when invoking TakesOwnership(), the code will not compile because scopers
67 // are not copyable; they only implement move semantics which require calling
68 // the std::move() function to signify a destructive transfer of state.
69 // CreateFoo() is different though because we are constructing a temporary on
70 // the return line and thus can avoid needing to call std::move().
71 //
72 // The conversion move-constructor properly handles upcast in initialization,
73 // i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
74 //
75 //   scoped_ptr<Foo> foo(new Foo());
76 //   scoped_ptr<FooParent> parent(std::move(foo));
77 
78 #ifndef BASE_MEMORY_SCOPED_PTR_H_
79 #define BASE_MEMORY_SCOPED_PTR_H_
80 
81 // This is an implementation designed to match the anticipated future TR2
82 // implementation of the scoped_ptr class.
83 
84 #include <assert.h>
85 #include <stddef.h>
86 #include <stdlib.h>
87 
88 #include <iosfwd>
89 #include <memory>
90 #include <type_traits>
91 #include <utility>
92 
93 #include "base/compiler_specific.h"
94 #include "base/macros.h"
95 #include "base/move.h"
96 #include "base/template_util.h"
97 
98 namespace base {
99 
100 namespace subtle {
101 class RefCountedBase;
102 class RefCountedThreadSafeBase;
103 }  // namespace subtle
104 
105 // Function object which invokes 'free' on its parameter, which must be
106 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
107 //
108 // scoped_ptr<int, base::FreeDeleter> foo_ptr(
109 //     static_cast<int*>(malloc(sizeof(int))));
110 struct FreeDeleter {
operatorFreeDeleter111   inline void operator()(void* ptr) const {
112     free(ptr);
113   }
114 };
115 
116 namespace internal {
117 
118 template <typename T> struct IsNotRefCounted {
119   enum {
120     value = !std::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
121         !std::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
122             value
123   };
124 };
125 
126 // Minimal implementation of the core logic of scoped_ptr, suitable for
127 // reuse in both scoped_ptr and its specializations.
128 template <class T, class D>
129 class scoped_ptr_impl {
130  public:
scoped_ptr_impl(T * p)131   explicit scoped_ptr_impl(T* p) : data_(p) {}
132 
133   // Initializer for deleters that have data parameters.
scoped_ptr_impl(T * p,const D & d)134   scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
135 
136   // Templated constructor that destructively takes the value from another
137   // scoped_ptr_impl.
138   template <typename U, typename V>
scoped_ptr_impl(scoped_ptr_impl<U,V> * other)139   scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
140       : data_(other->release(), other->get_deleter()) {
141     // We do not support move-only deleters.  We could modify our move
142     // emulation to have base::subtle::move() and base::subtle::forward()
143     // functions that are imperfect emulations of their C++11 equivalents,
144     // but until there's a requirement, just assume deleters are copyable.
145   }
146 
147   template <typename U, typename V>
TakeState(scoped_ptr_impl<U,V> * other)148   void TakeState(scoped_ptr_impl<U, V>* other) {
149     // See comment in templated constructor above regarding lack of support
150     // for move-only deleters.
151     reset(other->release());
152     get_deleter() = other->get_deleter();
153   }
154 
~scoped_ptr_impl()155   ~scoped_ptr_impl() {
156     // Match libc++, which calls reset() in its destructor.
157     // Use nullptr as the new value for three reasons:
158     // 1. libc++ does it.
159     // 2. Avoids infinitely recursing into destructors if two classes are owned
160     //    in a reference cycle (see ScopedPtrTest.ReferenceCycle).
161     // 3. If |this| is accessed in the future, in a use-after-free bug, attempts
162     //    to dereference |this|'s pointer should cause either a failure or a
163     //    segfault closer to the problem. If |this| wasn't reset to nullptr,
164     //    the access would cause the deleted memory to be read or written
165     //    leading to other more subtle issues.
166     reset(nullptr);
167   }
168 
reset(T * p)169   void reset(T* p) {
170     // Match C++11's definition of unique_ptr::reset(), which requires changing
171     // the pointer before invoking the deleter on the old pointer. This prevents
172     // |this| from being accessed after the deleter is run, which may destroy
173     // |this|.
174     T* old = data_.ptr;
175     data_.ptr = p;
176     if (old != nullptr)
177       static_cast<D&>(data_)(old);
178   }
179 
get()180   T* get() const { return data_.ptr; }
181 
get_deleter()182   D& get_deleter() { return data_; }
get_deleter()183   const D& get_deleter() const { return data_; }
184 
swap(scoped_ptr_impl & p2)185   void swap(scoped_ptr_impl& p2) {
186     // Standard swap idiom: 'using std::swap' ensures that std::swap is
187     // present in the overload set, but we call swap unqualified so that
188     // any more-specific overloads can be used, if available.
