1=======================
2Writing an LLVM Backend
3=======================
4
5.. toctree::
6   :hidden:
7
8   HowToUseInstrMappings
9
10.. contents::
11   :local:
12
13Introduction
14============
15
16This document describes techniques for writing compiler backends that convert
17the LLVM Intermediate Representation (IR) to code for a specified machine or
18other languages.  Code intended for a specific machine can take the form of
19either assembly code or binary code (usable for a JIT compiler).
20
21The backend of LLVM features a target-independent code generator that may
22create output for several types of target CPUs --- including X86, PowerPC,
23ARM, and SPARC.  The backend may also be used to generate code targeted at SPUs
24of the Cell processor or GPUs to support the execution of compute kernels.
25
26The document focuses on existing examples found in subdirectories of
27``llvm/lib/Target`` in a downloaded LLVM release.  In particular, this document
28focuses on the example of creating a static compiler (one that emits text
29assembly) for a SPARC target, because SPARC has fairly standard
30characteristics, such as a RISC instruction set and straightforward calling
31conventions.
32
33Audience
34--------
35
36The audience for this document is anyone who needs to write an LLVM backend to
37generate code for a specific hardware or software target.
38
39Prerequisite Reading
40--------------------
41
42These essential documents must be read before reading this document:
43
44* `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
45  the LLVM assembly language.
46
47* :doc:`CodeGenerator` --- a guide to the components (classes and code
48  generation algorithms) for translating the LLVM internal representation into
49  machine code for a specified target.  Pay particular attention to the
50  descriptions of code generation stages: Instruction Selection, Scheduling and
51  Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
52  Insertion, Late Machine Code Optimizations, and Code Emission.
53
54* :doc:`TableGen/index` --- a document that describes the TableGen
55  (``tblgen``) application that manages domain-specific information to support
56  LLVM code generation.  TableGen processes input from a target description
57  file (``.td`` suffix) and generates C++ code that can be used for code
58  generation.
59
60* :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
61  are several ``SelectionDAG`` processing steps.
62
63To follow the SPARC examples in this document, have a copy of `The SPARC
64Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
65reference.  For details about the ARM instruction set, refer to the `ARM
66Architecture Reference Manual <http://infocenter.arm.com/>`_.  For more about
67the GNU Assembler format (``GAS``), see `Using As
68<http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
69assembly printer.  "Using As" contains a list of target machine dependent
70features.
71
72Basic Steps
73-----------
74
75To write a compiler backend for LLVM that converts the LLVM IR to code for a
76specified target (machine or other language), follow these steps:
77
78* Create a subclass of the ``TargetMachine`` class that describes
79  characteristics of your target machine.  Copy existing examples of specific
80  ``TargetMachine`` class and header files; for example, start with
81  ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
82  names for your target.  Similarly, change code that references "``Sparc``" to
83  reference your target.
84
85* Describe the register set of the target.  Use TableGen to generate code for
86  register definition, register aliases, and register classes from a
87  target-specific ``RegisterInfo.td`` input file.  You should also write
88  additional code for a subclass of the ``TargetRegisterInfo`` class that
89  represents the class register file data used for register allocation and also
90  describes the interactions between registers.
91
92* Describe the instruction set of the target.  Use TableGen to generate code
93  for target-specific instructions from target-specific versions of
94  ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``.  You should write
95  additional code for a subclass of the ``TargetInstrInfo`` class to represent
96  machine instructions supported by the target machine.
97
98* Describe the selection and conversion of the LLVM IR from a Directed Acyclic
99  Graph (DAG) representation of instructions to native target-specific
100  instructions.  Use TableGen to generate code that matches patterns and
101  selects instructions based on additional information in a target-specific
102  version of ``TargetInstrInfo.td``.  Write code for ``XXXISelDAGToDAG.cpp``,
103  where ``XXX`` identifies the specific target, to perform pattern matching and
104  DAG-to-DAG instruction selection.  Also write code in ``XXXISelLowering.cpp``
105  to replace or remove operations and data types that are not supported
106  natively in a SelectionDAG.
107
108* Write code for an assembly printer that converts LLVM IR to a GAS format for
109  your target machine.  You should add assembly strings to the instructions
110  defined in your target-specific version of ``TargetInstrInfo.td``.  You
111  should also write code for a subclass of ``AsmPrinter`` that performs the
112  LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
113
114* Optionally, add support for subtargets (i.e., variants with different
115  capabilities).  You should also write code for a subclass of the
116  ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
117  ``-mattr=`` command-line options.
118
119* Optionally, add JIT support and create a machine code emitter (subclass of
120  ``TargetJITInfo``) that is used to emit binary code directly into memory.
121
122In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
123implement them later.  Initially, you may not know which private members that
124the class will need and which components will need to be subclassed.
125
126Preliminaries
127-------------
128
129To actually create your compiler backend, you need to create and modify a few
130files.  The absolute minimum is discussed here.  But to actually use the LLVM
131target-independent code generator, you must perform the steps described in the
132:doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
133
134First, you should create a subdirectory under ``lib/Target`` to hold all the
135files related to your target.  If your target is called "Dummy", create the
136directory ``lib/Target/Dummy``.
137
138In this new directory, create a ``Makefile``.  It is easiest to copy a
139``Makefile`` of another target and modify it.  It should at least contain the
140``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include
141``$(LEVEL)/Makefile.common``.  The library can be named ``LLVMDummy`` (for
142example, see the MIPS target).  Alternatively, you can split the library into
143``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be
144implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the
145PowerPC target).
146
147Note that these two naming schemes are hardcoded into ``llvm-config``.  Using
148any other naming scheme will confuse ``llvm-config`` and produce a lot of
149(seemingly unrelated) linker errors when linking ``llc``.
150
151To make your target actually do something, you need to implement a subclass of
152``TargetMachine``.  This implementation should typically be in the file
153``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
154directory will be built and should work.  To use LLVM's target independent code
155generator, you should do what all current machine backends do: create a
156subclass of ``LLVMTargetMachine``.  (To create a target from scratch, create a
157subclass of ``TargetMachine``.)
158
159To get LLVM to actually build and link your target, you need to add it to the
160``TARGETS_TO_BUILD`` variable.  To do this, you modify the configure script to
161know about your target when parsing the ``--enable-targets`` option.  Search
162the configure script for ``TARGETS_TO_BUILD``, add your target to the lists
163there (some creativity required), and then reconfigure.  Alternatively, you can
164change ``autoconf/configure.ac`` and regenerate configure by running
165``./autoconf/AutoRegen.sh``.
166
167Target Machine
168==============
169
170``LLVMTargetMachine`` is designed as a base class for targets implemented with
171the LLVM target-independent code generator.  The ``LLVMTargetMachine`` class
172should be specialized by a concrete target class that implements the various
173virtual methods.  ``LLVMTargetMachine`` is defined as a subclass of
174``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``.  The
175``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
176numerous command-line options.
177
178To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
179by copying an existing ``TargetMachine`` class and header.  You should name the
180files that you create to reflect your specific target.  For instance, for the
181SPARC target, name the files ``SparcTargetMachine.h`` and
182``SparcTargetMachine.cpp``.
183
184For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
185have access methods to obtain objects that represent target components.  These
186methods are named ``get*Info``, and are intended to obtain the instruction set
187(``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
188(``getFrameInfo``), and similar information.  ``XXXTargetMachine`` must also
189implement the ``getDataLayout`` method to access an object with target-specific
190data characteristics, such as data type size and alignment requirements.
191
192For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
193declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
194simply return a class member.
195
196.. code-block:: c++
197
198  namespace llvm {
199
200  class Module;
201
202  class SparcTargetMachine : public LLVMTargetMachine {
203    const DataLayout DataLayout;       // Calculates type size & alignment
204    SparcSubtarget Subtarget;
205    SparcInstrInfo InstrInfo;
206    TargetFrameInfo FrameInfo;
207
208  protected:
209    virtual const TargetAsmInfo *createTargetAsmInfo() const;
210
211  public:
212    SparcTargetMachine(const Module &M, const std::string &FS);
213
214    virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
215    virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
216    virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
217    virtual const TargetRegisterInfo *getRegisterInfo() const {
218      return &InstrInfo.getRegisterInfo();
219    }
220    virtual const DataLayout *getDataLayout() const { return &DataLayout; }
221    static unsigned getModuleMatchQuality(const Module &M);
222
223    // Pass Pipeline Configuration
224    virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
225    virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
226  };
227
228  } // end namespace llvm
229
230* ``getInstrInfo()``
231* ``getRegisterInfo()``
232* ``getFrameInfo()``
233* ``getDataLayout()``
234* ``getSubtargetImpl()``
235
236For some targets, you also need to support the following methods:
237
238* ``getTargetLowering()``
239* ``getJITInfo()``
240
241Some architectures, such as GPUs, do not support jumping to an arbitrary
242program location and implement branching using masked execution and loop using
243special instructions around the loop body. In order to avoid CFG modifications
244that introduce irreducible control flow not handled by such hardware, a target
245must call `setRequiresStructuredCFG(true)` when being initialized.
