1=====================
2YAML I/O
3=====================
4
5.. contents::
6   :local:
7
8Introduction to YAML
9====================
10
11YAML is a human readable data serialization language.  The full YAML language
12spec can be read at `yaml.org
13<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_.  The simplest form of
14yaml is just "scalars", "mappings", and "sequences".  A scalar is any number
15or string.  The pound/hash symbol (#) begins a comment line.   A mapping is
16a set of key-value pairs where the key ends with a colon.  For example:
17
18.. code-block:: yaml
19
20     # a mapping
21     name:      Tom
22     hat-size:  7
23
24A sequence is a list of items where each item starts with a leading dash ('-').
25For example:
26
27.. code-block:: yaml
28
29     # a sequence
30     - x86
31     - x86_64
32     - PowerPC
33
34You can combine mappings and sequences by indenting.  For example a sequence
35of mappings in which one of the mapping values is itself a sequence:
36
37.. code-block:: yaml
38
39     # a sequence of mappings with one key's value being a sequence
40     - name:      Tom
41       cpus:
42        - x86
43        - x86_64
44     - name:      Bob
45       cpus:
46        - x86
47     - name:      Dan
48       cpus:
49        - PowerPC
50        - x86
51
52Sometime sequences are known to be short and the one entry per line is too
53verbose, so YAML offers an alternate syntax for sequences called a "Flow
54Sequence" in which you put comma separated sequence elements into square
55brackets.  The above example could then be simplified to :
56
57
58.. code-block:: yaml
59
60     # a sequence of mappings with one key's value being a flow sequence
61     - name:      Tom
62       cpus:      [ x86, x86_64 ]
63     - name:      Bob
64       cpus:      [ x86 ]
65     - name:      Dan
66       cpus:      [ PowerPC, x86 ]
67
68
69Introduction to YAML I/O
70========================
71
72The use of indenting makes the YAML easy for a human to read and understand,
73but having a program read and write YAML involves a lot of tedious details.
74The YAML I/O library structures and simplifies reading and writing YAML
75documents.
76
77YAML I/O assumes you have some "native" data structures which you want to be
78able to dump as YAML and recreate from YAML.  The first step is to try
79writing example YAML for your data structures. You may find after looking at
80possible YAML representations that a direct mapping of your data structures
81to YAML is not very readable.  Often the fields are not in the order that
82a human would find readable.  Or the same information is replicated in multiple
83locations, making it hard for a human to write such YAML correctly.
84
85In relational database theory there is a design step called normalization in
86which you reorganize fields and tables.  The same considerations need to
87go into the design of your YAML encoding.  But, you may not want to change
88your existing native data structures.  Therefore, when writing out YAML
89there may be a normalization step, and when reading YAML there would be a
90corresponding denormalization step.
91
92YAML I/O uses a non-invasive, traits based design.  YAML I/O defines some
93abstract base templates.  You specialize those templates on your data types.
94For instance, if you have an enumerated type FooBar you could specialize
95ScalarEnumerationTraits on that type and define the enumeration() method:
96
97.. code-block:: c++
98
99    using llvm::yaml::ScalarEnumerationTraits;
100    using llvm::yaml::IO;
101
102    template <>
103    struct ScalarEnumerationTraits<FooBar> {
104      static void enumeration(IO &io, FooBar &value) {
105      ...
106      }
107    };
108
109
110As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for
111both reading and writing YAML. That is, the mapping between in-memory enum
112values and the YAML string representation is only in one place.
113This assures that the code for writing and parsing of YAML stays in sync.
114
115To specify a YAML mappings, you define a specialization on
116llvm::yaml::MappingTraits.
117If your native data structure happens to be a struct that is already normalized,
118then the specialization is simple.  For example:
119
120.. code-block:: c++
121
122    using llvm::yaml::MappingTraits;
123    using llvm::yaml::IO;
124
125    template <>
126    struct MappingTraits<Person> {
127      static void mapping(IO &io, Person &info) {
128        io.mapRequired("name",         info.name);
129        io.mapOptional("hat-size",     info.hatSize);
130      }
131    };
132
133
134A YAML sequence is automatically inferred if you data type has begin()/end()
135iterators and a push_back() method.  Therefore any of the STL containers
136(such as std::vector<>) will automatically translate to YAML sequences.
