1===================== 2YAML I/O 3===================== 4 5.. contents:: 6 :local: 7 8Introduction to YAML 9==================== 10 11YAML is a human readable data serialization language. The full YAML language 12spec can be read at `yaml.org 13<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_. The simplest form of 14yaml is just "scalars", "mappings", and "sequences". A scalar is any number 15or string. The pound/hash symbol (#) begins a comment line. A mapping is 16a set of key-value pairs where the key ends with a colon. For example: 17 18.. code-block:: yaml 19 20 # a mapping 21 name: Tom 22 hat-size: 7 23 24A sequence is a list of items where each item starts with a leading dash ('-'). 25For example: 26 27.. code-block:: yaml 28 29 # a sequence 30 - x86 31 - x86_64 32 - PowerPC 33 34You can combine mappings and sequences by indenting. For example a sequence 35of mappings in which one of the mapping values is itself a sequence: 36 37.. code-block:: yaml 38 39 # a sequence of mappings with one key's value being a sequence 40 - name: Tom 41 cpus: 42 - x86 43 - x86_64 44 - name: Bob 45 cpus: 46 - x86 47 - name: Dan 48 cpus: 49 - PowerPC 50 - x86 51 52Sometime sequences are known to be short and the one entry per line is too 53verbose, so YAML offers an alternate syntax for sequences called a "Flow 54Sequence" in which you put comma separated sequence elements into square 55brackets. The above example could then be simplified to : 56 57 58.. code-block:: yaml 59 60 # a sequence of mappings with one key's value being a flow sequence 61 - name: Tom 62 cpus: [ x86, x86_64 ] 63 - name: Bob 64 cpus: [ x86 ] 65 - name: Dan 66 cpus: [ PowerPC, x86 ] 67 68 69Introduction to YAML I/O 70======================== 71 72The use of indenting makes the YAML easy for a human to read and understand, 73but having a program read and write YAML involves a lot of tedious details. 74The YAML I/O library structures and simplifies reading and writing YAML 75documents. 76 77YAML I/O assumes you have some "native" data structures which you want to be 78able to dump as YAML and recreate from YAML. The first step is to try 79writing example YAML for your data structures. You may find after looking at 80possible YAML representations that a direct mapping of your data structures 81to YAML is not very readable. Often the fields are not in the order that 82a human would find readable. Or the same information is replicated in multiple 83locations, making it hard for a human to write such YAML correctly. 84 85In relational database theory there is a design step called normalization in 86which you reorganize fields and tables. The same considerations need to 87go into the design of your YAML encoding. But, you may not want to change 88your existing native data structures. Therefore, when writing out YAML 89there may be a normalization step, and when reading YAML there would be a 90corresponding denormalization step. 91 92YAML I/O uses a non-invasive, traits based design. YAML I/O defines some 93abstract base templates. You specialize those templates on your data types. 94For instance, if you have an enumerated type FooBar you could specialize 95ScalarEnumerationTraits on that type and define the enumeration() method: 96 97.. code-block:: c++ 98 99 using llvm::yaml::ScalarEnumerationTraits; 100 using llvm::yaml::IO; 101 102 template <> 103 struct ScalarEnumerationTraits<FooBar> { 104 static void enumeration(IO &io, FooBar &value) { 105 ... 106 } 107 }; 108 109 110As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for 111both reading and writing YAML. That is, the mapping between in-memory enum 112values and the YAML string representation is only in one place. 113This assures that the code for writing and parsing of YAML stays in sync. 114 115To specify a YAML mappings, you define a specialization on 116llvm::yaml::MappingTraits. 117If your native data structure happens to be a struct that is already normalized, 118then the specialization is simple. For example: 119 120.. code-block:: c++ 121 122 using llvm::yaml::MappingTraits; 123 using llvm::yaml::IO; 124 125 template <> 126 struct MappingTraits<Person> { 127 static void mapping(IO &io, Person &info) { 128 io.mapRequired("name", info.name); 129 io.mapOptional("hat-size", info.hatSize); 130 } 131 }; 132 133 134A YAML sequence is automatically inferred if you data type has begin()/end() 135iterators and a push_back() method. Therefore any of the STL containers 136(such as std::vector<>) will automatically translate to YAML sequences. 