246
247In addition, the ``XXXTargetMachine`` constructor should specify a
248``TargetDescription`` string that determines the data layout for the target
249machine, including characteristics such as pointer size, alignment, and
250endianness.  For example, the constructor for ``SparcTargetMachine`` contains
251the following:
252
253.. code-block:: c++
254
255  SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
256    : DataLayout("E-p:32:32-f128:128:128"),
257      Subtarget(M, FS), InstrInfo(Subtarget),
258      FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
259  }
260
261Hyphens separate portions of the ``TargetDescription`` string.
262
263* An upper-case "``E``" in the string indicates a big-endian target data model.
264  A lower-case "``e``" indicates little-endian.
265
266* "``p:``" is followed by pointer information: size, ABI alignment, and
267  preferred alignment.  If only two figures follow "``p:``", then the first
268  value is pointer size, and the second value is both ABI and preferred
269  alignment.
270
271* Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
272  "``a``" (corresponding to integer, floating point, vector, or aggregate).
273  "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
274  alignment. "``f``" is followed by three values: the first indicates the size
275  of a long double, then ABI alignment, and then ABI preferred alignment.
276
277Target Registration
278===================
279
280You must also register your target with the ``TargetRegistry``, which is what
281other LLVM tools use to be able to lookup and use your target at runtime.  The
282``TargetRegistry`` can be used directly, but for most targets there are helper
283templates which should take care of the work for you.
284
285All targets should declare a global ``Target`` object which is used to
286represent the target during registration.  Then, in the target's ``TargetInfo``
287library, the target should define that object and use the ``RegisterTarget``
288template to register the target.  For example, the Sparc registration code
289looks like this:
290
291.. code-block:: c++
292
293  Target llvm::TheSparcTarget;
294
295  extern "C" void LLVMInitializeSparcTargetInfo() {
296    RegisterTarget<Triple::sparc, /*HasJIT=*/false>
297      X(TheSparcTarget, "sparc", "Sparc");
298  }
299
300This allows the ``TargetRegistry`` to look up the target by name or by target
301triple.  In addition, most targets will also register additional features which
302are available in separate libraries.  These registration steps are separate,
303because some clients may wish to only link in some parts of the target --- the
304JIT code generator does not require the use of the assembler printer, for
305example.  Here is an example of registering the Sparc assembly printer:
306
307.. code-block:: c++
308
309  extern "C" void LLVMInitializeSparcAsmPrinter() {
310    RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
311  }
312
313For more information, see "`llvm/Target/TargetRegistry.h
314</doxygen/TargetRegistry_8h-source.html>`_".
315
316Register Set and Register Classes
317=================================
318
319You should describe a concrete target-specific class that represents the
320register file of a target machine.  This class is called ``XXXRegisterInfo``
321(where ``XXX`` identifies the target) and represents the class register file
322data that is used for register allocation.  It also describes the interactions
323between registers.
324
325You also need to define register classes to categorize related registers.  A
326register class should be added for groups of registers that are all treated the
327same way for some instruction.  Typical examples are register classes for
328integer, floating-point, or vector registers.  A register allocator allows an
329instruction to use any register in a specified register class to perform the
330instruction in a similar manner.  Register classes allocate virtual registers
331to instructions from these sets, and register classes let the
332target-independent register allocator automatically choose the actual
333registers.
334
335Much of the code for registers, including register definition, register
336aliases, and register classes, is generated by TableGen from
337``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
338and ``XXXGenRegisterInfo.inc`` output files.  Some of the code in the
339implementation of ``XXXRegisterInfo`` requires hand-coding.
340
341Defining a Register
342-------------------
343
344The ``XXXRegisterInfo.td`` file typically starts with register definitions for
345a target machine.  The ``Register`` class (specified in ``Target.td``) is used
346to define an object for each register.  The specified string ``n`` becomes the
347``Name`` of the register.  The basic ``Register`` object does not have any
348subregisters and does not specify any aliases.
349
350.. code-block:: llvm
351
352  class Register<string n> {
353    string Namespace = "";
354    string AsmName = n;
355    string Name = n;
356    int SpillSize = 0;
357    int SpillAlignment = 0;
358    list<Register> Aliases = [];
359    list<Register> SubRegs = [];
360    list<int> DwarfNumbers = [];
361  }
362
363For example, in the ``X86RegisterInfo.td`` file, there are register definitions
364that utilize the ``Register`` class, such as:
365
366.. code-block:: llvm
367
368  def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
369
370This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
371that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
372register.  For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
373representing 3 different modes: the first element is for X86-64, the second for
374exception handling (EH) on X86-32, and the third is generic. -1 is a special
375Dwarf number that indicates the gcc number is undefined, and -2 indicates the
376register number is invalid for this mode.
377
378From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
379generates this code in the ``X86GenRegisterInfo.inc`` file:
380
381.. code-block:: c++
382
383  static const unsigned GR8[] = { X86::AL, ... };
384
385  const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
386
387  const TargetRegisterDesc RegisterDescriptors[] = {
388    ...
389  { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
390
391From the register info file, TableGen generates a ``TargetRegisterDesc`` object
392for each register.  ``TargetRegisterDesc`` is defined in
393``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
394
395.. code-block:: c++
396
397  struct TargetRegisterDesc {
398    const char     *AsmName;      // Assembly language name for the register
399    const char     *Name;         // Printable name for the reg (for debugging)
400    const unsigned *AliasSet;     // Register Alias Set
401    const unsigned *SubRegs;      // Sub-register set
402    const unsigned *ImmSubRegs;   // Immediate sub-register set
403    const unsigned *SuperRegs;    // Super-register set
404  };
405
406TableGen uses the entire target description file (``.td``) to determine text
407names for the register (in the ``AsmName`` and ``Name`` fields of
408``TargetRegisterDesc``) and the relationships of other registers to the defined
409register (in the other ``TargetRegisterDesc`` fields).  In this example, other
410definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
411aliases for one another, so TableGen generates a null-terminated array
412(``AL_AliasSet``) for this register alias set.
413
414The ``Register`` class is commonly used as a base class for more complex
415classes.  In ``Target.td``, the ``Register`` class is the base for the
416``RegisterWithSubRegs`` class that is used to define registers that need to
417specify subregisters in the ``SubRegs`` list, as shown here:
418
419.. code-block:: llvm
420
421  class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
422    let SubRegs = subregs;
423  }
424
425In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
426a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
427and ``Rd``.  SPARC registers are identified by 5-bit ID numbers, which is a
428feature common to these subclasses.  Note the use of "``let``" expressions to
429override values that are initially defined in a superclass (such as ``SubRegs``
430field in the ``Rd`` class).
431
432.. code-block:: llvm
433
434  class SparcReg<string n> : Register<n> {
435    field bits<5> Num;
436    let Namespace = "SP";
437  }
438  // Ri - 32-bit integer registers
439  class Ri<bits<5> num, string n> :
440  SparcReg<n> {
441    let Num = num;
442  }
443  // Rf - 32-bit floating-point registers
444  class Rf<bits<5> num, string n> :
445  SparcReg<n> {
446    let Num = num;
447  }
448  // Rd - Slots in the FP register file for 64-bit floating-point values.
449  class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
450    let Num = num;
451    let SubRegs = subregs;
452  }
453
454In the ``SparcRegisterInfo.td`` file, there are register definitions that
455utilize these subclasses of ``Register``, such as:
456
457.. code-block:: llvm
458
459  def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
460  def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
461  ...
462  def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
463  def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
464  ...
465  def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
466  def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
467
468The last two registers shown above (``D0`` and ``D1``) are double-precision
469floating-point registers that are aliases for pairs of single-precision
470floating-point sub-registers.  In addition to aliases, the sub-register and
471super-register relationships of the defined register are in fields of a
472register's ``TargetRegisterDesc``.