137
138Once you have defined specializations for your data types, you can
139programmatically use YAML I/O to write a YAML document:
140
141.. code-block:: c++
142
143    using llvm::yaml::Output;
144
145    Person tom;
146    tom.name = "Tom";
147    tom.hatSize = 8;
148    Person dan;
149    dan.name = "Dan";
150    dan.hatSize = 7;
151    std::vector<Person> persons;
152    persons.push_back(tom);
153    persons.push_back(dan);
154
155    Output yout(llvm::outs());
156    yout << persons;
157
158This would write the following:
159
160.. code-block:: yaml
161
162     - name:      Tom
163       hat-size:  8
164     - name:      Dan
165       hat-size:  7
166
167And you can also read such YAML documents with the following code:
168
169.. code-block:: c++
170
171    using llvm::yaml::Input;
172
173    typedef std::vector<Person> PersonList;
174    std::vector<PersonList> docs;
175
176    Input yin(document.getBuffer());
177    yin >> docs;
178
179    if ( yin.error() )
180      return;
181
182    // Process read document
183    for ( PersonList &pl : docs ) {
184      for ( Person &person : pl ) {
185        cout << "name=" << person.name;
186      }
187    }
188
189One other feature of YAML is the ability to define multiple documents in a
190single file.  That is why reading YAML produces a vector of your document type.
191
192
193
194Error Handling
195==============
196
197When parsing a YAML document, if the input does not match your schema (as
198expressed in your XxxTraits<> specializations).  YAML I/O
199will print out an error message and your Input object's error() method will
200return true. For instance the following document:
201
202.. code-block:: yaml
203
204     - name:      Tom
205       shoe-size: 12
206     - name:      Dan
207       hat-size:  7
208
209Has a key (shoe-size) that is not defined in the schema.  YAML I/O will
210automatically generate this error:
211
212.. code-block:: yaml
213
214    YAML:2:2: error: unknown key 'shoe-size'
215      shoe-size:       12
216      ^~~~~~~~~
217
218Similar errors are produced for other input not conforming to the schema.
219
220
221Scalars
222=======
223
224YAML scalars are just strings (i.e. not a sequence or mapping).  The YAML I/O
225library provides support for translating between YAML scalars and specific
226C++ types.
227
228
229Built-in types
230--------------
231The following types have built-in support in YAML I/O:
232
233* bool
234* float
235* double
236* StringRef
237* std::string
238* int64_t
239* int32_t
240* int16_t
241* int8_t
242* uint64_t
243* uint32_t
244* uint16_t
245* uint8_t
246
247That is, you can use those types in fields of MappingTraits or as element type
248in sequence.  When reading, YAML I/O will validate that the string found
249is convertible to that type and error out if not.
250
251
252Unique types
253------------
254Given that YAML I/O is trait based, the selection of how to convert your data
255to YAML is based on the type of your data.  But in C++ type matching, typedefs
256do not generate unique type names.  That means if you have two typedefs of
257unsigned int, to YAML I/O both types look exactly like unsigned int.  To
258facilitate make unique type names, YAML I/O provides a macro which is used
259like a typedef on built-in types, but expands to create a class with conversion
260operators to and from the base type.  For example:
261
262.. code-block:: c++
263
264    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
265    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)
266
267This generates two classes MyFooFlags and MyBarFlags which you can use in your
268native data structures instead of uint32_t. They are implicitly
269converted to and from uint32_t.  The point of creating these unique types
270is that you can now specify traits on them to get different YAML conversions.
271
272Hex types
273---------
274An example use of a unique type is that YAML I/O provides fixed sized unsigned
275integers that are written with YAML I/O as hexadecimal instead of the decimal
276format used by the built-in integer types:
277
278* Hex64
279* Hex32
280* Hex16
281* Hex8
282
283You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
284be that when YAML I/O writes out that type it will be formatted in hexadecimal.