137 138Once you have defined specializations for your data types, you can 139programmatically use YAML I/O to write a YAML document: 140 141.. code-block:: c++ 142 143 using llvm::yaml::Output; 144 145 Person tom; 146 tom.name = "Tom"; 147 tom.hatSize = 8; 148 Person dan; 149 dan.name = "Dan"; 150 dan.hatSize = 7; 151 std::vector<Person> persons; 152 persons.push_back(tom); 153 persons.push_back(dan); 154 155 Output yout(llvm::outs()); 156 yout << persons; 157 158This would write the following: 159 160.. code-block:: yaml 161 162 - name: Tom 163 hat-size: 8 164 - name: Dan 165 hat-size: 7 166 167And you can also read such YAML documents with the following code: 168 169.. code-block:: c++ 170 171 using llvm::yaml::Input; 172 173 typedef std::vector<Person> PersonList; 174 std::vector<PersonList> docs; 175 176 Input yin(document.getBuffer()); 177 yin >> docs; 178 179 if ( yin.error() ) 180 return; 181 182 // Process read document 183 for ( PersonList &pl : docs ) { 184 for ( Person &person : pl ) { 185 cout << "name=" << person.name; 186 } 187 } 188 189One other feature of YAML is the ability to define multiple documents in a 190single file. That is why reading YAML produces a vector of your document type. 191 192 193 194Error Handling 195============== 196 197When parsing a YAML document, if the input does not match your schema (as 198expressed in your XxxTraits<> specializations). YAML I/O 199will print out an error message and your Input object's error() method will 200return true. For instance the following document: 201 202.. code-block:: yaml 203 204 - name: Tom 205 shoe-size: 12 206 - name: Dan 207 hat-size: 7 208 209Has a key (shoe-size) that is not defined in the schema. YAML I/O will 210automatically generate this error: 211 212.. code-block:: yaml 213 214 YAML:2:2: error: unknown key 'shoe-size' 215 shoe-size: 12 216 ^~~~~~~~~ 217 218Similar errors are produced for other input not conforming to the schema. 219 220 221Scalars 222======= 223 224YAML scalars are just strings (i.e. not a sequence or mapping). The YAML I/O 225library provides support for translating between YAML scalars and specific 226C++ types. 227 228 229Built-in types 230-------------- 231The following types have built-in support in YAML I/O: 232 233* bool 234* float 235* double 236* StringRef 237* std::string 238* int64_t 239* int32_t 240* int16_t 241* int8_t 242* uint64_t 243* uint32_t 244* uint16_t 245* uint8_t 246 247That is, you can use those types in fields of MappingTraits or as element type 248in sequence. When reading, YAML I/O will validate that the string found 249is convertible to that type and error out if not. 250 251 252Unique types 253------------ 254Given that YAML I/O is trait based, the selection of how to convert your data 255to YAML is based on the type of your data. But in C++ type matching, typedefs 256do not generate unique type names. That means if you have two typedefs of 257unsigned int, to YAML I/O both types look exactly like unsigned int. To 258facilitate make unique type names, YAML I/O provides a macro which is used 259like a typedef on built-in types, but expands to create a class with conversion 260operators to and from the base type. For example: 261 262.. code-block:: c++ 263 264 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags) 265 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags) 266 267This generates two classes MyFooFlags and MyBarFlags which you can use in your 268native data structures instead of uint32_t. They are implicitly 269converted to and from uint32_t. The point of creating these unique types 270is that you can now specify traits on them to get different YAML conversions. 271 272Hex types 273--------- 274An example use of a unique type is that YAML I/O provides fixed sized unsigned 275integers that are written with YAML I/O as hexadecimal instead of the decimal 276format used by the built-in integer types: 277 278* Hex64 279* Hex32 280* Hex16 281* Hex8 282 283You can use llvm::yaml::Hex32 instead of uint32_t and the only different will 284be that when YAML I/O writes out that type it will be formatted in hexadecimal. 