473
474Defining a Register Class
475-------------------------
476
477The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
478object that represents a group of related registers and also defines the
479default allocation order of the registers.  A target description file
480``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
481using the following class:
482
483.. code-block:: llvm
484
485  class RegisterClass<string namespace,
486  list<ValueType> regTypes, int alignment, dag regList> {
487    string Namespace = namespace;
488    list<ValueType> RegTypes = regTypes;
489    int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
490    int Alignment = alignment;
491
492    // CopyCost is the cost of copying a value between two registers
493    // default value 1 means a single instruction
494    // A negative value means copying is extremely expensive or impossible
495    int CopyCost = 1;
496    dag MemberList = regList;
497
498    // for register classes that are subregisters of this class
499    list<RegisterClass> SubRegClassList = [];
500
501    code MethodProtos = [{}];  // to insert arbitrary code
502    code MethodBodies = [{}];
503  }
504
505To define a ``RegisterClass``, use the following 4 arguments:
506
507* The first argument of the definition is the name of the namespace.
508
509* The second argument is a list of ``ValueType`` register type values that are
510  defined in ``include/llvm/CodeGen/ValueTypes.td``.  Defined values include
511  integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
512  floating-point types (``f32``, ``f64``), and vector types (for example,
513  ``v8i16`` for an ``8 x i16`` vector).  All registers in a ``RegisterClass``
514  must have the same ``ValueType``, but some registers may store vector data in
515  different configurations.  For example a register that can process a 128-bit
516  vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
517  32-bit integers, and so on.
518
519* The third argument of the ``RegisterClass`` definition specifies the
520  alignment required of the registers when they are stored or loaded to
521  memory.
522
523* The final argument, ``regList``, specifies which registers are in this class.
524  If an alternative allocation order method is not specified, then ``regList``
525  also defines the order of allocation used by the register allocator.  Besides
526  simply listing registers with ``(add R0, R1, ...)``, more advanced set
527  operators are available.  See ``include/llvm/Target/Target.td`` for more
528  information.
529
530In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
531``FPRegs``, ``DFPRegs``, and ``IntRegs``.  For all three register classes, the
532first argument defines the namespace with the string "``SP``".  ``FPRegs``
533defines a group of 32 single-precision floating-point registers (``F0`` to
534``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
535(``D0-D15``).
536
537.. code-block:: llvm
538
539  // F0, F1, F2, ..., F31
540  def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
541
542  def DFPRegs : RegisterClass<"SP", [f64], 64,
543                              (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
544                                   D9, D10, D11, D12, D13, D14, D15)>;
545
546  def IntRegs : RegisterClass<"SP", [i32], 32,
547      (add L0, L1, L2, L3, L4, L5, L6, L7,
548           I0, I1, I2, I3, I4, I5,
549           O0, O1, O2, O3, O4, O5, O7,
550           G1,
551           // Non-allocatable regs:
552           G2, G3, G4,
553           O6,        // stack ptr
554           I6,        // frame ptr
555           I7,        // return address
556           G0,        // constant zero
557           G5, G6, G7 // reserved for kernel
558      )>;
559
560Using ``SparcRegisterInfo.td`` with TableGen generates several output files
561that are intended for inclusion in other source code that you write.
562``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
563be included in the header file for the implementation of the SPARC register
564implementation that you write (``SparcRegisterInfo.h``).  In
565``SparcGenRegisterInfo.h.inc`` a new structure is defined called
566``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base.  It also
567specifies types, based upon the defined register classes: ``DFPRegsClass``,
568``FPRegsClass``, and ``IntRegsClass``.
569
570``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
571included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
572implementation.  The code below shows only the generated integer registers and
573associated register classes.  The order of registers in ``IntRegs`` reflects
574the order in the definition of ``IntRegs`` in the target description file.
575
576.. code-block:: c++
577
578  // IntRegs Register Class...
579  static const unsigned IntRegs[] = {
580    SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
581    SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
582    SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
583    SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
584    SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
585    SP::G6, SP::G7,
586  };
587
588  // IntRegsVTs Register Class Value Types...
589  static const MVT::ValueType IntRegsVTs[] = {
590    MVT::i32, MVT::Other
591  };
592
593  namespace SP {   // Register class instances
594    DFPRegsClass    DFPRegsRegClass;
595    FPRegsClass     FPRegsRegClass;
596    IntRegsClass    IntRegsRegClass;
597  ...
598    // IntRegs Sub-register Classess...
599    static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
600      NULL
601    };
602  ...
603    // IntRegs Super-register Classess...
604    static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
605      NULL
606    };
607  ...
608    // IntRegs Register Class sub-classes...
609    static const TargetRegisterClass* const IntRegsSubclasses [] = {
610      NULL
611    };
612  ...
613    // IntRegs Register Class super-classes...
614    static const TargetRegisterClass* const IntRegsSuperclasses [] = {
615      NULL
616    };
617
618    IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
619      IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
620      IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
621  }
622
623The register allocators will avoid using reserved registers, and callee saved
624registers are not used until all the volatile registers have been used.  That
625is usually good enough, but in some cases it may be necessary to provide custom
626allocation orders.
627
628Implement a subclass of ``TargetRegisterInfo``
629----------------------------------------------
630
631The final step is to hand code portions of ``XXXRegisterInfo``, which
632implements the interface described in ``TargetRegisterInfo.h`` (see
633:ref:`TargetRegisterInfo`).  These functions return ``0``, ``NULL``, or
634``false``, unless overridden.  Here is a list of functions that are overridden
635for the SPARC implementation in ``SparcRegisterInfo.cpp``:
636
637* ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
638  order of the desired callee-save stack frame offset.
639
640* ``getReservedRegs`` --- Returns a bitset indexed by physical register
641  numbers, indicating if a particular register is unavailable.
642
643* ``hasFP`` --- Return a Boolean indicating if a function should have a
644  dedicated frame pointer register.
645
646* ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
647  instructions are used, this can be called to eliminate them.
648
649* ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
650  instructions that may use them.
651
652* ``emitPrologue`` --- Insert prologue code into the function.
653
654* ``emitEpilogue`` --- Insert epilogue code into the function.
655
656.. _instruction-set:
657
658Instruction Set
659===============
660
661During the early stages of code generation, the LLVM IR code is converted to a
662``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
663containing target instructions.  An ``SDNode`` has an opcode, operands, type
664requirements, and operation properties.  For example, is an operation
665commutative, does an operation load from memory.  The various operation node
666types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
667(values of the ``NodeType`` enum in the ``ISD`` namespace).
668
669TableGen uses the following target description (``.td``) input files to
670generate much of the code for instruction definition:
671
672* ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
673  other fundamental classes are defined.
674
675* ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
676  generators, contains ``SDTC*`` classes (selection DAG type constraint),
677  definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
678  ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
679  ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
680
681* ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
682  instructions.
683
684* ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
685  condition codes, and instructions of an instruction set.  For architecture
686  modifications, a different file name may be used.  For example, for Pentium
687  with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
688  MMX, this file is ``X86InstrMMX.td``.
689
690There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
691the target.  The ``XXX.td`` file includes the other ``.td`` input files, but
692its contents are only directly important for subtargets.
693
694You should describe a concrete target-specific class ``XXXInstrInfo`` that
695represents machine instructions supported by a target machine.
696``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
697which describes one instruction.  An instruction descriptor defines:
698
699* Opcode mnemonic
700* Number of operands
701* List of implicit register definitions and uses
702* Target-independent properties (such as memory access, is commutable)
703* Target-specific flags
704
705The Instruction class (defined in ``Target.td``) is mostly used as a base for
706more complex instruction classes.
707
708.. code-block:: llvm
709
710  class Instruction {
711    string Namespace = "";
712    dag OutOperandList;    // A dag containing the MI def operand list.
713    dag InOperandList;     // A dag containing the MI use operand list.
714    string AsmString = ""; // The .s format to print the instruction with.
715    list<dag> Pattern;     // Set to the DAG pattern for this instruction.
716    list<Register> Uses = [];
717    list<Register> Defs = [];
718    list<Predicate> Predicates = [];  // predicates turned into isel match code
719    ... remainder not shown for space ...
720  }
721
722A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
723target-specific instruction that is defined in ``XXXInstrInfo.td``.  The
724instruction objects should represent instructions from the architecture manual
725of the target machine (such as the SPARC Architecture Manual for the SPARC
726target).