189     using std::swap;
190     swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
191     swap(data_.ptr, p2.data_.ptr);
192   }
193 
release()194   T* release() {
195     T* old_ptr = data_.ptr;
196     data_.ptr = nullptr;
197     return old_ptr;
198   }
199 
200  private:
201   // Needed to allow type-converting constructor.
202   template <typename U, typename V> friend class scoped_ptr_impl;
203 
204   // Use the empty base class optimization to allow us to have a D
205   // member, while avoiding any space overhead for it when D is an
206   // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
207   // discussion of this technique.
208   struct Data : public D {
DataData209     explicit Data(T* ptr_in) : ptr(ptr_in) {}
DataData210     Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
211     T* ptr;
212   };
213 
214   Data data_;
215 
216   DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
217 };
218 
219 }  // namespace internal
220 
221 }  // namespace base
222 
223 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
224 // automatically deletes the pointer it holds (if any).
225 // That is, scoped_ptr<T> owns the T object that it points to.
226 // Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
227 // object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
228 // dereference it, you get the thread safety guarantees of T.
229 //
230 // The size of scoped_ptr is small. On most compilers, when using the
231 // std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters
232 // will increase the size proportional to whatever state they need to have. See
233 // comments inside scoped_ptr_impl<> for details.
234 //
235 // Current implementation targets having a strict subset of  C++11's
236 // unique_ptr<> features. Known deficiencies include not supporting move-only
237 // deleteres, function pointers as deleters, and deleters with reference
238 // types.
239 template <class T, class D = std::default_delete<T>>
240 class scoped_ptr {
241   DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
242 
243   static_assert(!std::is_array<T>::value,
244                 "scoped_ptr doesn't support array with size");
245   static_assert(base::internal::IsNotRefCounted<T>::value,
246                 "T is a refcounted type and needs a scoped_refptr");
247 
248  public:
249   // The element and deleter types.
250   using element_type = T;
251   using deleter_type = D;
252 
253   // Constructor.  Defaults to initializing with nullptr.
scoped_ptr()254   scoped_ptr() : impl_(nullptr) {}
255 
256   // Constructor.  Takes ownership of p.
scoped_ptr(element_type * p)257   explicit scoped_ptr(element_type* p) : impl_(p) {}
258 
259   // Constructor.  Allows initialization of a stateful deleter.
scoped_ptr(element_type * p,const D & d)260   scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
261 
262   // Constructor.  Allows construction from a nullptr.
scoped_ptr(std::nullptr_t)263   scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
264 
265   // Move constructor.
266   //
267   // IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and
268   // not just the conversion constructor) in order to warn on pessimizing moves.
269   // The requirements for the move constructor are specified in C++11
270   // 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As
271   // we don't support reference (or move-only) deleters, the post conditions are
272   // trivially true: we always copy construct the deleter from other's deleter.
scoped_ptr(scoped_ptr && other)273   scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
274 
275   // Conversion constructor.  Allows construction from a scoped_ptr rvalue for a
276   // convertible type and deleter.
277   //
278   // IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only
279   // participate in overload resolution if all the following are true:
280   // - U is implicitly convertible to T: this is important for 2 reasons:
281   //     1. So type traits don't incorrectly return true, e.g.
282   //          std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value
283   //        should be false.
284   //     2. To make sure code like this compiles:
285   //        void F(scoped_ptr<int>);
286   //        void F(scoped_ptr<Base>);
287   //        // Ambiguous since both conversion constructors match.
288   //        F(scoped_ptr<Derived>());
289   // - U is not an array type: to prevent conversions from scoped_ptr<T[]> to
290   //   scoped_ptr<T>.
291   // - D is a reference type and E is the same type, or D is not a reference
292   //   type and E is implicitly convertible to D: again, we don't support
293   //   reference deleters, so we only worry about the latter requirement.
294   template <typename U,
295             typename E,
296             typename std::enable_if<!std::is_array<U>::value &&
297                                     std::is_convertible<U*, T*>::value &&
298                                     std::is_convertible<E, D>::value>::type* =
299                 nullptr>
scoped_ptr(scoped_ptr<U,E> && other)300   scoped_ptr(scoped_ptr<U, E>&& other)
301       : impl_(&other.impl_) {}
302 
303   // operator=.
304   //
305   // IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to
306   // require a move assignment operator to trigger the pessimizing move warning:
307   // in this case, the warning triggers when moving a temporary. For consistency
308   // with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3
309   // defines several requirements around this: like the move constructor, the
310   // requirements are simplified by the fact that we don't support move-only or
311   // reference deleters.