285 286 287ScalarEnumerationTraits 288----------------------- 289YAML I/O supports translating between in-memory enumerations and a set of string 290values in YAML documents. This is done by specializing ScalarEnumerationTraits<> 291on your enumeration type and define a enumeration() method. 292For instance, suppose you had an enumeration of CPUs and a struct with it as 293a field: 294 295.. code-block:: c++ 296 297 enum CPUs { 298 cpu_x86_64 = 5, 299 cpu_x86 = 7, 300 cpu_PowerPC = 8 301 }; 302 303 struct Info { 304 CPUs cpu; 305 uint32_t flags; 306 }; 307 308To support reading and writing of this enumeration, you can define a 309ScalarEnumerationTraits specialization on CPUs, which can then be used 310as a field type: 311 312.. code-block:: c++ 313 314 using llvm::yaml::ScalarEnumerationTraits; 315 using llvm::yaml::MappingTraits; 316 using llvm::yaml::IO; 317 318 template <> 319 struct ScalarEnumerationTraits<CPUs> { 320 static void enumeration(IO &io, CPUs &value) { 321 io.enumCase(value, "x86_64", cpu_x86_64); 322 io.enumCase(value, "x86", cpu_x86); 323 io.enumCase(value, "PowerPC", cpu_PowerPC); 324 } 325 }; 326 327 template <> 328 struct MappingTraits<Info> { 329 static void mapping(IO &io, Info &info) { 330 io.mapRequired("cpu", info.cpu); 331 io.mapOptional("flags", info.flags, 0); 332 } 333 }; 334 335When reading YAML, if the string found does not match any of the strings 336specified by enumCase() methods, an error is automatically generated. 337When writing YAML, if the value being written does not match any of the values 338specified by the enumCase() methods, a runtime assertion is triggered. 339 340 341BitValue 342-------- 343Another common data structure in C++ is a field where each bit has a unique 344meaning. This is often used in a "flags" field. YAML I/O has support for 345converting such fields to a flow sequence. For instance suppose you 346had the following bit flags defined: 347 348.. code-block:: c++ 349 350 enum { 351 flagsPointy = 1 352 flagsHollow = 2 353 flagsFlat = 4 354 flagsRound = 8 355 }; 356 357 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags) 358 359To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<> 360on MyFlags and provide the bit values and their names. 361 362.. code-block:: c++ 363 364 using llvm::yaml::ScalarBitSetTraits; 365 using llvm::yaml::MappingTraits; 366 using llvm::yaml::IO; 367 368 template <> 369 struct ScalarBitSetTraits<MyFlags> { 370 static void bitset(IO &io, MyFlags &value) { 371 io.bitSetCase(value, "hollow", flagHollow); 372 io.bitSetCase(value, "flat", flagFlat); 373 io.bitSetCase(value, "round", flagRound); 374 io.bitSetCase(value, "pointy", flagPointy); 375 } 376 }; 377 378 struct Info { 379 StringRef name; 380 MyFlags flags; 381 }; 382 383 template <> 384 struct MappingTraits<Info> { 385 static void mapping(IO &io, Info& info) { 386 io.mapRequired("name", info.name); 387 io.mapRequired("flags", info.flags); 388 } 389 }; 390 391With the above, YAML I/O (when writing) will test mask each value in the 392bitset trait against the flags field, and each that matches will 393cause the corresponding string to be added to the flow sequence. The opposite 394is done when reading and any unknown string values will result in a error. With 395the above schema, a same valid YAML document is: 396 397.. code-block:: yaml 398 399 name: Tom 400 flags: [ pointy, flat ] 401 402Sometimes a "flags" field might contains an enumeration part 403defined by a bit-mask. 404 405.. code-block:: c++ 406 407 enum { 408 flagsFeatureA = 1, 409 flagsFeatureB = 2, 410 flagsFeatureC = 4, 411 412 flagsCPUMask = 24, 413 414 flagsCPU1 = 8, 415 flagsCPU2 = 16 416 }; 417 418To support reading and writing such fields, you need to use the maskedBitSet() 419method and provide the bit values, their names and the enumeration mask. 420 421.. code-block:: c++ 422 423 template <> 424 struct ScalarBitSetTraits<MyFlags> { 425 static void bitset(IO &io, MyFlags &value) { 426 io.bitSetCase(value, "featureA", flagsFeatureA); 427 io.bitSetCase(value, "featureB", flagsFeatureB); 428 io.bitSetCase(value, "featureC", flagsFeatureC); 429 io.maskedBitSetCase(value, "CPU1", flagsCPU1, flagsCPUMask); 430 io.maskedBitSetCase(value, "CPU2", flagsCPU2, flagsCPUMask); 431 } 432 }; 433 434YAML I/O (when writing) will apply the enumeration mask to the flags field, 435and compare the result and values from the bitset. As in case of a regular 436bitset, each that matches will cause the corresponding string to be added 437to the flow sequence. 