727
728A single instruction from the architecture manual is often modeled as multiple
729target instructions, depending upon its operands.  For example, a manual might
730describe an add instruction that takes a register or an immediate operand.  An
731LLVM target could model this with two instructions named ``ADDri`` and
732``ADDrr``.
733
734You should define a class for each instruction category and define each opcode
735as a subclass of the category with appropriate parameters such as the fixed
736binary encoding of opcodes and extended opcodes.  You should map the register
737bits to the bits of the instruction in which they are encoded (for the JIT).
738Also you should specify how the instruction should be printed when the
739automatic assembly printer is used.
740
741As is described in the SPARC Architecture Manual, Version 8, there are three
742major 32-bit formats for instructions.  Format 1 is only for the ``CALL``
743instruction.  Format 2 is for branch on condition codes and ``SETHI`` (set high
744bits of a register) instructions.  Format 3 is for other instructions.
745
746Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
747``InstSP`` is a base class for other instruction classes.  Additional base
748classes are specified for more precise formats: for example in
749``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
750branches.  There are three other base classes: ``F3_1`` for register/register
751operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
752floating-point operations.  ``SparcInstrInfo.td`` also adds the base class
753``Pseudo`` for synthetic SPARC instructions.
754
755``SparcInstrInfo.td`` largely consists of operand and instruction definitions
756for the SPARC target.  In ``SparcInstrInfo.td``, the following target
757description file entry, ``LDrr``, defines the Load Integer instruction for a
758Word (the ``LD`` SPARC opcode) from a memory address to a register.  The first
759parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
760category of operation.  The second parameter (``000000``\ :sub:`2`) is the
761specific operation value for ``LD``/Load Word.  The third parameter is the
762output destination, which is a register operand and defined in the ``Register``
763target description file (``IntRegs``).
764
765.. code-block:: llvm
766
767  def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
768                   "ld [$addr], $dst",
769                   [(set i32:$dst, (load ADDRrr:$addr))]>;
770
771The fourth parameter is the input source, which uses the address operand
772``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
773
774.. code-block:: llvm
775
776  def MEMrr : Operand<i32> {
777    let PrintMethod = "printMemOperand";
778    let MIOperandInfo = (ops IntRegs, IntRegs);
779  }
780
781The fifth parameter is a string that is used by the assembly printer and can be
782left as an empty string until the assembly printer interface is implemented.
783The sixth and final parameter is the pattern used to match the instruction
784during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
785This parameter is detailed in the next section, :ref:`instruction-selector`.
786
787Instruction class definitions are not overloaded for different operand types,
788so separate versions of instructions are needed for register, memory, or
789immediate value operands.  For example, to perform a Load Integer instruction
790for a Word from an immediate operand to a register, the following instruction
791class is defined:
792
793.. code-block:: llvm
794
795  def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
796                   "ld [$addr], $dst",
797                   [(set i32:$dst, (load ADDRri:$addr))]>;
798
799Writing these definitions for so many similar instructions can involve a lot of
800cut and paste.  In ``.td`` files, the ``multiclass`` directive enables the
801creation of templates to define several instruction classes at once (using the
802``defm`` directive).  For example in ``SparcInstrInfo.td``, the ``multiclass``
803pattern ``F3_12`` is defined to create 2 instruction classes each time
804``F3_12`` is invoked:
805
806.. code-block:: llvm
807
808  multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
809    def rr  : F3_1 <2, Op3Val,
810                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
811                   !strconcat(OpcStr, " $b, $c, $dst"),
812                   [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
813    def ri  : F3_2 <2, Op3Val,
814                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
815                   !strconcat(OpcStr, " $b, $c, $dst"),
816                   [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
817  }
818
819So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
820instructions, as seen below, it creates four instruction objects: ``XORrr``,
821``XORri``, ``ADDrr``, and ``ADDri``.
822
823.. code-block:: llvm
824
825  defm XOR   : F3_12<"xor", 0b000011, xor>;
826  defm ADD   : F3_12<"add", 0b000000, add>;
827
828``SparcInstrInfo.td`` also includes definitions for condition codes that are
829referenced by branch instructions.  The following definitions in
830``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
831For example, the 10\ :sup:`th` bit represents the "greater than" condition for
832integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
833floats.
834
835.. code-block:: llvm
836
837  def ICC_NE  : ICC_VAL< 9>;  // Not Equal
838  def ICC_E   : ICC_VAL< 1>;  // Equal
839  def ICC_G   : ICC_VAL<10>;  // Greater
840  ...
841  def FCC_U   : FCC_VAL<23>;  // Unordered
842  def FCC_G   : FCC_VAL<22>;  // Greater
843  def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
844  ...
845
846(Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
847condition codes.  Care must be taken to ensure the values in ``Sparc.h``
848correspond to the values in ``SparcInstrInfo.td``.  I.e., ``SPCC::ICC_NE = 9``,
849``SPCC::FCC_U = 23`` and so on.)
850
851Instruction Operand Mapping
852---------------------------
853
854The code generator backend maps instruction operands to fields in the
855instruction.  Operands are assigned to unbound fields in the instruction in the
856order they are defined.  Fields are bound when they are assigned a value.  For
857example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
858format instruction having three operands.
859
860.. code-block:: llvm
861
862  def XNORrr  : F3_1<2, 0b000111,
863                     (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
864                     "xnor $b, $c, $dst",
865                     [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
866
867The instruction templates in ``SparcInstrFormats.td`` show the base class for
868``F3_1`` is ``InstSP``.
869
870.. code-block:: llvm
871
872  class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
873    field bits<32> Inst;
874    let Namespace = "SP";
875    bits<2> op;
876    let Inst{31-30} = op;
877    dag OutOperandList = outs;
878    dag InOperandList = ins;
879    let AsmString   = asmstr;
880    let Pattern = pattern;
881  }
882
883``InstSP`` leaves the ``op`` field unbound.
884
885.. code-block:: llvm
886
887  class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
888      : InstSP<outs, ins, asmstr, pattern> {
889    bits<5> rd;
890    bits<6> op3;
891    bits<5> rs1;
892    let op{1} = 1;   // Op = 2 or 3
893    let Inst{29-25} = rd;
894    let Inst{24-19} = op3;
895    let Inst{18-14} = rs1;
896  }
897
898``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
899fields.  ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
900``rs1`` fields.
901
902.. code-block:: llvm
903
904  class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
905             string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
906    bits<8> asi = 0; // asi not currently used
907    bits<5> rs2;
908    let op         = opVal;
909    let op3        = op3val;
910    let Inst{13}   = 0;     // i field = 0
911    let Inst{12-5} = asi;   // address space identifier
912    let Inst{4-0}  = rs2;
913  }
914
915``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields.  ``F3_1``
916format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
917fields.  This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
918and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
919
920Instruction Operand Name Mapping
921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
922
923TableGen will also generate a function called getNamedOperandIdx() which
924can be used to look up an operand's index in a MachineInstr based on its
925TableGen name.  Setting the UseNamedOperandTable bit in an instruction's
926TableGen definition will add all of its operands to an enumeration in the
927llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
928table, which can be queried using getNamedOperandIdx()
929
930.. code-block:: llvm
931
932  int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
933  int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b);     // => 1
934  int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c);     // => 2
935  int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d);     // => -1
936
937  ...
938
939The entries in the OpName enum are taken verbatim from the TableGen definitions,
940so operands with lowercase names will have lower case entries in the enum.
941
942To include the getNamedOperandIdx() function in your backend, you will need
943to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
944For example:
945
946XXXInstrInfo.cpp:
947
948.. code-block:: c++
949
950  #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
951  #include "XXXGenInstrInfo.inc"
952
953XXXInstrInfo.h:
954
955.. code-block:: c++
956
957  #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
958  #include "XXXGenInstrInfo.inc"
959
960  namespace XXX {
961    int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
962  } // End namespace XXX
963
964Instruction Operand Types
965^^^^^^^^^^^^^^^^^^^^^^^^^
966
967TableGen will also generate an enumeration consisting of all named Operand
968types defined in the backend, in the llvm::XXX::OpTypes namespace.
969Some common immediate Operand types (for instance i8, i32, i64, f32, f64)
970are defined for all targets in ``include/llvm/Target/Target.td``, and are
971available in each Target's OpTypes enum.  Also, only named Operand types appear
972in the enumeration: anonymous types are ignored.