285
286
287ScalarEnumerationTraits
288-----------------------
289YAML I/O supports translating between in-memory enumerations and a set of string
290values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
291on your enumeration type and define a enumeration() method.
292For instance, suppose you had an enumeration of CPUs and a struct with it as
293a field:
294
295.. code-block:: c++
296
297    enum CPUs {
298      cpu_x86_64  = 5,
299      cpu_x86     = 7,
300      cpu_PowerPC = 8
301    };
302
303    struct Info {
304      CPUs      cpu;
305      uint32_t  flags;
306    };
307
308To support reading and writing of this enumeration, you can define a
309ScalarEnumerationTraits specialization on CPUs, which can then be used
310as a field type:
311
312.. code-block:: c++
313
314    using llvm::yaml::ScalarEnumerationTraits;
315    using llvm::yaml::MappingTraits;
316    using llvm::yaml::IO;
317
318    template <>
319    struct ScalarEnumerationTraits<CPUs> {
320      static void enumeration(IO &io, CPUs &value) {
321        io.enumCase(value, "x86_64",  cpu_x86_64);
322        io.enumCase(value, "x86",     cpu_x86);
323        io.enumCase(value, "PowerPC", cpu_PowerPC);
324      }
325    };
326
327    template <>
328    struct MappingTraits<Info> {
329      static void mapping(IO &io, Info &info) {
330        io.mapRequired("cpu",       info.cpu);
331        io.mapOptional("flags",     info.flags, 0);
332      }
333    };
334
335When reading YAML, if the string found does not match any of the strings
336specified by enumCase() methods, an error is automatically generated.
337When writing YAML, if the value being written does not match any of the values
338specified by the enumCase() methods, a runtime assertion is triggered.
339
340
341BitValue
342--------
343Another common data structure in C++ is a field where each bit has a unique
344meaning.  This is often used in a "flags" field.  YAML I/O has support for
345converting such fields to a flow sequence.   For instance suppose you
346had the following bit flags defined:
347
348.. code-block:: c++
349
350    enum {
351      flagsPointy = 1
352      flagsHollow = 2
353      flagsFlat   = 4
354      flagsRound  = 8
355    };
356
357    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)
358
359To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
360on MyFlags and provide the bit values and their names.
361
362.. code-block:: c++
363
364    using llvm::yaml::ScalarBitSetTraits;
365    using llvm::yaml::MappingTraits;
366    using llvm::yaml::IO;
367
368    template <>
369    struct ScalarBitSetTraits<MyFlags> {
370      static void bitset(IO &io, MyFlags &value) {
371        io.bitSetCase(value, "hollow",  flagHollow);
372        io.bitSetCase(value, "flat",    flagFlat);
373        io.bitSetCase(value, "round",   flagRound);
374        io.bitSetCase(value, "pointy",  flagPointy);
375      }
376    };
377
378    struct Info {
379      StringRef   name;
380      MyFlags     flags;
381    };
382
383    template <>
384    struct MappingTraits<Info> {
385      static void mapping(IO &io, Info& info) {
386        io.mapRequired("name",  info.name);
387        io.mapRequired("flags", info.flags);
388       }
389    };
390
391With the above, YAML I/O (when writing) will test mask each value in the
392bitset trait against the flags field, and each that matches will
393cause the corresponding string to be added to the flow sequence.  The opposite
394is done when reading and any unknown string values will result in a error. With
395the above schema, a same valid YAML document is:
396
397.. code-block:: yaml
398
399    name:    Tom
400    flags:   [ pointy, flat ]
401
402Sometimes a "flags" field might contains an enumeration part
403defined by a bit-mask.
404
405.. code-block:: c++
406
407    enum {
408      flagsFeatureA = 1,
409      flagsFeatureB = 2,
410      flagsFeatureC = 4,
411
412      flagsCPUMask = 24,
413
414      flagsCPU1 = 8,
415      flagsCPU2 = 16
416    };
417
418To support reading and writing such fields, you need to use the maskedBitSet()
419method and provide the bit values, their names and the enumeration mask.
