1 #include "llvm/ADT/STLExtras.h"
2 #include "llvm/Analysis/BasicAliasAnalysis.h"
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/IR/DIBuilder.h"
5 #include "llvm/IR/IRBuilder.h"
6 #include "llvm/IR/LLVMContext.h"
7 #include "llvm/IR/LegacyPassManager.h"
8 #include "llvm/IR/Module.h"
9 #include "llvm/IR/Verifier.h"
10 #include "llvm/Support/TargetSelect.h"
11 #include "llvm/Transforms/Scalar.h"
12 #include <cctype>
13 #include <cstdio>
14 #include <map>
15 #include <string>
16 #include <vector>
17 #include "../include/KaleidoscopeJIT.h"
18
19 using namespace llvm;
20 using namespace llvm::orc;
21
22 //===----------------------------------------------------------------------===//
23 // Lexer
24 //===----------------------------------------------------------------------===//
25
26 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
27 // of these for known things.
28 enum Token {
29 tok_eof = -1,
30
31 // commands
32 tok_def = -2,
33 tok_extern = -3,
34
35 // primary
36 tok_identifier = -4,
37 tok_number = -5,
38
39 // control
40 tok_if = -6,
41 tok_then = -7,
42 tok_else = -8,
43 tok_for = -9,
44 tok_in = -10,
45
46 // operators
47 tok_binary = -11,
48 tok_unary = -12,
49
50 // var definition
51 tok_var = -13
52 };
53
getTokName(int Tok)54 std::string getTokName(int Tok) {
55 switch (Tok) {
56 case tok_eof:
57 return "eof";
58 case tok_def:
59 return "def";
60 case tok_extern:
61 return "extern";
62 case tok_identifier:
63 return "identifier";
64 case tok_number:
65 return "number";
66 case tok_if:
67 return "if";
68 case tok_then:
69 return "then";
70 case tok_else:
71 return "else";
72 case tok_for:
73 return "for";
74 case tok_in:
75 return "in";
76 case tok_binary:
77 return "binary";
78 case tok_unary:
79 return "unary";
80 case tok_var:
81 return "var";
82 }
83 return std::string(1, (char)Tok);
84 }
85
86 namespace {
87 class PrototypeAST;
88 class ExprAST;
89 }
90 static IRBuilder<> Builder(getGlobalContext());
91 struct DebugInfo {
92 DICompileUnit *TheCU;
93 DIType *DblTy;
94 std::vector<DIScope *> LexicalBlocks;
95
96 void emitLocation(ExprAST *AST);
97 DIType *getDoubleTy();
98 } KSDbgInfo;
99
100 struct SourceLocation {
101 int Line;
102 int Col;
103 };
104 static SourceLocation CurLoc;
105 static SourceLocation LexLoc = {1, 0};
106
advance()107 static int advance() {
108 int LastChar = getchar();
109
110 if (LastChar == '\n' || LastChar == '\r') {
111 LexLoc.Line++;
112 LexLoc.Col = 0;
113 } else
114 LexLoc.Col++;
115 return LastChar;
116 }
117
118 static std::string IdentifierStr; // Filled in if tok_identifier
119 static double NumVal; // Filled in if tok_number
120
121 /// gettok - Return the next token from standard input.
gettok()122 static int gettok() {
123 static int LastChar = ' ';
124
125 // Skip any whitespace.