973For example, the X86 backend defines ``brtarget`` and ``brtarget8``, both
974instances of the TableGen ``Operand`` class, which represent branch target
975operands:
976
977.. code-block:: llvm
978
979  def brtarget : Operand<OtherVT>;
980  def brtarget8 : Operand<OtherVT>;
981
982This results in:
983
984.. code-block:: c++
985
986  namespace X86 {
987  namespace OpTypes {
988  enum OperandType {
989    ...
990    brtarget,
991    brtarget8,
992    ...
993    i32imm,
994    i64imm,
995    ...
996    OPERAND_TYPE_LIST_END
997  } // End namespace OpTypes
998  } // End namespace X86
999
1000In typical TableGen fashion, to use the enum, you will need to define a
1001preprocessor macro:
1002
1003.. code-block:: c++
1004
1005  #define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum
1006  #include "XXXGenInstrInfo.inc"
1007
1008
1009Instruction Scheduling
1010----------------------
1011
1012Instruction itineraries can be queried using MCDesc::getSchedClass(). The
1013value can be named by an enumemation in llvm::XXX::Sched namespace generated
1014by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are
1015the same as provided in XXXSchedule.td plus a default NoItinerary class.
1016
1017Instruction Relation Mapping
1018----------------------------
1019
1020This TableGen feature is used to relate instructions with each other.  It is
1021particularly useful when you have multiple instruction formats and need to
1022switch between them after instruction selection.  This entire feature is driven
1023by relation models which can be defined in ``XXXInstrInfo.td`` files
1024according to the target-specific instruction set.  Relation models are defined
1025using ``InstrMapping`` class as a base.  TableGen parses all the models
1026and generates instruction relation maps using the specified information.
1027Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
1028along with the functions to query them.  For the detailed information on how to
1029use this feature, please refer to :doc:`HowToUseInstrMappings`.
1030
1031Implement a subclass of ``TargetInstrInfo``
1032-------------------------------------------
1033
1034The final step is to hand code portions of ``XXXInstrInfo``, which implements
1035the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
1036These functions return ``0`` or a Boolean or they assert, unless overridden.
1037Here's a list of functions that are overridden for the SPARC implementation in
1038``SparcInstrInfo.cpp``:
1039
1040* ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
1041  load from a stack slot, return the register number of the destination and the
1042  ``FrameIndex`` of the stack slot.
1043
1044* ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
1045  store to a stack slot, return the register number of the destination and the
1046  ``FrameIndex`` of the stack slot.
1047
1048* ``copyPhysReg`` --- Copy values between a pair of physical registers.
1049
1050* ``storeRegToStackSlot`` --- Store a register value to a stack slot.
1051
1052* ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
1053
1054* ``storeRegToAddr`` --- Store a register value to memory.
1055
1056* ``loadRegFromAddr`` --- Load a register value from memory.
1057
1058* ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
1059  store instruction for the specified operand(s).
1060
1061Branch Folding and If Conversion
1062--------------------------------
1063
1064Performance can be improved by combining instructions or by eliminating
1065instructions that are never reached.  The ``AnalyzeBranch`` method in
1066``XXXInstrInfo`` may be implemented to examine conditional instructions and
1067remove unnecessary instructions.  ``AnalyzeBranch`` looks at the end of a
1068machine basic block (MBB) for opportunities for improvement, such as branch
1069folding and if conversion.  The ``BranchFolder`` and ``IfConverter`` machine
1070function passes (see the source files ``BranchFolding.cpp`` and
1071``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
1072to improve the control flow graph that represents the instructions.
1073
1074Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
1075examined as models for your own ``AnalyzeBranch`` implementation.  Since SPARC
1076does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
1077shown below.
1078
1079``AnalyzeBranch`` returns a Boolean value and takes four parameters:
1080
1081* ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
1082
1083* ``MachineBasicBlock *&TBB`` --- A destination block that is returned.  For a
1084  conditional branch that evaluates to true, ``TBB`` is the destination.
1085
1086* ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
1087  false, ``FBB`` is returned as the destination.
1088
1089* ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
1090  condition for a conditional branch.
1091
1092In the simplest case, if a block ends without a branch, then it falls through
1093to the successor block.  No destination blocks are specified for either ``TBB``
1094or ``FBB``, so both parameters return ``NULL``.  The start of the
1095``AnalyzeBranch`` (see code below for the ARM target) shows the function
1096parameters and the code for the simplest case.
1097
1098.. code-block:: c++
1099
1100  bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1101                                   MachineBasicBlock *&TBB,
1102                                   MachineBasicBlock *&FBB,
1103                                   std::vector<MachineOperand> &Cond) const
1104  {
1105    MachineBasicBlock::iterator I = MBB.end();
1106    if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1107      return false;
1108
1109If a block ends with a single unconditional branch instruction, then
1110``AnalyzeBranch`` (shown below) should return the destination of that branch in
1111the ``TBB`` parameter.
1112
1113.. code-block:: c++
1114
1115    if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1116      TBB = LastInst->getOperand(0).getMBB();
1117      return false;
1118    }
1119
1120If a block ends with two unconditional branches, then the second branch is
1121never reached.  In that situation, as shown below, remove the last branch
1122instruction and return the penultimate branch in the ``TBB`` parameter.
1123
1124.. code-block:: c++
1125
1126    if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
1127        (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1128      TBB = SecondLastInst->getOperand(0).getMBB();
1129      I = LastInst;
1130      I->eraseFromParent();
1131      return false;
1132    }
1133
1134A block may end with a single conditional branch instruction that falls through
1135to successor block if the condition evaluates to false.  In that case,
1136``AnalyzeBranch`` (shown below) should return the destination of that
1137conditional branch in the ``TBB`` parameter and a list of operands in the
1138``Cond`` parameter to evaluate the condition.
1139
1140.. code-block:: c++
1141
1142    if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1143      // Block ends with fall-through condbranch.
1144      TBB = LastInst->getOperand(0).getMBB();
1145      Cond.push_back(LastInst->getOperand(1));
1146      Cond.push_back(LastInst->getOperand(2));
1147      return false;
1148    }
1149
1150If a block ends with both a conditional branch and an ensuing unconditional
1151branch, then ``AnalyzeBranch`` (shown below) should return the conditional
1152branch destination (assuming it corresponds to a conditional evaluation of
1153"``true``") in the ``TBB`` parameter and the unconditional branch destination
1154in the ``FBB`` (corresponding to a conditional evaluation of "``false``").  A
1155list of operands to evaluate the condition should be returned in the ``Cond``
1156parameter.
1157
1158.. code-block:: c++
1159
1160    unsigned SecondLastOpc = SecondLastInst->getOpcode();
1161
1162    if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
1163        (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
1164      TBB =  SecondLastInst->getOperand(0).getMBB();
1165      Cond.push_back(SecondLastInst->getOperand(1));
1166      Cond.push_back(SecondLastInst->getOperand(2));
1167      FBB = LastInst->getOperand(0).getMBB();
1168      return false;
1169    }
1170
1171For the last two cases (ending with a single conditional branch or ending with
1172one conditional and one unconditional branch), the operands returned in the
1173``Cond`` parameter can be passed to methods of other instructions to create new
1174branches or perform other operations.  An implementation of ``AnalyzeBranch``
1175requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
1176subsequent operations.
1177
1178``AnalyzeBranch`` should return false indicating success in most circumstances.
1179``AnalyzeBranch`` should only return true when the method is stumped about what
1180to do, for example, if a block has three terminating branches.
1181``AnalyzeBranch`` may return true if it encounters a terminator it cannot
1182handle, such as an indirect branch.
1183
1184.. _instruction-selector:
1185
1186Instruction Selector
1187====================
1188
1189LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
1190the ``SelectionDAG`` ideally represent native target instructions.  During code
1191generation, instruction selection passes are performed to convert non-native
1192DAG instructions into native target-specific instructions.  The pass described
1193in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
1194instruction selection.  Optionally, a pass may be defined (in
1195``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
1196instructions.  Later, the code in ``XXXISelLowering.cpp`` replaces or removes
1197operations and data types not supported natively (legalizes) in a
1198``SelectionDAG``.
1199
1200TableGen generates code for instruction selection using the following target
1201description input files:
1202
1203* ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
1204  target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
1205  included in ``XXXISelDAGToDAG.cpp``.
1206
1207* ``XXXCallingConv.td`` --- Contains the calling and return value conventions
1208  for the target architecture, and it generates ``XXXGenCallingConv.inc``,
1209  which is included in ``XXXISelLowering.cpp``.