312   scoped_ptr& operator=(scoped_ptr&& rhs) {
313     impl_.TakeState(&rhs.impl_);
314     return *this;
315   }
316 
317   // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
318   // type and deleter.
319   //
320   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
321   // the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the
322   // requirement for this operator, but like the conversion constructor, the
323   // requirements are greatly simplified by not supporting move-only or
324   // reference deleters.
325   template <typename U,
326             typename E,
327             typename std::enable_if<!std::is_array<U>::value &&
328                                     std::is_convertible<U*, T*>::value &&
329                                     // Note that this really should be
330                                     // std::is_assignable, but <type_traits>
331                                     // appears to be missing this on some
332                                     // platforms. This is close enough (though
333                                     // it's not the same).
334                                     std::is_convertible<D, E>::value>::type* =
335                 nullptr>
336   scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) {
337     impl_.TakeState(&rhs.impl_);
338     return *this;
339   }
340 
341   // operator=.  Allows assignment from a nullptr. Deletes the currently owned
342   // object, if any.
343   scoped_ptr& operator=(std::nullptr_t) {
344     reset();
345     return *this;
346   }
347 
348   // Reset.  Deletes the currently owned object, if any.
349   // Then takes ownership of a new object, if given.
350   void reset(element_type* p = nullptr) { impl_.reset(p); }
351 
352   // Accessors to get the owned object.
353   // operator* and operator-> will assert() if there is no current object.
354   element_type& operator*() const {
355     assert(impl_.get() != nullptr);
356     return *impl_.get();
357   }
358   element_type* operator->() const  {
359     assert(impl_.get() != nullptr);
360     return impl_.get();
361   }
get()362   element_type* get() const { return impl_.get(); }
363 
364   // Access to the deleter.
get_deleter()365   deleter_type& get_deleter() { return impl_.get_deleter(); }
get_deleter()366   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
367 
368   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
369   // implicitly convertible to a real bool (which is dangerous).
370   //
371   // Note that this trick is only safe when the == and != operators
372   // are declared explicitly, as otherwise "scoped_ptr1 ==
373   // scoped_ptr2" will compile but do the wrong thing (i.e., convert
374   // to Testable and then do the comparison).
375  private:
376   typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
377       scoped_ptr::*Testable;
378 
379  public:
Testable()380   operator Testable() const {
381     return impl_.get() ? &scoped_ptr::impl_ : nullptr;
382   }
383 
384   // Swap two scoped pointers.
swap(scoped_ptr & p2)385   void swap(scoped_ptr& p2) {
386     impl_.swap(p2.impl_);
387   }
388 
389   // Release a pointer.
390   // The return value is the current pointer held by this object. If this object
391   // holds a nullptr, the return value is nullptr. After this operation, this
392   // object will hold a nullptr, and will not own the object any more.
release()393   element_type* release() WARN_UNUSED_RESULT {
394     return impl_.release();
395   }
396 
397  private:
398   // Needed to reach into |impl_| in the constructor.
399   template <typename U, typename V> friend class scoped_ptr;
400   base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
401 
402   // Forbidden for API compatibility with std::unique_ptr.
403   explicit scoped_ptr(int disallow_construction_from_null);
404 };
405 
406 template <class T, class D>
407 class scoped_ptr<T[], D> {
408   DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
409 
410  public:
411   // The element and deleter types.
412   using element_type = T;
413   using deleter_type = D;
414 
415   // Constructor.  Defaults to initializing with nullptr.
scoped_ptr()416   scoped_ptr() : impl_(nullptr) {}
417 
418   // Constructor. Stores the given array. Note that the argument's type
419   // must exactly match T*. In particular:
420   // - it cannot be a pointer to a type derived from T, because it is
421   //   inherently unsafe in the general case to access an array through a
422   //   pointer whose dynamic type does not match its static type (eg., if
423   //   T and the derived types had different sizes access would be
424   //   incorrectly calculated). Deletion is also always undefined
425   //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
426   // - it cannot be const-qualified differently from T per unique_ptr spec
427   //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
428   //   to work around this may use const_cast<const T*>().
scoped_ptr(element_type * array)429   explicit scoped_ptr(element_type* array) : impl_(array) {}
430 
431   // Constructor.  Allows construction from a nullptr.
scoped_ptr(std::nullptr_t)432   scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
433 
434   // Constructor.  Allows construction from a scoped_ptr rvalue.
scoped_ptr(scoped_ptr && other)435   scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
436 
437   // operator=.  Allows assignment from a scoped_ptr rvalue.
438   scoped_ptr& operator=(scoped_ptr&& rhs) {
439     impl_.TakeState(&rhs.impl_);
440     return *this;
441   }
442 
443   // operator=.  Allows assignment from a nullptr. Deletes the currently owned
444   // array, if any.