126 while (isspace(LastChar))
127 LastChar = advance();
128
129 CurLoc = LexLoc;
130
131 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
132 IdentifierStr = LastChar;
133 while (isalnum((LastChar = advance())))
134 IdentifierStr += LastChar;
135
136 if (IdentifierStr == "def")
137 return tok_def;
138 if (IdentifierStr == "extern")
139 return tok_extern;
140 if (IdentifierStr == "if")
141 return tok_if;
142 if (IdentifierStr == "then")
143 return tok_then;
144 if (IdentifierStr == "else")
145 return tok_else;
146 if (IdentifierStr == "for")
147 return tok_for;
148 if (IdentifierStr == "in")
149 return tok_in;
150 if (IdentifierStr == "binary")
151 return tok_binary;
152 if (IdentifierStr == "unary")
153 return tok_unary;
154 if (IdentifierStr == "var")
155 return tok_var;
156 return tok_identifier;
157 }
158
159 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
160 std::string NumStr;
161 do {
162 NumStr += LastChar;
163 LastChar = advance();
164 } while (isdigit(LastChar) || LastChar == '.');
165
166 NumVal = strtod(NumStr.c_str(), nullptr);
167 return tok_number;
168 }
169
170 if (LastChar == '#') {
171 // Comment until end of line.
172 do
173 LastChar = advance();
174 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
175
176 if (LastChar != EOF)
177 return gettok();
178 }
179
180 // Check for end of file. Don't eat the EOF.
181 if (LastChar == EOF)
182 return tok_eof;
183
184 // Otherwise, just return the character as its ascii value.
185 int ThisChar = LastChar;
186 LastChar = advance();
187 return ThisChar;
188 }
189
190 //===----------------------------------------------------------------------===//
191 // Abstract Syntax Tree (aka Parse Tree)
192 //===----------------------------------------------------------------------===//
193 namespace {
194
indent(raw_ostream & O,int size)195 raw_ostream &indent(raw_ostream &O, int size) {
196 return O << std::string(size, ' ');
197 }
198
199 /// ExprAST - Base class for all expression nodes.
200 class ExprAST {
201 SourceLocation Loc;
202
203 public:
ExprAST(SourceLocation Loc=CurLoc)204 ExprAST(SourceLocation Loc = CurLoc) : Loc(Loc) {}
~ExprAST()205 virtual ~ExprAST() {}
206 virtual Value *codegen() = 0;
getLine() const207 int getLine() const { return Loc.Line; }
getCol() const208 int getCol() const { return Loc.Col; }
dump(raw_ostream & out,int ind)209 virtual raw_ostream &dump(raw_ostream &out, int ind) {
210 return out << ':' << getLine() << ':' << getCol() << '\n';
211 }
212 };
213
214 /// NumberExprAST - Expression class for numeric literals like "1.0".
215 class NumberExprAST : public ExprAST {
216 double Val;
217
218 public:
NumberExprAST(double Val)219 NumberExprAST(double Val) : Val(Val) {}
dump(raw_ostream & out,int ind)220 raw_ostream &dump(raw_ostream &out, int ind) override {
221 return ExprAST::dump(out << Val, ind);
222 }
223 Value *codegen() override;
224 };
225
226 /// VariableExprAST - Expression class for referencing a variable, like "a".
227 class VariableExprAST : public ExprAST {
228 std::string Name;
229
230 public:
VariableExprAST(SourceLocation Loc,const std::string & Name)231 VariableExprAST(SourceLocation Loc, const std::string &Name)
232 : ExprAST(Loc), Name(Name) {}
getName() const233 const std::string &getName() const { return Name; }
234 Value *codegen() override;
dump(raw_ostream & out,int ind)235 raw_ostream &dump(raw_ostream &out, int ind) override {
236 return ExprAST::dump(out << Name, ind);
237 }
238 };
239
240 /// UnaryExprAST - Expression class for a unary operator.
241 class UnaryExprAST : public ExprAST {
242 char Opcode;
243 std::unique_ptr<ExprAST> Operand;
244
245 public:
UnaryExprAST(char Opcode,std::unique_ptr<ExprAST> Operand)246 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
247 : Opcode(Opcode), Operand(std::move(Operand)) {}
248 Value *codegen() override;
dump(raw_ostream & out,int ind)249 raw_ostream &dump(raw_ostream &out, int ind) override {
250 ExprAST::dump(out << "unary" << Opcode, ind);
251 Operand->dump(out, ind + 1);
252 return out;
253 }
254 };
255
256 /// BinaryExprAST - Expression class for a binary operator.