1210
1211The implementation of an instruction selection pass must include a header that
1212declares the ``FunctionPass`` class or a subclass of ``FunctionPass``.  In
1213``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
1214selection pass into the queue of passes to run.
1215
1216The LLVM static compiler (``llc``) is an excellent tool for visualizing the
1217contents of DAGs.  To display the ``SelectionDAG`` before or after specific
1218processing phases, use the command line options for ``llc``, described at
1219:ref:`SelectionDAG-Process`.
1220
1221To describe instruction selector behavior, you should add patterns for lowering
1222LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
1223definitions in ``XXXInstrInfo.td``.  For example, in ``SparcInstrInfo.td``,
1224this entry defines a register store operation, and the last parameter describes
1225a pattern with the store DAG operator.
1226
1227.. code-block:: llvm
1228
1229  def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
1230                   "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;
1231
1232``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
1233
1234.. code-block:: llvm
1235
1236  def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
1237
1238The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
1239defined in an implementation of the Instructor Selector (such as
1240``SparcISelDAGToDAG.cpp``).
1241
1242In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
1243below:
1244
1245.. code-block:: llvm
1246
1247  def store : PatFrag<(ops node:$val, node:$ptr),
1248                      (st node:$val, node:$ptr), [{
1249    if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
1250      return !ST->isTruncatingStore() &&
1251             ST->getAddressingMode() == ISD::UNINDEXED;
1252    return false;
1253  }]>;
1254
1255``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
1256``SelectCode`` method that is used to call the appropriate processing method
1257for an instruction.  In this example, ``SelectCode`` calls ``Select_ISD_STORE``
1258for the ``ISD::STORE`` opcode.
1259
1260.. code-block:: c++
1261
1262  SDNode *SelectCode(SDValue N) {
1263    ...
1264    MVT::ValueType NVT = N.getNode()->getValueType(0);
1265    switch (N.getOpcode()) {
1266    case ISD::STORE: {
1267      switch (NVT) {
1268      default:
1269        return Select_ISD_STORE(N);
1270        break;
1271      }
1272      break;
1273    }
1274    ...
1275
1276The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
1277code for ``STrr`` is created for ``Select_ISD_STORE``.  The ``Emit_22`` method
1278is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
1279instruction.
1280
1281.. code-block:: c++
1282
1283  SDNode *Select_ISD_STORE(const SDValue &N) {
1284    SDValue Chain = N.getOperand(0);
1285    if (Predicate_store(N.getNode())) {
1286      SDValue N1 = N.getOperand(1);
1287      SDValue N2 = N.getOperand(2);
1288      SDValue CPTmp0;
1289      SDValue CPTmp1;
1290
1291      // Pattern: (st:void i32:i32:$src,
1292      //           ADDRrr:i32:$addr)<<P:Predicate_store>>
1293      // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1294      // Pattern complexity = 13  cost = 1  size = 0
1295      if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
1296          N1.getNode()->getValueType(0) == MVT::i32 &&
1297          N2.getNode()->getValueType(0) == MVT::i32) {
1298        return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1299      }
1300  ...
1301
1302The SelectionDAG Legalize Phase
1303-------------------------------
1304
1305The Legalize phase converts a DAG to use types and operations that are natively
1306supported by the target.  For natively unsupported types and operations, you
1307need to add code to the target-specific ``XXXTargetLowering`` implementation to
1308convert unsupported types and operations to supported ones.
1309
1310In the constructor for the ``XXXTargetLowering`` class, first use the
1311``addRegisterClass`` method to specify which types are supported and which
1312register classes are associated with them.  The code for the register classes
1313are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
1314``XXXGenRegisterInfo.h.inc``.  For example, the implementation of the
1315constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
1316starts with the following code:
1317
1318.. code-block:: c++
1319
1320  addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
1321  addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1322  addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1323
1324You should examine the node types in the ``ISD`` namespace
1325(``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
1326the target natively supports.  For operations that do **not** have native
1327support, add a callback to the constructor for the ``XXXTargetLowering`` class,
1328so the instruction selection process knows what to do.  The ``TargetLowering``
1329class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
1330
1331* ``setOperationAction`` --- General operation.
1332* ``setLoadExtAction`` --- Load with extension.
1333* ``setTruncStoreAction`` --- Truncating store.
1334* ``setIndexedLoadAction`` --- Indexed load.
1335* ``setIndexedStoreAction`` --- Indexed store.
1336* ``setConvertAction`` --- Type conversion.
1337* ``setCondCodeAction`` --- Support for a given condition code.
1338
1339Note: on older releases, ``setLoadXAction`` is used instead of
1340``setLoadExtAction``.  Also, on older releases, ``setCondCodeAction`` may not
1341be supported.  Examine your release to see what methods are specifically
1342supported.
1343
1344These callbacks are used to determine that an operation does or does not work
1345with a specified type (or types).  And in all cases, the third parameter is a
1346``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
1347``Legal``.  ``SparcISelLowering.cpp`` contains examples of all four
1348``LegalAction`` values.
1349
1350Promote
1351^^^^^^^
1352
1353For an operation without native support for a given type, the specified type
1354may be promoted to a larger type that is supported.  For example, SPARC does
1355not support a sign-extending load for Boolean values (``i1`` type), so in
1356``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
1357``i1`` type values to a large type before loading.
1358
1359.. code-block:: c++
1360
1361  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1362
1363Expand
1364^^^^^^
1365
1366For a type without native support, a value may need to be broken down further,
1367rather than promoted.  For an operation without native support, a combination
1368of other operations may be used to similar effect.  In SPARC, the
1369floating-point sine and cosine trig operations are supported by expansion to
1370other operations, as indicated by the third parameter, ``Expand``, to
1371``setOperationAction``:
1372
1373.. code-block:: c++
1374
1375  setOperationAction(ISD::FSIN, MVT::f32, Expand);
1376  setOperationAction(ISD::FCOS, MVT::f32, Expand);
1377
1378Custom
1379^^^^^^
1380
1381For some operations, simple type promotion or operation expansion may be
1382insufficient.  In some cases, a special intrinsic function must be implemented.
1383
1384For example, a constant value may require special treatment, or an operation
1385may require spilling and restoring registers in the stack and working with
1386register allocators.
1387
1388As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
1389from a floating point value to a signed integer, first the
1390``setOperationAction`` should be called with ``Custom`` as the third parameter:
1391
1392.. code-block:: c++
1393
1394  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1395
1396In the ``LowerOperation`` method, for each ``Custom`` operation, a case
1397statement should be added to indicate what function to call.  In the following
1398code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
1399
1400.. code-block:: c++
1401
1402  SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
1403    switch (Op.getOpcode()) {
1404    case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1405    ...
1406    }
1407  }
1408
1409Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
1410convert the floating-point value to an integer.
1411
1412.. code-block:: c++
1413
1414  static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
1415    assert(Op.getValueType() == MVT::i32);
1416    Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
1417    return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
1418  }
1419
1420Legal
1421^^^^^
1422
1423The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
1424**is** natively supported.  ``Legal`` represents the default condition, so it
1425is rarely used.  In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
1426operation to count the bits set in an integer) is natively supported only for
1427SPARC v9.  The following code enables the ``Expand`` conversion technique for
1428non-v9 SPARC implementations.
1429
1430.. code-block:: c++
1431
1432  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1433  ...
1434  if (TM.getSubtarget<SparcSubtarget>().isV9())
1435    setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1436
1437Calling Conventions
1438-------------------
1439
1440To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
1441interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
1442``lib/Target/TargetCallingConv.td``.  TableGen can take the target descriptor
1443file ``XXXGenCallingConv.td`` and generate the header file
1444``XXXGenCallingConv.inc``, which is typically included in
1445``XXXISelLowering.cpp``.  You can use the interfaces in
1446``TargetCallingConv.td`` to specify:
1447
1448* The order of parameter allocation.
1449
1450* Where parameters and return values are placed (that is, on the stack or in
1451  registers).
1452
1453* Which registers may be used.
1454
1455* Whether the caller or callee unwinds the stack.
1456
1457The following example demonstrates the use of the ``CCIfType`` and
1458``CCAssignToReg`` interfaces.  If the ``CCIfType`` predicate is true (that is,
1459if the current argument is of type ``f32`` or ``f64``), then the action is
1460performed.  In this case, the ``CCAssignToReg`` action assigns the argument
1461value to the first available register: either ``R0`` or ``R1``.