438 439Custom Scalar 440------------- 441Sometimes for readability a scalar needs to be formatted in a custom way. For 442instance your internal data structure may use a integer for time (seconds since 443some epoch), but in YAML it would be much nicer to express that integer in 444some time format (e.g. 4-May-2012 10:30pm). YAML I/O has a way to support 445custom formatting and parsing of scalar types by specializing ScalarTraits<> on 446your data type. When writing, YAML I/O will provide the native type and 447your specialization must create a temporary llvm::StringRef. When reading, 448YAML I/O will provide an llvm::StringRef of scalar and your specialization 449must convert that to your native data type. An outline of a custom scalar type 450looks like: 451 452.. code-block:: c++ 453 454 using llvm::yaml::ScalarTraits; 455 using llvm::yaml::IO; 456 457 template <> 458 struct ScalarTraits<MyCustomType> { 459 static void output(const T &value, void*, llvm::raw_ostream &out) { 460 out << value; // do custom formatting here 461 } 462 static StringRef input(StringRef scalar, void*, T &value) { 463 // do custom parsing here. Return the empty string on success, 464 // or an error message on failure. 465 return StringRef(); 466 } 467 // Determine if this scalar needs quotes. 468 static bool mustQuote(StringRef) { return true; } 469 }; 470 471Block Scalars 472------------- 473 474YAML block scalars are string literals that are represented in YAML using the 475literal block notation, just like the example shown below: 476 477.. code-block:: yaml 478 479 text: | 480 First line 481 Second line 482 483The YAML I/O library provides support for translating between YAML block scalars 484and specific C++ types by allowing you to specialize BlockScalarTraits<> on 485your data type. The library doesn't provide any built-in support for block 486scalar I/O for types like std::string and llvm::StringRef as they are already 487supported by YAML I/O and use the ordinary scalar notation by default. 488 489BlockScalarTraits specializations are very similar to the 490ScalarTraits specialization - YAML I/O will provide the native type and your 491specialization must create a temporary llvm::StringRef when writing, and 492it will also provide an llvm::StringRef that has the value of that block scalar 493and your specialization must convert that to your native data type when reading. 494An example of a custom type with an appropriate specialization of 495BlockScalarTraits is shown below: 496 497.. code-block:: c++ 498 499 using llvm::yaml::BlockScalarTraits; 500 using llvm::yaml::IO; 501 502 struct MyStringType { 503 std::string Str; 504 }; 505 506 template <> 507 struct BlockScalarTraits<MyStringType> { 508 static void output(const MyStringType &Value, void *Ctxt, 509 llvm::raw_ostream &OS) { 510 OS << Value.Str; 511 } 512 513 static StringRef input(StringRef Scalar, void *Ctxt, 514 MyStringType &Value) { 515 Value.Str = Scalar.str(); 516 return StringRef(); 517 } 518 }; 519 520 521 522Mappings 523======== 524 525To be translated to or from a YAML mapping for your type T you must specialize 526llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)" 527method. If your native data structures use pointers to a class everywhere, 528you can specialize on the class pointer. Examples: 529 530.. code-block:: c++ 531 532 using llvm::yaml::MappingTraits; 533 using llvm::yaml::IO; 534 535 // Example of struct Foo which is used by value 536 template <> 537 struct MappingTraits<Foo> { 538 static void mapping(IO &io, Foo &foo) { 539 io.mapOptional("size", foo.size); 540 ... 541 } 542 }; 543 544 // Example of struct Bar which is natively always a pointer 545 template <> 546 struct MappingTraits<Bar*> { 547 static void mapping(IO &io, Bar *&bar) { 548 io.mapOptional("size", bar->size); 549 ... 