420
421.. code-block:: c++
422
423    template <>
424    struct ScalarBitSetTraits<MyFlags> {
425      static void bitset(IO &io, MyFlags &value) {
426        io.bitSetCase(value, "featureA",  flagsFeatureA);
427        io.bitSetCase(value, "featureB",  flagsFeatureB);
428        io.bitSetCase(value, "featureC",  flagsFeatureC);
429        io.maskedBitSetCase(value, "CPU1",  flagsCPU1, flagsCPUMask);
430        io.maskedBitSetCase(value, "CPU2",  flagsCPU2, flagsCPUMask);
431      }
432    };
433
434YAML I/O (when writing) will apply the enumeration mask to the flags field,
435and compare the result and values from the bitset. As in case of a regular
436bitset, each that matches will cause the corresponding string to be added
437to the flow sequence.
438
439Custom Scalar
440-------------
441Sometimes for readability a scalar needs to be formatted in a custom way. For
442instance your internal data structure may use a integer for time (seconds since
443some epoch), but in YAML it would be much nicer to express that integer in
444some time format (e.g. 4-May-2012 10:30pm).  YAML I/O has a way to support
445custom formatting and parsing of scalar types by specializing ScalarTraits<> on
446your data type.  When writing, YAML I/O will provide the native type and
447your specialization must create a temporary llvm::StringRef.  When reading,
448YAML I/O will provide an llvm::StringRef of scalar and your specialization
449must convert that to your native data type.  An outline of a custom scalar type
450looks like:
451
452.. code-block:: c++
453
454    using llvm::yaml::ScalarTraits;
455    using llvm::yaml::IO;
456
457    template <>
458    struct ScalarTraits<MyCustomType> {
459      static void output(const T &value, void*, llvm::raw_ostream &out) {
460        out << value;  // do custom formatting here
461      }
462      static StringRef input(StringRef scalar, void*, T &value) {
463        // do custom parsing here.  Return the empty string on success,
464        // or an error message on failure.
465        return StringRef();
466      }
467      // Determine if this scalar needs quotes.
468      static bool mustQuote(StringRef) { return true; }
469    };
470
471Block Scalars
472-------------
473
474YAML block scalars are string literals that are represented in YAML using the
475literal block notation, just like the example shown below:
476
477.. code-block:: yaml
478
479    text: |
480      First line
481      Second line
482
483The YAML I/O library provides support for translating between YAML block scalars
484and specific C++ types by allowing you to specialize BlockScalarTraits<> on
485your data type. The library doesn't provide any built-in support for block
486scalar I/O for types like std::string and llvm::StringRef as they are already
487supported by YAML I/O and use the ordinary scalar notation by default.
488
489BlockScalarTraits specializations are very similar to the
490ScalarTraits specialization - YAML I/O will provide the native type and your
491specialization must create a temporary llvm::StringRef when writing, and
492it will also provide an llvm::StringRef that has the value of that block scalar
493and your specialization must convert that to your native data type when reading.
494An example of a custom type with an appropriate specialization of
495BlockScalarTraits is shown below:
496
497.. code-block:: c++
498
499    using llvm::yaml::BlockScalarTraits;
500    using llvm::yaml::IO;
501
502    struct MyStringType {
503      std::string Str;
504    };
505
506    template <>
507    struct BlockScalarTraits<MyStringType> {
508      static void output(const MyStringType &Value, void *Ctxt,
509                         llvm::raw_ostream &OS) {
510        OS << Value.Str;
511      }
512
513      static StringRef input(StringRef Scalar, void *Ctxt,
514                             MyStringType &Value) {
515        Value.Str = Scalar.str();
516        return StringRef();
517      }
518    };
519
520
521
522Mappings
523========
524
525To be translated to or from a YAML mapping for your type T you must specialize
526llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)"
527method. If your native data structures use pointers to a class everywhere,
528you can specialize on the class pointer.  Examples:
529
530.. code-block:: c++
531
532    using llvm::yaml::MappingTraits;
533    using llvm::yaml::IO;
534
535    // Example of struct Foo which is used by value
536    template <>
537    struct MappingTraits<Foo> {
538      static void mapping(IO &io, Foo &foo) {
539        io.mapOptional("size",      foo.size);
540      ...