1462
1463.. code-block:: llvm
1464
1465  CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
1466
1467``SparcCallingConv.td`` contains definitions for a target-specific return-value
1468calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
1469(``CC_Sparc32``).  The definition of ``RetCC_Sparc32`` (shown below) indicates
1470which registers are used for specified scalar return types.  A single-precision
1471float is returned to register ``F0``, and a double-precision float goes to
1472register ``D0``.  A 32-bit integer is returned in register ``I0`` or ``I1``.
1473
1474.. code-block:: llvm
1475
1476  def RetCC_Sparc32 : CallingConv<[
1477    CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
1478    CCIfType<[f32], CCAssignToReg<[F0]>>,
1479    CCIfType<[f64], CCAssignToReg<[D0]>>
1480  ]>;
1481
1482The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
1483``CCAssignToStack``, which assigns the value to a stack slot with the specified
1484size and alignment.  In the example below, the first parameter, 4, indicates
1485the size of the slot, and the second parameter, also 4, indicates the stack
1486alignment along 4-byte units.  (Special cases: if size is zero, then the ABI
1487size is used; if alignment is zero, then the ABI alignment is used.)
1488
1489.. code-block:: llvm
1490
1491  def CC_Sparc32 : CallingConv<[
1492    // All arguments get passed in integer registers if there is space.
1493    CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
1494    CCAssignToStack<4, 4>
1495  ]>;
1496
1497``CCDelegateTo`` is another commonly used interface, which tries to find a
1498specified sub-calling convention, and, if a match is found, it is invoked.  In
1499the following example (in ``X86CallingConv.td``), the definition of
1500``RetCC_X86_32_C`` ends with ``CCDelegateTo``.  After the current value is
1501assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
1502invoked.
1503
1504.. code-block:: llvm
1505
1506  def RetCC_X86_32_C : CallingConv<[
1507    CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
1508    CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
1509    CCDelegateTo<RetCC_X86Common>
1510  ]>;
1511
1512``CCIfCC`` is an interface that attempts to match the given name to the current
1513calling convention.  If the name identifies the current calling convention,
1514then a specified action is invoked.  In the following example (in
1515``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
1516``RetCC_X86_32_Fast`` is invoked.  If the ``SSECall`` calling convention is in
1517use, then ``RetCC_X86_32_SSE`` is invoked.
1518
1519.. code-block:: llvm
1520
1521  def RetCC_X86_32 : CallingConv<[
1522    CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
1523    CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
1524    CCDelegateTo<RetCC_X86_32_C>
1525  ]>;
1526
1527Other calling convention interfaces include:
1528
1529* ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
1530
1531* ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
1532  attribute, then apply the action.
1533
1534* ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
1535  attribute, then apply the action.
1536
1537* ``CCIfNotVarArg <action>`` --- If the current function does not take a
1538  variable number of arguments, apply the action.
1539
1540* ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
1541  ``CCAssignToReg``, but with a shadow list of registers.
1542
1543* ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
1544  minimum specified size and alignment.
1545
1546* ``CCPromoteToType <type>`` --- Promote the current value to the specified
1547  type.
1548
1549* ``CallingConv <[actions]>`` --- Define each calling convention that is
1550  supported.
1551
1552Assembly Printer
1553================
1554
1555During the code emission stage, the code generator may utilize an LLVM pass to
1556produce assembly output.  To do this, you want to implement the code for a
1557printer that converts LLVM IR to a GAS-format assembly language for your target
1558machine, using the following steps:
1559
1560* Define all the assembly strings for your target, adding them to the
1561  instructions defined in the ``XXXInstrInfo.td`` file.  (See
1562  :ref:`instruction-set`.)  TableGen will produce an output file
1563  (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
1564  method for the ``XXXAsmPrinter`` class.
1565
1566* Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
1567  the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
1568
1569* Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
1570  ``TargetAsmInfo`` properties and sometimes new implementations for methods.
1571
1572* Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
1573  performs the LLVM-to-assembly conversion.
1574
1575The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
1576``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``.  Similarly,
1577``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
1578replacement values that override the default values in ``TargetAsmInfo.cpp``.
1579For example in ``SparcTargetAsmInfo.cpp``:
1580
1581.. code-block:: c++
1582
1583  SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
1584    Data16bitsDirective = "\t.half\t";
1585    Data32bitsDirective = "\t.word\t";
1586    Data64bitsDirective = 0;  // .xword is only supported by V9.
1587    ZeroDirective = "\t.skip\t";
1588    CommentString = "!";
1589    ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
1590  }
1591
1592The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
1593where the target specific ``TargetAsmInfo`` class uses an overridden methods:
1594``ExpandInlineAsm``.
1595
1596A target-specific implementation of ``AsmPrinter`` is written in
1597``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
1598the LLVM to printable assembly.  The implementation must include the following
1599headers that have declarations for the ``AsmPrinter`` and
1600``MachineFunctionPass`` classes.  The ``MachineFunctionPass`` is a subclass of
1601``FunctionPass``.
1602
1603.. code-block:: c++
1604
1605  #include "llvm/CodeGen/AsmPrinter.h"
1606  #include "llvm/CodeGen/MachineFunctionPass.h"
1607
1608As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
1609up the ``AsmPrinter``.  In ``SparcAsmPrinter``, a ``Mangler`` object is
1610instantiated to process variable names.
1611
1612In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
1613``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``.  In
1614``MachineFunctionPass``, the ``runOnFunction`` method invokes
1615``runOnMachineFunction``.  Target-specific implementations of
1616``runOnMachineFunction`` differ, but generally do the following to process each
1617machine function:
1618
1619* Call ``SetupMachineFunction`` to perform initialization.
1620
1621* Call ``EmitConstantPool`` to print out (to the output stream) constants which
1622  have been spilled to memory.
1623
1624* Call ``EmitJumpTableInfo`` to print out jump tables used by the current
1625  function.
1626
1627* Print out the label for the current function.
1628
1629* Print out the code for the function, including basic block labels and the
1630  assembly for the instruction (using ``printInstruction``)
1631
1632The ``XXXAsmPrinter`` implementation must also include the code generated by
1633TableGen that is output in the ``XXXGenAsmWriter.inc`` file.  The code in
1634``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
1635method that may call these methods:
1636
1637* ``printOperand``
1638* ``printMemOperand``
1639* ``printCCOperand`` (for conditional statements)
1640* ``printDataDirective``
1641* ``printDeclare``
1642* ``printImplicitDef``
1643* ``printInlineAsm``
1644
1645The implementations of ``printDeclare``, ``printImplicitDef``,
1646``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
1647adequate for printing assembly and do not need to be overridden.
1648
1649The ``printOperand`` method is implemented with a long ``switch``/``case``
1650statement for the type of operand: register, immediate, basic block, external
1651symbol, global address, constant pool index, or jump table index.  For an
1652instruction with a memory address operand, the ``printMemOperand`` method
1653should be implemented to generate the proper output.  Similarly,
1654``printCCOperand`` should be used to print a conditional operand.
1655
1656``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
1657called to shut down the assembly printer.  During ``doFinalization``, global
1658variables and constants are printed to output.
1659
1660Subtarget Support
1661=================
1662
1663Subtarget support is used to inform the code generation process of instruction
1664set variations for a given chip set.  For example, the LLVM SPARC
1665implementation provided covers three major versions of the SPARC microprocessor
1666architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
166764-bit architecture), and the UltraSPARC architecture.  V8 has 16
1668double-precision floating-point registers that are also usable as either 32
1669single-precision or 8 quad-precision registers.  V8 is also purely big-endian.
1670V9 has 32 double-precision floating-point registers that are also usable as 16
1671quad-precision registers, but cannot be used as single-precision registers.
1672The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
1673extensions.
1674
1675If subtarget support is needed, you should implement a target-specific
1676``XXXSubtarget`` class for your architecture.  This class should process the
1677command-line options ``-mcpu=`` and ``-mattr=``.
1678
1679TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
1680generate code in ``SparcGenSubtarget.inc``.  In ``Target.td``, shown below, the
1681``SubtargetFeature`` interface is defined.  The first 4 string parameters of
1682the ``SubtargetFeature`` interface are a feature name, an attribute set by the
1683feature, the value of the attribute, and a description of the feature.  (The
1684fifth parameter is a list of features whose presence is implied, and its
1685default value is an empty array.)