445   scoped_ptr& operator=(std::nullptr_t) {
446     reset();
447     return *this;
448   }
449 
450   // Reset.  Deletes the currently owned array, if any.
451   // Then takes ownership of a new object, if given.
452   void reset(element_type* array = nullptr) { impl_.reset(array); }
453 
454   // Accessors to get the owned array.
455   element_type& operator[](size_t i) const {
456     assert(impl_.get() != nullptr);
457     return impl_.get()[i];
458   }
get()459   element_type* get() const { return impl_.get(); }
460 
461   // Access to the deleter.
get_deleter()462   deleter_type& get_deleter() { return impl_.get_deleter(); }
get_deleter()463   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
464 
465   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
466   // implicitly convertible to a real bool (which is dangerous).
467  private:
468   typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
469       scoped_ptr::*Testable;
470 
471  public:
Testable()472   operator Testable() const {
473     return impl_.get() ? &scoped_ptr::impl_ : nullptr;
474   }
475 
476   // Swap two scoped pointers.
swap(scoped_ptr & p2)477   void swap(scoped_ptr& p2) {
478     impl_.swap(p2.impl_);
479   }
480 
481   // Release a pointer.
482   // The return value is the current pointer held by this object. If this object
483   // holds a nullptr, the return value is nullptr. After this operation, this
484   // object will hold a nullptr, and will not own the object any more.
release()485   element_type* release() WARN_UNUSED_RESULT {
486     return impl_.release();
487   }
488 
489  private:
490   // Force element_type to be a complete type.
491   enum { type_must_be_complete = sizeof(element_type) };
492 
493   // Actually hold the data.
494   base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
495 
496   // Disable initialization from any type other than element_type*, by
497   // providing a constructor that matches such an initialization, but is
498   // private and has no definition. This is disabled because it is not safe to
499   // call delete[] on an array whose static type does not match its dynamic
500   // type.
501   template <typename U> explicit scoped_ptr(U* array);
502   explicit scoped_ptr(int disallow_construction_from_null);
503 
504   // Disable reset() from any type other than element_type*, for the same
505   // reasons as the constructor above.
506   template <typename U> void reset(U* array);
507   void reset(int disallow_reset_from_null);
508 };
509 
510 // Free functions
511 template <class T, class D>
swap(scoped_ptr<T,D> & p1,scoped_ptr<T,D> & p2)512 void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
513   p1.swap(p2);
514 }
515 
516 template <class T1, class D1, class T2, class D2>
517 bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
518   return p1.get() == p2.get();
519 }
520 template <class T, class D>
521 bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) {
522   return p.get() == nullptr;
523 }
524 template <class T, class D>
525 bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) {
526   return p.get() == nullptr;
527 }
528 
529 template <class T1, class D1, class T2, class D2>
530 bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
531   return !(p1 == p2);
532 }
533 template <class T, class D>
534 bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) {
535   return !(p == nullptr);
536 }
537 template <class T, class D>
538 bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) {
539   return !(p == nullptr);
540 }
541 
542 template <class T1, class D1, class T2, class D2>
543 bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
544   return p1.get() < p2.get();
545 }
546 template <class T, class D>
547 bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) {
548   auto* ptr = p.get();
549   return ptr < static_cast<decltype(ptr)>(nullptr);
550 }
551 template <class T, class D>
552 bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) {
553   auto* ptr = p.get();
554   return static_cast<decltype(ptr)>(nullptr) < ptr;
555 }
556 
557 template <class T1, class D1, class T2, class D2>
558 bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
559   return p2 < p1;
560 }
561 template <class T, class D>
562 bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) {
563   return nullptr < p;
564 }
565 template <class T, class D>
566 bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) {
567   return p < nullptr;
568 }
569 
570 template <class T1, class D1, class T2, class D2>
571 bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
572   return !(p1 > p2);
573 }
574 template <class T, class D>
575 bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) {
576   return !(p > nullptr);
577 }
578 template <class T, class D>
579 bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) {
580   return !(nullptr > p);
581 }
582 
583 template <class T1, class D1, class T2, class D2>
584 bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
585   return !(p1 < p2);
586 }
587 template <class T, class D>
588 bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) {
589   return !(p < nullptr);
590 }
591 template <class T, class D>
592 bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) {
593   return !(nullptr < p);
594 }
595 
596 // A function to convert T* into scoped_ptr<T>
597 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
598 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
599 template <typename T>
make_scoped_ptr(T * ptr)600 scoped_ptr<T> make_scoped_ptr(T* ptr) {
601   return scoped_ptr<T>(ptr);
602 }
603 
604 template <typename T>
605 std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) {
606   return out << p.get();
607 }
608 
609 #endif  // BASE_MEMORY_SCOPED_PTR_H_
610