1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Weak pointers are pointers to an object that do not affect its lifetime,
6 // and which may be invalidated (i.e. reset to NULL) by the object, or its
7 // owner, at any time, most commonly when the object is about to be deleted.
8
9 // Weak pointers are useful when an object needs to be accessed safely by one
10 // or more objects other than its owner, and those callers can cope with the
11 // object vanishing and e.g. tasks posted to it being silently dropped.
12 // Reference-counting such an object would complicate the ownership graph and
13 // make it harder to reason about the object's lifetime.
14
15 // EXAMPLE:
16 //
17 // class Controller {
18 // public:
19 // Controller() : weak_factory_(this) {}
20 // void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
21 // void WorkComplete(const Result& result) { ... }
22 // private:
23 // // Member variables should appear before the WeakPtrFactory, to ensure
24 // // that any WeakPtrs to Controller are invalidated before its members
25 // // variable's destructors are executed, rendering them invalid.
26 // WeakPtrFactory<Controller> weak_factory_;
27 // };
28 //
29 // class Worker {
30 // public:
31 // static void StartNew(const WeakPtr<Controller>& controller) {
32 // Worker* worker = new Worker(controller);
33 // // Kick off asynchronous processing...
34 // }
35 // private:
36 // Worker(const WeakPtr<Controller>& controller)
37 // : controller_(controller) {}
38 // void DidCompleteAsynchronousProcessing(const Result& result) {
39 // if (controller_)
40 // controller_->WorkComplete(result);
41 // }
42 // WeakPtr<Controller> controller_;
43 // };
44 //
45 // With this implementation a caller may use SpawnWorker() to dispatch multiple
46 // Workers and subsequently delete the Controller, without waiting for all
47 // Workers to have completed.
48
49 // ------------------------- IMPORTANT: Thread-safety -------------------------
50
51 // Weak pointers may be passed safely between threads, but must always be
52 // dereferenced and invalidated on the same SequencedTaskRunner otherwise
53 // checking the pointer would be racey.
54 //
55 // To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
56 // is dereferenced, the factory and its WeakPtrs become bound to the calling
57 // thread or current SequencedWorkerPool token, and cannot be dereferenced or
58 // invalidated on any other task runner. Bound WeakPtrs can still be handed
59 // off to other task runners, e.g. to use to post tasks back to object on the
60 // bound sequence.
61 //
62 // If all WeakPtr objects are destroyed or invalidated then the factory is
63 // unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
64 // destroyed, or new WeakPtr objects may be used, from a different sequence.
65 //
66 // Thus, at least one WeakPtr object must exist and have been dereferenced on
67 // the correct thread to enforce that other WeakPtr objects will enforce they
68 // are used on the desired thread.
69
70 #ifndef BASE_MEMORY_WEAK_PTR_H_
71 #define BASE_MEMORY_WEAK_PTR_H_
72
73 #include "base/base_export.h"
74 #include "base/logging.h"
75 #include "base/macros.h"
76 #include "base/memory/ref_counted.h"
77
78 namespace base {
79
80 template <typename T> class SupportsWeakPtr;
81 template <typename T> class WeakPtr;
82
83 namespace internal {
84 // These classes are part of the WeakPtr implementation.
85 // DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
86
87 class BASE_EXPORT WeakReference {
88 public:
89 // Although Flag is bound to a specific SequencedTaskRunner, it may be
90 // deleted from another via base::WeakPtr::~WeakPtr().