257 class BinaryExprAST : public ExprAST {
258 char Op;
259 std::unique_ptr<ExprAST> LHS, RHS;
260
261 public:
BinaryExprAST(SourceLocation Loc,char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)262 BinaryExprAST(SourceLocation Loc, char Op, std::unique_ptr<ExprAST> LHS,
263 std::unique_ptr<ExprAST> RHS)
264 : ExprAST(Loc), Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
265 Value *codegen() override;
dump(raw_ostream & out,int ind)266 raw_ostream &dump(raw_ostream &out, int ind) override {
267 ExprAST::dump(out << "binary" << Op, ind);
268 LHS->dump(indent(out, ind) << "LHS:", ind + 1);
269 RHS->dump(indent(out, ind) << "RHS:", ind + 1);
270 return out;
271 }
272 };
273
274 /// CallExprAST - Expression class for function calls.
275 class CallExprAST : public ExprAST {
276 std::string Callee;
277 std::vector<std::unique_ptr<ExprAST>> Args;
278
279 public:
CallExprAST(SourceLocation Loc,const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)280 CallExprAST(SourceLocation Loc, const std::string &Callee,
281 std::vector<std::unique_ptr<ExprAST>> Args)
282 : ExprAST(Loc), Callee(Callee), Args(std::move(Args)) {}
283 Value *codegen() override;
dump(raw_ostream & out,int ind)284 raw_ostream &dump(raw_ostream &out, int ind) override {
285 ExprAST::dump(out << "call " << Callee, ind);
286 for (const auto &Arg : Args)
287 Arg->dump(indent(out, ind + 1), ind + 1);
288 return out;
289 }
290 };
291
292 /// IfExprAST - Expression class for if/then/else.
293 class IfExprAST : public ExprAST {
294 std::unique_ptr<ExprAST> Cond, Then, Else;
295
296 public:
IfExprAST(SourceLocation Loc,std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)297 IfExprAST(SourceLocation Loc, std::unique_ptr<ExprAST> Cond,
298 std::unique_ptr<ExprAST> Then, std::unique_ptr<ExprAST> Else)
299 : ExprAST(Loc), Cond(std::move(Cond)), Then(std::move(Then)),
300 Else(std::move(Else)) {}
301 Value *codegen() override;
dump(raw_ostream & out,int ind)302 raw_ostream &dump(raw_ostream &out, int ind) override {
303 ExprAST::dump(out << "if", ind);
304 Cond->dump(indent(out, ind) << "Cond:", ind + 1);
305 Then->dump(indent(out, ind) << "Then:", ind + 1);
306 Else->dump(indent(out, ind) << "Else:", ind + 1);
307 return out;
308 }
309 };
310
311 /// ForExprAST - Expression class for for/in.
312 class ForExprAST : public ExprAST {
313 std::string VarName;
314 std::unique_ptr<ExprAST> Start, End, Step, Body;
315
316 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)317 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
318 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
319 std::unique_ptr<ExprAST> Body)
320 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
321 Step(std::move(Step)), Body(std::move(Body)) {}
322 Value *codegen() override;
dump(raw_ostream & out,int ind)323 raw_ostream &dump(raw_ostream &out, int ind) override {
324 ExprAST::dump(out << "for", ind);
325 Start->dump(indent(out, ind) << "Cond:", ind + 1);
326 End->dump(indent(out, ind) << "End:", ind + 1);
327 Step->dump(indent(out, ind) << "Step:", ind + 1);
328 Body->dump(indent(out, ind) << "Body:", ind + 1);
329 return out;
330 }
331 };
332
333 /// VarExprAST - Expression class for var/in
334 class VarExprAST : public ExprAST {
335 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
336 std::unique_ptr<ExprAST> Body;
337
338 public:
VarExprAST(std::vector<std::pair<std::string,std::unique_ptr<ExprAST>>> VarNames,std::unique_ptr<ExprAST> Body)339 VarExprAST(
340 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
341 std::unique_ptr<ExprAST> Body)
342 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
343 Value *codegen() override;
dump(raw_ostream & out,int ind)344 raw_ostream &dump(raw_ostream &out, int ind) override {
345 ExprAST::dump(out << "var", ind);
346 for (const auto &NamedVar : VarNames)
347 NamedVar.second->dump(indent(out, ind) << NamedVar.first << ':', ind + 1);
348 Body->dump(indent(out, ind) << "Body:", ind + 1);
349 return out;
350 }
351 };
352
353 /// PrototypeAST - This class represents the "prototype" for a function,
354 /// which captures its name, and its argument names (thus implicitly the number
355 /// of arguments the function takes), as well as if it is an operator.