550 } 551 }; 552 553 554No Normalization 555---------------- 556 557The mapping() method is responsible, if needed, for normalizing and 558denormalizing. In a simple case where the native data structure requires no 559normalization, the mapping method just uses mapOptional() or mapRequired() to 560bind the struct's fields to YAML key names. For example: 561 562.. code-block:: c++ 563 564 using llvm::yaml::MappingTraits; 565 using llvm::yaml::IO; 566 567 template <> 568 struct MappingTraits<Person> { 569 static void mapping(IO &io, Person &info) { 570 io.mapRequired("name", info.name); 571 io.mapOptional("hat-size", info.hatSize); 572 } 573 }; 574 575 576Normalization 577---------------- 578 579When [de]normalization is required, the mapping() method needs a way to access 580normalized values as fields. To help with this, there is 581a template MappingNormalization<> which you can then use to automatically 582do the normalization and denormalization. The template is used to create 583a local variable in your mapping() method which contains the normalized keys. 584 585Suppose you have native data type 586Polar which specifies a position in polar coordinates (distance, angle): 587 588.. code-block:: c++ 589 590 struct Polar { 591 float distance; 592 float angle; 593 }; 594 595but you've decided the normalized YAML for should be in x,y coordinates. That 596is, you want the yaml to look like: 597 598.. code-block:: yaml 599 600 x: 10.3 601 y: -4.7 602 603You can support this by defining a MappingTraits that normalizes the polar 604coordinates to x,y coordinates when writing YAML and denormalizes x,y 605coordinates into polar when reading YAML. 606 607.. code-block:: c++ 608 609 using llvm::yaml::MappingTraits; 610 using llvm::yaml::IO; 611 612 template <> 613 struct MappingTraits<Polar> { 614 615 class NormalizedPolar { 616 public: 617 NormalizedPolar(IO &io) 618 : x(0.0), y(0.0) { 619 } 620 NormalizedPolar(IO &, Polar &polar) 621 : x(polar.distance * cos(polar.angle)), 622 y(polar.distance * sin(polar.angle)) { 623 } 624 Polar denormalize(IO &) { 625 return Polar(sqrt(x*x+y*y), arctan(x,y)); 626 } 627 628 float x; 629 float y; 630 }; 631 632 static void mapping(IO &io, Polar &polar) { 633 MappingNormalization<NormalizedPolar, Polar> keys(io, polar); 634 635 io.mapRequired("x", keys->x); 636 io.mapRequired("y", keys->y); 637 } 638 }; 639 640When writing YAML, the local variable "keys" will be a stack allocated 641instance of NormalizedPolar, constructed from the supplied polar object which 642initializes it x and y fields. The mapRequired() methods then write out the x 643and y values as key/value pairs. 644 645When reading YAML, the local variable "keys" will be a stack allocated instance 646of NormalizedPolar, constructed by the empty constructor. The mapRequired 647methods will find the matching key in the YAML document and fill in the x and y 648fields of the NormalizedPolar object keys. At the end of the mapping() method 649when the local keys variable goes out of scope, the denormalize() method will 650automatically be called to convert the read values back to polar coordinates, 651and then assigned back to the second parameter to mapping(). 652 653In some cases, the normalized class may be a subclass of the native type and 654could be returned by the denormalize() method, except that the temporary 655normalized instance is stack allocated. In these cases, the utility template 656MappingNormalizationHeap<> can be used instead. It just like 657MappingNormalization<> except that it heap allocates the normalized object 658when reading YAML. It never destroys the normalized object. The denormalize() 659method can this return "this". 660 661 662Default values 663-------------- 664Within a mapping() method, calls to io.mapRequired() mean that that key is 665required to exist when parsing YAML documents, otherwise YAML I/O will issue an 666error. 667 668On the other hand, keys registered with io.mapOptional() are allowed to not 669exist in the YAML document being read. So what value is put in the field 670for those optional keys? 671There are two steps to how those optional fields are filled in. First, the 672second parameter to the mapping() method is a reference to a native class. That 673native class must have a default constructor. Whatever value the default 674constructor initially sets for an optional field will be that field's value. 