91 class Flag : public RefCountedThreadSafe<Flag> {
92 public:
93 Flag();
94
95 void Invalidate();
96 bool IsValid() const;
97
98 private:
99 friend class base::RefCountedThreadSafe<Flag>;
100
101 ~Flag();
102
103 bool is_valid_;
104 };
105
106 WeakReference();
107 explicit WeakReference(const Flag* flag);
108 ~WeakReference();
109
110 bool is_valid() const;
111
112 private:
113 scoped_refptr<const Flag> flag_;
114 };
115
116 class BASE_EXPORT WeakReferenceOwner {
117 public:
118 WeakReferenceOwner();
119 ~WeakReferenceOwner();
120
121 WeakReference GetRef() const;
122
HasRefs()123 bool HasRefs() const {
124 return flag_.get() && !flag_->HasOneRef();
125 }
126
127 void Invalidate();
128
129 private:
130 mutable scoped_refptr<WeakReference::Flag> flag_;
131 };
132
133 // This class simplifies the implementation of WeakPtr's type conversion
134 // constructor by avoiding the need for a public accessor for ref_. A
135 // WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
136 // base class gives us a way to access ref_ in a protected fashion.
137 class BASE_EXPORT WeakPtrBase {
138 public:
139 WeakPtrBase();
140 ~WeakPtrBase();
141
142 protected:
143 explicit WeakPtrBase(const WeakReference& ref);
144
145 WeakReference ref_;
146 };
147
148 // This class provides a common implementation of common functions that would
149 // otherwise get instantiated separately for each distinct instantiation of
150 // SupportsWeakPtr<>.
151 class SupportsWeakPtrBase {
152 public:
153 // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
154 // conversion will only compile if there is exists a Base which inherits
155 // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
156 // function that makes calling this easier.
157 template<typename Derived>
StaticAsWeakPtr(Derived * t)158 static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
159 typedef std::is_convertible<Derived*, internal::SupportsWeakPtrBase*>
160 convertible;
161 static_assert(convertible::value,
162 "AsWeakPtr argument must inherit from SupportsWeakPtr");
163 return AsWeakPtrImpl<Derived>(t, *t);
164 }
165
166 private:
167 // This template function uses type inference to find a Base of Derived
168 // which is an instance of SupportsWeakPtr<Base>. We can then safely
169 // static_cast the Base* to a Derived*.
170 template <typename Derived, typename Base>
AsWeakPtrImpl(Derived * t,const SupportsWeakPtr<Base> &)171 static WeakPtr<Derived> AsWeakPtrImpl(
172 Derived* t, const SupportsWeakPtr<Base>&) {
173 WeakPtr<Base> ptr = t->Base::AsWeakPtr();
174 return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
175 }
176 };
177
178 } // namespace internal
179
180 template <typename T> class WeakPtrFactory;
181
182 // The WeakPtr class holds a weak reference to |T*|.
183 //
184 // This class is designed to be used like a normal pointer. You should always
185 // null-test an object of this class before using it or invoking a method that
186 // may result in the underlying object being destroyed.
187 //
188 // EXAMPLE:
189 //
190 // class Foo { ... };
191 // WeakPtr<Foo> foo;
192 // if (foo)
193 // foo->method();
194 //
195 template <typename T>
196 class WeakPtr : public internal::WeakPtrBase {
197 public:
WeakPtr()198 WeakPtr() : ptr_(NULL) {
199 }
200
201 // Allow conversion from U to T provided U "is a" T. Note that this
202 // is separate from the (implicit) copy constructor.
203 template <typename U>
WeakPtr(const WeakPtr<U> & other)204 WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {
205 }
206
get()207 T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
208
209 T& operator*() const {
210 DCHECK(get() != NULL);
211 return *get();
212 }
213 T* operator->() const {
214 DCHECK(get() != NULL);
215 return get();
216 }
217
218 // Allow WeakPtr<element_type> to be used in boolean expressions, but not
219 // implicitly convertible to a real bool (which is dangerous).
220 //
221 // Note that this trick is only safe when the == and != operators
222 // are declared explicitly, as otherwise "weak_ptr1 == weak_ptr2"
223 // will compile but do the wrong thing (i.e., convert to Testable
224 // and then do the comparison).