356 class PrototypeAST {
357 std::string Name;
358 std::vector<std::string> Args;
359 bool IsOperator;
360 unsigned Precedence; // Precedence if a binary op.
361 int Line;
362
363 public:
PrototypeAST(SourceLocation Loc,const std::string & Name,std::vector<std::string> Args,bool IsOperator=false,unsigned Prec=0)364 PrototypeAST(SourceLocation Loc, const std::string &Name,
365 std::vector<std::string> Args, bool IsOperator = false,
366 unsigned Prec = 0)
367 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
368 Precedence(Prec), Line(Loc.Line) {}
369 Function *codegen();
getName() const370 const std::string &getName() const { return Name; }
371
isUnaryOp() const372 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOp() const373 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
374
getOperatorName() const375 char getOperatorName() const {
376 assert(isUnaryOp() || isBinaryOp());
377 return Name[Name.size() - 1];
378 }
379
getBinaryPrecedence() const380 unsigned getBinaryPrecedence() const { return Precedence; }
getLine() const381 int getLine() const { return Line; }
382 };
383
384 /// FunctionAST - This class represents a function definition itself.
385 class FunctionAST {
386 std::unique_ptr<PrototypeAST> Proto;
387 std::unique_ptr<ExprAST> Body;
388
389 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)390 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
391 std::unique_ptr<ExprAST> Body)
392 : Proto(std::move(Proto)), Body(std::move(Body)) {}
393 Function *codegen();
dump(raw_ostream & out,int ind)394 raw_ostream &dump(raw_ostream &out, int ind) {
395 indent(out, ind) << "FunctionAST\n";
396 ++ind;
397 indent(out, ind) << "Body:";
398 return Body ? Body->dump(out, ind) : out << "null\n";
399 }
400 };
401 } // end anonymous namespace
402
403 //===----------------------------------------------------------------------===//
404 // Parser
405 //===----------------------------------------------------------------------===//
406
407 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
408 /// token the parser is looking at. getNextToken reads another token from the
409 /// lexer and updates CurTok with its results.
410 static int CurTok;
getNextToken()411 static int getNextToken() { return CurTok = gettok(); }
412
413 /// BinopPrecedence - This holds the precedence for each binary operator that is
414 /// defined.
415 static std::map<char, int> BinopPrecedence;
416
417 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()418 static int GetTokPrecedence() {
419 if (!isascii(CurTok))
420 return -1;
421
422 // Make sure it's a declared binop.
423 int TokPrec = BinopPrecedence[CurTok];
424 if (TokPrec <= 0)
425 return -1;
426 return TokPrec;
427 }
428
429 /// Error* - These are little helper functions for error handling.
Error(const char * Str)430 std::unique_ptr<ExprAST> Error(const char *Str) {
431 fprintf(stderr, "Error: %s\n", Str);
432 return nullptr;
433 }
434
ErrorP(const char * Str)435 std::unique_ptr<PrototypeAST> ErrorP(const char *Str) {
436 Error(Str);
437 return nullptr;
438 }
439
440 static std::unique_ptr<ExprAST> ParseExpression();
441
442 /// numberexpr ::= number
ParseNumberExpr()443 static std::unique_ptr<ExprAST> ParseNumberExpr() {
444 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
445 getNextToken(); // consume the number
446 return std::move(Result);
447 }
448
449 /// parenexpr ::= '(' expression ')'
ParseParenExpr()450 static std::unique_ptr<ExprAST> ParseParenExpr() {
451 getNextToken(); // eat (.