541      }
542    };
543
544    // Example of struct Bar which is natively always a pointer
545    template <>
546    struct MappingTraits<Bar*> {
547      static void mapping(IO &io, Bar *&bar) {
548        io.mapOptional("size",    bar->size);
549      ...
550      }
551    };
552
553
554No Normalization
555----------------
556
557The mapping() method is responsible, if needed, for normalizing and
558denormalizing. In a simple case where the native data structure requires no
559normalization, the mapping method just uses mapOptional() or mapRequired() to
560bind the struct's fields to YAML key names.  For example:
561
562.. code-block:: c++
563
564    using llvm::yaml::MappingTraits;
565    using llvm::yaml::IO;
566
567    template <>
568    struct MappingTraits<Person> {
569      static void mapping(IO &io, Person &info) {
570        io.mapRequired("name",         info.name);
571        io.mapOptional("hat-size",     info.hatSize);
572      }
573    };
574
575
576Normalization
577----------------
578
579When [de]normalization is required, the mapping() method needs a way to access
580normalized values as fields. To help with this, there is
581a template MappingNormalization<> which you can then use to automatically
582do the normalization and denormalization.  The template is used to create
583a local variable in your mapping() method which contains the normalized keys.
584
585Suppose you have native data type
586Polar which specifies a position in polar coordinates (distance, angle):
587
588.. code-block:: c++
589
590    struct Polar {
591      float distance;
592      float angle;
593    };
594
595but you've decided the normalized YAML for should be in x,y coordinates. That
596is, you want the yaml to look like:
597
598.. code-block:: yaml
599
600    x:   10.3
601    y:   -4.7
602
603You can support this by defining a MappingTraits that normalizes the polar
604coordinates to x,y coordinates when writing YAML and denormalizes x,y
605coordinates into polar when reading YAML.
606
607.. code-block:: c++
608
609    using llvm::yaml::MappingTraits;
610    using llvm::yaml::IO;
611
612    template <>
613    struct MappingTraits<Polar> {
614
615      class NormalizedPolar {
616      public:
617        NormalizedPolar(IO &io)
618          : x(0.0), y(0.0) {
619        }
620        NormalizedPolar(IO &, Polar &polar)
621          : x(polar.distance * cos(polar.angle)),
622            y(polar.distance * sin(polar.angle)) {
623        }
624        Polar denormalize(IO &) {
625          return Polar(sqrt(x*x+y*y), arctan(x,y));
626        }
627
628        float        x;
629        float        y;
630      };
631
632      static void mapping(IO &io, Polar &polar) {
633        MappingNormalization<NormalizedPolar, Polar> keys(io, polar);
634
635        io.mapRequired("x",    keys->x);
636        io.mapRequired("y",    keys->y);
637      }
638    };
639
640When writing YAML, the local variable "keys" will be a stack allocated
641instance of NormalizedPolar, constructed from the supplied polar object which
642initializes it x and y fields.  The mapRequired() methods then write out the x
643and y values as key/value pairs.
644
645When reading YAML, the local variable "keys" will be a stack allocated instance
646of NormalizedPolar, constructed by the empty constructor.  The mapRequired
647methods will find the matching key in the YAML document and fill in the x and y
648fields of the NormalizedPolar object keys. At the end of the mapping() method
649when the local keys variable goes out of scope, the denormalize() method will
650automatically be called to convert the read values back to polar coordinates,
651and then assigned back to the second parameter to mapping().
652
653In some cases, the normalized class may be a subclass of the native type and
654could be returned by the denormalize() method, except that the temporary
655normalized instance is stack allocated.  In these cases, the utility template
656MappingNormalizationHeap<> can be used instead.  It just like
657MappingNormalization<> except that it heap allocates the normalized object
658when reading YAML.  It never destroys the normalized object.  The denormalize()
659method can this return "this".