225 private:
226 typedef T* WeakPtr::*Testable;
227
228 public:
Testable()229 operator Testable() const { return get() ? &WeakPtr::ptr_ : NULL; }
230
reset()231 void reset() {
232 ref_ = internal::WeakReference();
233 ptr_ = NULL;
234 }
235
236 private:
237 // Explicitly declare comparison operators as required by the bool
238 // trick, but keep them private.
239 template <class U> bool operator==(WeakPtr<U> const&) const;
240 template <class U> bool operator!=(WeakPtr<U> const&) const;
241
242 friend class internal::SupportsWeakPtrBase;
243 template <typename U> friend class WeakPtr;
244 friend class SupportsWeakPtr<T>;
245 friend class WeakPtrFactory<T>;
246
WeakPtr(const internal::WeakReference & ref,T * ptr)247 WeakPtr(const internal::WeakReference& ref, T* ptr)
248 : WeakPtrBase(ref),
249 ptr_(ptr) {
250 }
251
252 // This pointer is only valid when ref_.is_valid() is true. Otherwise, its
253 // value is undefined (as opposed to NULL).
254 T* ptr_;
255 };
256
257 // A class may be composed of a WeakPtrFactory and thereby
258 // control how it exposes weak pointers to itself. This is helpful if you only
259 // need weak pointers within the implementation of a class. This class is also
260 // useful when working with primitive types. For example, you could have a
261 // WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
262 template <class T>
263 class WeakPtrFactory {
264 public:
WeakPtrFactory(T * ptr)265 explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
266 }
267
~WeakPtrFactory()268 ~WeakPtrFactory() {
269 ptr_ = NULL;
270 }
271
GetWeakPtr()272 WeakPtr<T> GetWeakPtr() {
273 DCHECK(ptr_);
274 return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
275 }
276
277 // Call this method to invalidate all existing weak pointers.
InvalidateWeakPtrs()278 void InvalidateWeakPtrs() {
279 DCHECK(ptr_);
280 weak_reference_owner_.Invalidate();
281 }
282
283 // Call this method to determine if any weak pointers exist.
HasWeakPtrs()284 bool HasWeakPtrs() const {
285 DCHECK(ptr_);
286 return weak_reference_owner_.HasRefs();
287 }
288
289 private:
290 internal::WeakReferenceOwner weak_reference_owner_;
291 T* ptr_;
292 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
293 };
294
295 // A class may extend from SupportsWeakPtr to let others take weak pointers to
296 // it. This avoids the class itself implementing boilerplate to dispense weak
297 // pointers. However, since SupportsWeakPtr's destructor won't invalidate
298 // weak pointers to the class until after the derived class' members have been
299 // destroyed, its use can lead to subtle use-after-destroy issues.
300 template <class T>
301 class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
302 public:
SupportsWeakPtr()303 SupportsWeakPtr() {}
304
AsWeakPtr()305 WeakPtr<T> AsWeakPtr() {
306 return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
307 }
308
309 protected:
~SupportsWeakPtr()310 ~SupportsWeakPtr() {}
311
312 private:
313 internal::WeakReferenceOwner weak_reference_owner_;
314 DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
315 };
316
317 // Helper function that uses type deduction to safely return a WeakPtr<Derived>
318 // when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
319 // extends a Base that extends SupportsWeakPtr<Base>.
320 //
321 // EXAMPLE:
322 // class Base : public base::SupportsWeakPtr<Producer> {};
323 // class Derived : public Base {};
324 //
325 // Derived derived;
326 // base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
327 //
328 // Note that the following doesn't work (invalid type conversion) since
329 // Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
330 // and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
331 // the caller.
332 //
333 // base::WeakPtr<Derived> ptr = derived.AsWeakPtr(); // Fails.
334
335 template <typename Derived>
AsWeakPtr(Derived * t)336 WeakPtr<Derived> AsWeakPtr(Derived* t) {
337 return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
338 }
339
340 } // namespace base
341
342 #endif // BASE_MEMORY_WEAK_PTR_H_
343