675Second, the mapOptional() method has an optional third parameter. If provided 676it is the value that mapOptional() should set that field to if the YAML document 677does not have that key. 678 679There is one important difference between those two ways (default constructor 680and third parameter to mapOptional). When YAML I/O generates a YAML document, 681if the mapOptional() third parameter is used, if the actual value being written 682is the same as (using ==) the default value, then that key/value is not written. 683 684 685Order of Keys 686-------------- 687 688When writing out a YAML document, the keys are written in the order that the 689calls to mapRequired()/mapOptional() are made in the mapping() method. This 690gives you a chance to write the fields in an order that a human reader of 691the YAML document would find natural. This may be different that the order 692of the fields in the native class. 693 694When reading in a YAML document, the keys in the document can be in any order, 695but they are processed in the order that the calls to mapRequired()/mapOptional() 696are made in the mapping() method. That enables some interesting 697functionality. For instance, if the first field bound is the cpu and the second 698field bound is flags, and the flags are cpu specific, you can programmatically 699switch how the flags are converted to and from YAML based on the cpu. 700This works for both reading and writing. For example: 701 702.. code-block:: c++ 703 704 using llvm::yaml::MappingTraits; 705 using llvm::yaml::IO; 706 707 struct Info { 708 CPUs cpu; 709 uint32_t flags; 710 }; 711 712 template <> 713 struct MappingTraits<Info> { 714 static void mapping(IO &io, Info &info) { 715 io.mapRequired("cpu", info.cpu); 716 // flags must come after cpu for this to work when reading yaml 717 if ( info.cpu == cpu_x86_64 ) 718 io.mapRequired("flags", *(My86_64Flags*)info.flags); 719 else 720 io.mapRequired("flags", *(My86Flags*)info.flags); 721 } 722 }; 723 724 725Tags 726---- 727 728The YAML syntax supports tags as a way to specify the type of a node before 729it is parsed. This allows dynamic types of nodes. But the YAML I/O model uses 730static typing, so there are limits to how you can use tags with the YAML I/O 731model. Recently, we added support to YAML I/O for checking/setting the optional 732tag on a map. Using this functionality it is even possbile to support different 733mappings, as long as they are convertable. 734 735To check a tag, inside your mapping() method you can use io.mapTag() to specify 736what the tag should be. This will also add that tag when writing yaml. 737 738Validation 739---------- 740 741Sometimes in a yaml map, each key/value pair is valid, but the combination is 742not. This is similar to something having no syntax errors, but still having 743semantic errors. To support semantic level checking, YAML I/O allows 744an optional ``validate()`` method in a MappingTraits template specialization. 745 746When parsing yaml, the ``validate()`` method is call *after* all key/values in 747the map have been processed. Any error message returned by the ``validate()`` 748method during input will be printed just a like a syntax error would be printed. 749When writing yaml, the ``validate()`` method is called *before* the yaml 750key/values are written. Any error during output will trigger an ``assert()`` 751because it is a programming error to have invalid struct values. 752 753 754.. code-block:: c++ 755 756 using llvm::yaml::MappingTraits; 757 using llvm::yaml::IO; 758 759 struct Stuff { 760 ... 761 }; 762 763 template <> 764 struct MappingTraits<Stuff> { 765 static void mapping(IO &io, Stuff &stuff) { 766 ... 767 } 768 static StringRef validate(IO &io, Stuff &stuff) { 769 // Look at all fields in 'stuff' and if there 770 // are any bad values return a string describing 771 // the error. Otherwise return an empty string. 