1686
1687.. code-block:: llvm
1688
1689  class SubtargetFeature<string n, string a, string v, string d,
1690                         list<SubtargetFeature> i = []> {
1691    string Name = n;
1692    string Attribute = a;
1693    string Value = v;
1694    string Desc = d;
1695    list<SubtargetFeature> Implies = i;
1696  }
1697
1698In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
1699following features.
1700
1701.. code-block:: llvm
1702
1703  def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
1704                       "Enable SPARC-V9 instructions">;
1705  def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
1706                       "V8DeprecatedInsts", "true",
1707                       "Enable deprecated V8 instructions in V9 mode">;
1708  def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
1709                       "Enable UltraSPARC Visual Instruction Set extensions">;
1710
1711Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
1712define particular SPARC processor subtypes that may have the previously
1713described features.
1714
1715.. code-block:: llvm
1716
1717  class Proc<string Name, list<SubtargetFeature> Features>
1718    : Processor<Name, NoItineraries, Features>;
1719
1720  def : Proc<"generic",         []>;
1721  def : Proc<"v8",              []>;
1722  def : Proc<"supersparc",      []>;
1723  def : Proc<"sparclite",       []>;
1724  def : Proc<"f934",            []>;
1725  def : Proc<"hypersparc",      []>;
1726  def : Proc<"sparclite86x",    []>;
1727  def : Proc<"sparclet",        []>;
1728  def : Proc<"tsc701",          []>;
1729  def : Proc<"v9",              [FeatureV9]>;
1730  def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
1731  def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
1732  def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
1733
1734From ``Target.td`` and ``Sparc.td`` files, the resulting
1735``SparcGenSubtarget.inc`` specifies enum values to identify the features,
1736arrays of constants to represent the CPU features and CPU subtypes, and the
1737``ParseSubtargetFeatures`` method that parses the features string that sets
1738specified subtarget options.  The generated ``SparcGenSubtarget.inc`` file
1739should be included in the ``SparcSubtarget.cpp``.  The target-specific
1740implementation of the ``XXXSubtarget`` method should follow this pseudocode:
1741
1742.. code-block:: c++
1743
1744  XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
1745    // Set the default features
1746    // Determine default and user specified characteristics of the CPU
1747    // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
1748    // Perform any additional operations
1749  }
1750
1751JIT Support
1752===========
1753
1754The implementation of a target machine optionally includes a Just-In-Time (JIT)
1755code generator that emits machine code and auxiliary structures as binary
1756output that can be written directly to memory.  To do this, implement JIT code
1757generation by performing the following steps:
1758
1759* Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
1760  that transforms target-machine instructions into relocatable machine
1761  code.
1762
1763* Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
1764  target-specific code-generation activities, such as emitting machine code and
1765  stubs.
1766
1767* Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
1768  through its ``getJITInfo`` method.
1769
1770There are several different approaches to writing the JIT support code.  For
1771instance, TableGen and target descriptor files may be used for creating a JIT
1772code generator, but are not mandatory.  For the Alpha and PowerPC target
1773machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
1774contains the binary coding of machine instructions and the
1775``getBinaryCodeForInstr`` method to access those codes.  Other JIT
1776implementations do not.
1777
1778Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
1779``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
1780``MachineCodeEmitter`` class containing code for several callback functions
1781that write data (in bytes, words, strings, etc.) to the output stream.
1782
1783Machine Code Emitter
1784--------------------
1785
1786In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
1787implemented as a function pass (subclass of ``MachineFunctionPass``).  The
1788target-specific implementation of ``runOnMachineFunction`` (invoked by
1789``runOnFunction`` in ``MachineFunctionPass``) iterates through the
1790``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
1791emit binary code.  ``emitInstruction`` is largely implemented with case
1792statements on the instruction types defined in ``XXXInstrInfo.h``.  For
1793example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
1794around the following ``switch``/``case`` statements:
1795
1796.. code-block:: c++
1797
1798  switch (Desc->TSFlags & X86::FormMask) {
1799  case X86II::Pseudo:  // for not yet implemented instructions
1800     ...               // or pseudo-instructions
1801     break;
1802  case X86II::RawFrm:  // for instructions with a fixed opcode value
1803     ...
1804     break;
1805  case X86II::AddRegFrm: // for instructions that have one register operand
1806     ...                 // added to their opcode
1807     break;
1808  case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
1809     ...                 // to specify a destination (register)
1810     break;
1811  case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
1812     ...                 // to specify a destination (memory)
1813     break;
1814  case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
1815     ...                 // to specify a source (register)
1816     break;
1817  case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
1818     ...                 // to specify a source (memory)
1819     break;
1820  case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on
1821  case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
1822  case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
1823  case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
1824     ...
1825     break;
1826  case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
1827  case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
1828  case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
1829  case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
1830     ...
1831     break;
1832  case X86II::MRMInitReg: // for instructions whose source and
1833     ...                  // destination are the same register
1834     break;
1835  }
1836
1837The implementations of these case statements often first emit the opcode and
1838then get the operand(s).  Then depending upon the operand, helper methods may
1839be called to process the operand(s).  For example, in ``X86CodeEmitter.cpp``,
1840for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
1841the opcode added to the register operand.  Then an object representing the
1842machine operand, ``MO1``, is extracted.  The helper methods such as
1843``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
1844``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
1845(``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
1846``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
1847and ``emitJumpTableAddress`` that emit the data into the output stream.)
1848
1849.. code-block:: c++
1850
1851  case X86II::AddRegFrm:
1852    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
1853
1854    if (CurOp != NumOps) {
1855      const MachineOperand &MO1 = MI.getOperand(CurOp++);
1856      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
1857      if (MO1.isImmediate())
1858        emitConstant(MO1.getImm(), Size);
1859      else {
1860        unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1861          : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1862        if (Opcode == X86::MOV64ri)
1863          rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
1864        if (MO1.isGlobalAddress()) {
1865          bool NeedStub = isa<Function>(MO1.getGlobal());
1866          bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
1867          emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1868                            NeedStub, isLazy);
1869        } else if (MO1.isExternalSymbol())
1870          emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1871        else if (MO1.isConstantPoolIndex())
1872          emitConstPoolAddress(MO1.getIndex(), rt);
1873        else if (MO1.isJumpTableIndex())
1874          emitJumpTableAddress(MO1.getIndex(), rt);
1875      }
1876    }
1877    break;
1878
1879In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
1880is a ``RelocationType`` enum that may be used to relocate addresses (for
1881example, a global address with a PIC base offset).  The ``RelocationType`` enum
1882for that target is defined in the short target-specific ``XXXRelocations.h``
1883file.  The ``RelocationType`` is used by the ``relocate`` method defined in
1884``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
1885
1886For example, ``X86Relocations.h`` specifies the following relocation types for
1887the X86 addresses.  In all four cases, the relocated value is added to the
1888value already in memory.  For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
1889there is an additional initial adjustment.
1890
1891.. code-block:: c++
1892
1893  enum RelocationType {
1894    reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
1895    reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
1896    reloc_absolute_word = 2, // absolute relocation; no additional adjustment
1897    reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
1898  };
1899
1900Target JIT Info
1901---------------
1902
1903``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
1904code-generation activities, such as emitting machine code and stubs.  At
1905minimum, a target-specific version of ``XXXJITInfo`` implements the following:
1906
1907* ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
1908  function that is used for compilation.
1909
1910* ``emitFunctionStub`` --- Returns a native function with a specified address
1911  for a callback function.
1912
1913* ``relocate`` --- Changes the addresses of referenced globals, based on
1914  relocation types.
1915
1916* Callback function that are wrappers to a function stub that is used when the
1917  real target is not initially known.
1918
1919``getLazyResolverFunction`` is generally trivial to implement.  It makes the
1920incoming parameter as the global ``JITCompilerFunction`` and returns the
1921callback function that will be used a function wrapper.  For the Alpha target
1922(in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
1923simply:
1924
1925.. code-block:: c++
1926
1927  TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
1928                                              JITCompilerFn F) {
1929    JITCompilerFunction = F;
1930    return AlphaCompilationCallback;
1931  }
1932
1933For the X86 target, the ``getLazyResolverFunction`` implementation is a little
1934more complicated, because it returns a different callback function for
1935processors with SSE instructions and XMM registers.
1936
1937The callback function initially saves and later restores the callee register
1938values, incoming arguments, and frame and return address.  The callback
1939function needs low-level access to the registers or stack, so it is typically
1940implemented with assembler.
1941
1942