452 auto V = ParseExpression();
453 if (!V)
454 return nullptr;
455
456 if (CurTok != ')')
457 return Error("expected ')'");
458 getNextToken(); // eat ).
459 return V;
460 }
461
462 /// identifierexpr
463 /// ::= identifier
464 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()465 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
466 std::string IdName = IdentifierStr;
467
468 SourceLocation LitLoc = CurLoc;
469
470 getNextToken(); // eat identifier.
471
472 if (CurTok != '(') // Simple variable ref.
473 return llvm::make_unique<VariableExprAST>(LitLoc, IdName);
474
475 // Call.
476 getNextToken(); // eat (
477 std::vector<std::unique_ptr<ExprAST>> Args;
478 if (CurTok != ')') {
479 while (1) {
480 if (auto Arg = ParseExpression())
481 Args.push_back(std::move(Arg));
482 else
483 return nullptr;
484
485 if (CurTok == ')')
486 break;
487
488 if (CurTok != ',')
489 return Error("Expected ')' or ',' in argument list");
490 getNextToken();
491 }
492 }
493
494 // Eat the ')'.
495 getNextToken();
496
497 return llvm::make_unique<CallExprAST>(LitLoc, IdName, std::move(Args));
498 }
499
500 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()501 static std::unique_ptr<ExprAST> ParseIfExpr() {
502 SourceLocation IfLoc = CurLoc;
503
504 getNextToken(); // eat the if.
505
506 // condition.
507 auto Cond = ParseExpression();
508 if (!Cond)
509 return nullptr;
510
511 if (CurTok != tok_then)
512 return Error("expected then");
513 getNextToken(); // eat the then
514
515 auto Then = ParseExpression();
516 if (!Then)
517 return nullptr;
518
519 if (CurTok != tok_else)
520 return Error("expected else");
521
522 getNextToken();
523
524 auto Else = ParseExpression();
525 if (!Else)
526 return nullptr;
527
528 return llvm::make_unique<IfExprAST>(IfLoc, std::move(Cond), std::move(Then),
529 std::move(Else));
530 }
531
532 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()533 static std::unique_ptr<ExprAST> ParseForExpr() {
534 getNextToken(); // eat the for.
535
536 if (CurTok != tok_identifier)
537 return Error("expected identifier after for");
538
539 std::string IdName = IdentifierStr;
540 getNextToken(); // eat identifier.
541
542 if (CurTok != '=')
543 return Error("expected '=' after for");
544 getNextToken(); // eat '='.
545
546 auto Start = ParseExpression();
547 if (!Start)
548 return nullptr;
549 if (CurTok != ',')
550 return Error("expected ',' after for start value");
551 getNextToken();
552
553 auto End = ParseExpression();
554 if (!End)
555 return nullptr;
556
557 // The step value is optional.
558 std::unique_ptr<ExprAST> Step;
559 if (CurTok == ',') {
560 getNextToken();
561 Step = ParseExpression();
562 if (!Step)
563 return nullptr;
564 }
565
566 if (CurTok != tok_in)
567 return Error("expected 'in' after for");
568 getNextToken(); // eat 'in'.
569
570 auto Body = ParseExpression();
571 if (!Body)
572 return nullptr;
573
574 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
575 std::move(Step), std::move(Body));
576 }
577
578 /// varexpr ::= 'var' identifier ('=' expression)?
579 // (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()580 static std::unique_ptr<ExprAST> ParseVarExpr() {
581 getNextToken(); // eat the var.
582
583 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
584
585 // At least one variable name is required.