772 return StringRef(); 773 } 774 }; 775 776Flow Mapping 777------------ 778A YAML "flow mapping" is a mapping that uses the inline notation 779(e.g { x: 1, y: 0 } ) when written to YAML. To specify that a type should be 780written in YAML using flow mapping, your MappingTraits specialization should 781add "static const bool flow = true;". For instance: 782 783.. code-block:: c++ 784 785 using llvm::yaml::MappingTraits; 786 using llvm::yaml::IO; 787 788 struct Stuff { 789 ... 790 }; 791 792 template <> 793 struct MappingTraits<Stuff> { 794 static void mapping(IO &io, Stuff &stuff) { 795 ... 796 } 797 798 static const bool flow = true; 799 } 800 801Flow mappings are subject to line wrapping according to the Output object 802configuration. 803 804Sequence 805======== 806 807To be translated to or from a YAML sequence for your type T you must specialize 808llvm::yaml::SequenceTraits on T and implement two methods: 809``size_t size(IO &io, T&)`` and 810``T::value_type& element(IO &io, T&, size_t indx)``. For example: 811 812.. code-block:: c++ 813 814 template <> 815 struct SequenceTraits<MySeq> { 816 static size_t size(IO &io, MySeq &list) { ... } 817 static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... } 818 }; 819 820The size() method returns how many elements are currently in your sequence. 821The element() method returns a reference to the i'th element in the sequence. 822When parsing YAML, the element() method may be called with an index one bigger 823than the current size. Your element() method should allocate space for one 824more element (using default constructor if element is a C++ object) and returns 825a reference to that new allocated space. 826 827 828Flow Sequence 829------------- 830A YAML "flow sequence" is a sequence that when written to YAML it uses the 831inline notation (e.g [ foo, bar ] ). To specify that a sequence type should 832be written in YAML as a flow sequence, your SequenceTraits specialization should 833add "static const bool flow = true;". For instance: 834 835.. code-block:: c++ 836 837 template <> 838 struct SequenceTraits<MyList> { 839 static size_t size(IO &io, MyList &list) { ... } 840 static MyListEl &element(IO &io, MyList &list, size_t index) { ... } 841 842 // The existence of this member causes YAML I/O to use a flow sequence 843 static const bool flow = true; 844 }; 845 846With the above, if you used MyList as the data type in your native data 847structures, then when converted to YAML, a flow sequence of integers 848will be used (e.g. [ 10, -3, 4 ]). 849 850Flow sequences are subject to line wrapping according to the Output object 851configuration. 852 853Utility Macros 854-------------- 855Since a common source of sequences is std::vector<>, YAML I/O provides macros: 856LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which 857can be used to easily specify SequenceTraits<> on a std::vector type. YAML 858I/O does not partial specialize SequenceTraits on std::vector<> because that 859would force all vectors to be sequences. An example use of the macros: 860 861.. code-block:: c++ 862 863 std::vector<MyType1>; 864 std::vector<MyType2>; 865 LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1) 866 LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2) 867 868 869 870Document List 871============= 872 873YAML allows you to define multiple "documents" in a single YAML file. Each 874new document starts with a left aligned "---" token. The end of all documents 875is denoted with a left aligned "..." token. Many users of YAML will never 876have need for multiple documents. The top level node in their YAML schema 877will be a mapping or sequence. For those cases, the following is not needed. 878But for cases where you do want multiple documents, you can specify a 879trait for you document list type. The trait has the same methods as 880SequenceTraits but is named DocumentListTraits. For example: 881 882.. code-block:: c++ 883 884 template <> 885 struct DocumentListTraits<MyDocList> { 886 static size_t size(IO &io, MyDocList &list) { ... } 887 static MyDocType element(IO &io, MyDocList &list, size_t index) { ... } 888 }; 889 890 891User Context Data 892================= 893When an llvm::yaml::Input or llvm::yaml::Output object is created their 894constructors take an optional "context" parameter. This is a pointer to 895whatever state information you might need. 896 897For instance, in a previous example we showed how the conversion type for a 898flags field could be determined at runtime based on the value of another field 899in the mapping. But what if an inner mapping needs to know some field value 900of an outer mapping? That is where the "context" parameter comes in. You 901can set values in the context in the outer map's mapping() method and 902retrieve those values in the inner map's mapping() method. 