660
661
662Default values
663--------------
664Within a mapping() method, calls to io.mapRequired() mean that that key is
665required to exist when parsing YAML documents, otherwise YAML I/O will issue an
666error.
667
668On the other hand, keys registered with io.mapOptional() are allowed to not
669exist in the YAML document being read.  So what value is put in the field
670for those optional keys?
671There are two steps to how those optional fields are filled in. First, the
672second parameter to the mapping() method is a reference to a native class.  That
673native class must have a default constructor.  Whatever value the default
674constructor initially sets for an optional field will be that field's value.
675Second, the mapOptional() method has an optional third parameter.  If provided
676it is the value that mapOptional() should set that field to if the YAML document
677does not have that key.
678
679There is one important difference between those two ways (default constructor
680and third parameter to mapOptional). When YAML I/O generates a YAML document,
681if the mapOptional() third parameter is used, if the actual value being written
682is the same as (using ==) the default value, then that key/value is not written.
683
684
685Order of Keys
686--------------
687
688When writing out a YAML document, the keys are written in the order that the
689calls to mapRequired()/mapOptional() are made in the mapping() method. This
690gives you a chance to write the fields in an order that a human reader of
691the YAML document would find natural.  This may be different that the order
692of the fields in the native class.
693
694When reading in a YAML document, the keys in the document can be in any order,
695but they are processed in the order that the calls to mapRequired()/mapOptional()
696are made in the mapping() method.  That enables some interesting
697functionality.  For instance, if the first field bound is the cpu and the second
698field bound is flags, and the flags are cpu specific, you can programmatically
699switch how the flags are converted to and from YAML based on the cpu.
700This works for both reading and writing. For example:
701
702.. code-block:: c++
703
704    using llvm::yaml::MappingTraits;
705    using llvm::yaml::IO;
706
707    struct Info {
708      CPUs        cpu;
709      uint32_t    flags;
710    };
711
712    template <>
713    struct MappingTraits<Info> {
714      static void mapping(IO &io, Info &info) {
715        io.mapRequired("cpu",       info.cpu);
716        // flags must come after cpu for this to work when reading yaml
717        if ( info.cpu == cpu_x86_64 )
718          io.mapRequired("flags",  *(My86_64Flags*)info.flags);
719        else
720          io.mapRequired("flags",  *(My86Flags*)info.flags);
721     }
722    };
723
724
725Tags
726----
727
728The YAML syntax supports tags as a way to specify the type of a node before
729it is parsed. This allows dynamic types of nodes.  But the YAML I/O model uses
730static typing, so there are limits to how you can use tags with the YAML I/O
731model. Recently, we added support to YAML I/O for checking/setting the optional
732tag on a map. Using this functionality it is even possbile to support different
733mappings, as long as they are convertable.
734
735To check a tag, inside your mapping() method you can use io.mapTag() to specify
736what the tag should be.  This will also add that tag when writing yaml.
737
738Validation
739----------
740
741Sometimes in a yaml map, each key/value pair is valid, but the combination is
742not.  This is similar to something having no syntax errors, but still having
743semantic errors.  To support semantic level checking, YAML I/O allows
744an optional ``validate()`` method in a MappingTraits template specialization.
745
746When parsing yaml, the ``validate()`` method is call *after* all key/values in
747the map have been processed. Any error message returned by the ``validate()``
748method during input will be printed just a like a syntax error would be printed.
749When writing yaml, the ``validate()`` method is called *before* the yaml
750key/values  are written.  Any error during output will trigger an ``assert()``
751because it is a programming error to have invalid struct values.
752
753
754.. code-block:: c++
755
756    using llvm::yaml::MappingTraits;
757    using llvm::yaml::IO;
758
759    struct Stuff {
760      ...
761    };
762
763    template <>
764    struct MappingTraits<Stuff> {
765      static void mapping(IO &io, Stuff &stuff) {
766      ...