903 904The context value is just a void*. All your traits which use the context 905and operate on your native data types, need to agree what the context value 906actually is. It could be a pointer to an object or struct which your various 907traits use to shared context sensitive information. 908 909 910Output 911====== 912 913The llvm::yaml::Output class is used to generate a YAML document from your 914in-memory data structures, using traits defined on your data types. 915To instantiate an Output object you need an llvm::raw_ostream, an optional 916context pointer and an optional wrapping column: 917 918.. code-block:: c++ 919 920 class Output : public IO { 921 public: 922 Output(llvm::raw_ostream &, void *context = NULL, int WrapColumn = 70); 923 924Once you have an Output object, you can use the C++ stream operator on it 925to write your native data as YAML. One thing to recall is that a YAML file 926can contain multiple "documents". If the top level data structure you are 927streaming as YAML is a mapping, scalar, or sequence, then Output assumes you 928are generating one document and wraps the mapping output 929with "``---``" and trailing "``...``". 930 931The WrapColumn parameter will cause the flow mappings and sequences to 932line-wrap when they go over the supplied column. Pass 0 to completely 933suppress the wrapping. 934 935.. code-block:: c++ 936 937 using llvm::yaml::Output; 938 939 void dumpMyMapDoc(const MyMapType &info) { 940 Output yout(llvm::outs()); 941 yout << info; 942 } 943 944The above could produce output like: 945 946.. code-block:: yaml 947 948 --- 949 name: Tom 950 hat-size: 7 951 ... 952 953On the other hand, if the top level data structure you are streaming as YAML 954has a DocumentListTraits specialization, then Output walks through each element 955of your DocumentList and generates a "---" before the start of each element 956and ends with a "...". 957 958.. code-block:: c++ 959 960 using llvm::yaml::Output; 961 962 void dumpMyMapDoc(const MyDocListType &docList) { 963 Output yout(llvm::outs()); 964 yout << docList; 965 } 966 967The above could produce output like: 968 969.. code-block:: yaml 970 971 --- 972 name: Tom 973 hat-size: 7 974 --- 975 name: Tom 976 shoe-size: 11 977 ... 978 979Input 980===== 981 982The llvm::yaml::Input class is used to parse YAML document(s) into your native 983data structures. To instantiate an Input 984object you need a StringRef to the entire YAML file, and optionally a context 985pointer: 986 987.. code-block:: c++ 988 989 class Input : public IO { 990 public: 991 Input(StringRef inputContent, void *context=NULL); 992 993Once you have an Input object, you can use the C++ stream operator to read 994the document(s). If you expect there might be multiple YAML documents in 995one file, you'll need to specialize DocumentListTraits on a list of your 996document type and stream in that document list type. Otherwise you can 997just stream in the document type. Also, you can check if there was 998any syntax errors in the YAML be calling the error() method on the Input 999object. For example: 1000 1001.. code-block:: c++ 1002 1003 // Reading a single document 1004 using llvm::yaml::Input; 1005 1006 Input yin(mb.getBuffer()); 1007 1008 // Parse the YAML file 1009 MyDocType theDoc; 1010 yin >> theDoc; 1011 1012 // Check for error 1013 if ( yin.error() ) 1014 return; 1015 1016 1017.. code-block:: c++ 1018 1019 // Reading multiple documents in one file 1020 using llvm::yaml::Input; 1021 1022 LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>) 1023 1024 Input yin(mb.getBuffer()); 1025 1026 // Parse the YAML file 1027 std::vector<MyDocType> theDocList; 1028 yin >> theDocList; 1029 1030 // Check for error 1031 if ( yin.error() ) 1032 return; 1033 1034 1035