767      }
768      static StringRef validate(IO &io, Stuff &stuff) {
769        // Look at all fields in 'stuff' and if there
770        // are any bad values return a string describing
771        // the error.  Otherwise return an empty string.
772        return StringRef();
773      }
774    };
775
776Flow Mapping
777------------
778A YAML "flow mapping" is a mapping that uses the inline notation
779(e.g { x: 1, y: 0 } ) when written to YAML. To specify that a type should be
780written in YAML using flow mapping, your MappingTraits specialization should
781add "static const bool flow = true;". For instance:
782
783.. code-block:: c++
784
785    using llvm::yaml::MappingTraits;
786    using llvm::yaml::IO;
787
788    struct Stuff {
789      ...
790    };
791
792    template <>
793    struct MappingTraits<Stuff> {
794      static void mapping(IO &io, Stuff &stuff) {
795        ...
796      }
797
798      static const bool flow = true;
799    }
800
801Flow mappings are subject to line wrapping according to the Output object
802configuration.
803
804Sequence
805========
806
807To be translated to or from a YAML sequence for your type T you must specialize
808llvm::yaml::SequenceTraits on T and implement two methods:
809``size_t size(IO &io, T&)`` and
810``T::value_type& element(IO &io, T&, size_t indx)``.  For example:
811
812.. code-block:: c++
813
814  template <>
815  struct SequenceTraits<MySeq> {
816    static size_t size(IO &io, MySeq &list) { ... }
817    static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }
818  };
819
820The size() method returns how many elements are currently in your sequence.
821The element() method returns a reference to the i'th element in the sequence.
822When parsing YAML, the element() method may be called with an index one bigger
823than the current size.  Your element() method should allocate space for one
824more element (using default constructor if element is a C++ object) and returns
825a reference to that new allocated space.
826
827
828Flow Sequence
829-------------
830A YAML "flow sequence" is a sequence that when written to YAML it uses the
831inline notation (e.g [ foo, bar ] ).  To specify that a sequence type should
832be written in YAML as a flow sequence, your SequenceTraits specialization should
833add "static const bool flow = true;".  For instance:
834
835.. code-block:: c++
836
837  template <>
838  struct SequenceTraits<MyList> {
839    static size_t size(IO &io, MyList &list) { ... }
840    static MyListEl &element(IO &io, MyList &list, size_t index) { ... }
841
842    // The existence of this member causes YAML I/O to use a flow sequence
843    static const bool flow = true;
844  };
845
846With the above, if you used MyList as the data type in your native data
847structures, then when converted to YAML, a flow sequence of integers
848will be used (e.g. [ 10, -3, 4 ]).
849
850Flow sequences are subject to line wrapping according to the Output object
851configuration.
852
853Utility Macros
854--------------
855Since a common source of sequences is std::vector<>, YAML I/O provides macros:
856LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
857can be used to easily specify SequenceTraits<> on a std::vector type.  YAML
858I/O does not partial specialize SequenceTraits on std::vector<> because that
859would force all vectors to be sequences.  An example use of the macros:
860
861.. code-block:: c++
862
863  std::vector<MyType1>;
864  std::vector<MyType2>;
865  LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
866  LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)
867
868
869
870Document List
871=============
872
873YAML allows you to define multiple "documents" in a single YAML file.  Each
874new document starts with a left aligned "---" token.  The end of all documents
875is denoted with a left aligned "..." token.  Many users of YAML will never
876have need for multiple documents.  The top level node in their YAML schema
877will be a mapping or sequence. For those cases, the following is not needed.
878But for cases where you do want multiple documents, you can specify a
879trait for you document list type.  The trait has the same methods as
880SequenceTraits but is named DocumentListTraits.  For example:
881
882.. code-block:: c++
883
884  template <>
885  struct DocumentListTraits<MyDocList> {
886    static size_t size(IO &io, MyDocList &list) { ... }
887    static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
888  };
889
890
891User Context Data
892=================
893When an llvm::yaml::Input or llvm::yaml::Output object is created their
894constructors take an optional "context" parameter.  This is a pointer to
895whatever state information you might need.
896
897For instance, in a previous example we showed how the conversion type for a
898flags field could be determined at runtime based on the value of another field
899in the mapping. But what if an inner mapping needs to know some field value
900of an outer mapping?  That is where the "context" parameter comes in. You
901can set values in the context in the outer map's mapping() method and
902retrieve those values in the inner map's mapping() method.
903
904The context value is just a void*.  All your traits which use the context
905and operate on your native data types, need to agree what the context value
906actually is.  It could be a pointer to an object or struct which your various
907traits use to shared context sensitive information.
908
909
910Output
911======
912
913The llvm::yaml::Output class is used to generate a YAML document from your
914in-memory data structures, using traits defined on your data types.
915To instantiate an Output object you need an llvm::raw_ostream, an optional
916context pointer and an optional wrapping column:
917
918.. code-block:: c++
919
920      class Output : public IO {
921      public:
922        Output(llvm::raw_ostream &, void *context = NULL, int WrapColumn = 70);
923
924Once you have an Output object, you can use the C++ stream operator on it
925to write your native data as YAML. One thing to recall is that a YAML file
926can contain multiple "documents".  If the top level data structure you are
927streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
928are generating one document and wraps the mapping output
929with  "``---``" and trailing "``...``".
930
931The WrapColumn parameter will cause the flow mappings and sequences to
932line-wrap when they go over the supplied column. Pass 0 to completely
933suppress the wrapping.
934
935.. code-block:: c++
936
937    using llvm::yaml::Output;
938
939    void dumpMyMapDoc(const MyMapType &info) {
940      Output yout(llvm::outs());
941      yout << info;
942    }
943
944The above could produce output like:
945
946.. code-block:: yaml
947
948     ---
949     name:      Tom
950     hat-size:  7
951     ...
952
953On the other hand, if the top level data structure you are streaming as YAML
954has a DocumentListTraits specialization, then Output walks through each element
955of your DocumentList and generates a "---" before the start of each element
956and ends with a "...".
957
958.. code-block:: c++
959
960    using llvm::yaml::Output;
961
962    void dumpMyMapDoc(const MyDocListType &docList) {
963      Output yout(llvm::outs());
964      yout << docList;
965    }
966
967The above could produce output like:
968
969.. code-block:: yaml
970
971     ---
972     name:      Tom
973     hat-size:  7
974     ---
975     name:      Tom
976     shoe-size:  11
977     ...
978
979Input
980=====
981
982The llvm::yaml::Input class is used to parse YAML document(s) into your native
983data structures. To instantiate an Input
984object you need a StringRef to the entire YAML file, and optionally a context
985pointer:
986
987.. code-block:: c++
988
989      class Input : public IO {
990      public:
991        Input(StringRef inputContent, void *context=NULL);
992
993Once you have an Input object, you can use the C++ stream operator to read
994the document(s).  If you expect there might be multiple YAML documents in
995one file, you'll need to specialize DocumentListTraits on a list of your
996document type and stream in that document list type.  Otherwise you can
997just stream in the document type.  Also, you can check if there was
998any syntax errors in the YAML be calling the error() method on the Input
999object.  For example:
1000
1001.. code-block:: c++
1002
1003     // Reading a single document
1004     using llvm::yaml::Input;
1005
1006     Input yin(mb.getBuffer());
1007
1008     // Parse the YAML file
1009     MyDocType theDoc;
1010     yin >> theDoc;
1011
1012     // Check for error
1013     if ( yin.error() )
1014       return;
1015
1016
1017.. code-block:: c++
1018
1019     // Reading multiple documents in one file
1020     using llvm::yaml::Input;
1021
1022     LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>)
1023
1024     Input yin(mb.getBuffer());
1025
1026     // Parse the YAML file
1027     std::vector<MyDocType> theDocList;
1028     yin >> theDocList;
1029
1030     // Check for error
1031     if ( yin.error() )
1032       return;
1033
1034
1035