586 if (CurTok != tok_identifier)
587 return Error("expected identifier after var");
588
589 while (1) {
590 std::string Name = IdentifierStr;
591 getNextToken(); // eat identifier.
592
593 // Read the optional initializer.
594 std::unique_ptr<ExprAST> Init = nullptr;
595 if (CurTok == '=') {
596 getNextToken(); // eat the '='.
597
598 Init = ParseExpression();
599 if (!Init)
600 return nullptr;
601 }
602
603 VarNames.push_back(std::make_pair(Name, std::move(Init)));
604
605 // End of var list, exit loop.
606 if (CurTok != ',')
607 break;
608 getNextToken(); // eat the ','.
609
610 if (CurTok != tok_identifier)
611 return Error("expected identifier list after var");
612 }
613
614 // At this point, we have to have 'in'.
615 if (CurTok != tok_in)
616 return Error("expected 'in' keyword after 'var'");
617 getNextToken(); // eat 'in'.
618
619 auto Body = ParseExpression();
620 if (!Body)
621 return nullptr;
622
623 return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
624 }
625
626 /// primary
627 /// ::= identifierexpr
628 /// ::= numberexpr
629 /// ::= parenexpr
630 /// ::= ifexpr
631 /// ::= forexpr
632 /// ::= varexpr
ParsePrimary()633 static std::unique_ptr<ExprAST> ParsePrimary() {
634 switch (CurTok) {
635 default:
636 return Error("unknown token when expecting an expression");
637 case tok_identifier:
638 return ParseIdentifierExpr();
639 case tok_number:
640 return ParseNumberExpr();
641 case '(':
642 return ParseParenExpr();
643 case tok_if:
644 return ParseIfExpr();
645 case tok_for:
646 return ParseForExpr();
647 case tok_var:
648 return ParseVarExpr();
649 }
650 }
651
652 /// unary
653 /// ::= primary
654 /// ::= '!' unary
ParseUnary()655 static std::unique_ptr<ExprAST> ParseUnary() {
656 // If the current token is not an operator, it must be a primary expr.
657 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
658 return ParsePrimary();
659
660 // If this is a unary operator, read it.
661 int Opc = CurTok;
662 getNextToken();
663 if (auto Operand = ParseUnary())
664 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
665 return nullptr;
666 }
667
668 /// binoprhs
669 /// ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)670 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
671 std::unique_ptr<ExprAST> LHS) {
672 // If this is a binop, find its precedence.
673 while (1) {
674 int TokPrec = GetTokPrecedence();
675
676 // If this is a binop that binds at least as tightly as the current binop,
677 // consume it, otherwise we are done.
678 if (TokPrec < ExprPrec)
679 return LHS;
680
681 // Okay, we know this is a binop.
682 int BinOp = CurTok;
683 SourceLocation BinLoc = CurLoc;
684 getNextToken(); // eat binop
685
686 // Parse the unary expression after the binary operator.
687 auto RHS = ParseUnary();
688 if (!RHS)
689 return nullptr;
690
691 // If BinOp binds less tightly with RHS than the operator after RHS, let
692 // the pending operator take RHS as its LHS.
693 int NextPrec = GetTokPrecedence();
694 if (TokPrec < NextPrec) {
695 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
696 if (!RHS)
697 return nullptr;
698 }
699
700 // Merge LHS/RHS.
701 LHS = llvm::make_unique<BinaryExprAST>(BinLoc, BinOp, std::move(LHS),
702 std::move(RHS));
703 }
704 }
705
706 /// expression
707 /// ::= unary binoprhs
708 ///
ParseExpression()709 static std::unique_ptr<ExprAST> ParseExpression() {
710 auto LHS = ParseUnary();
711 if (!LHS)
712 return nullptr;
713
714 return ParseBinOpRHS(0, std::move(LHS));
715 }
716
717 /// prototype
718 /// ::= id '(' id* ')'
719 /// ::= binary LETTER number? (id, id)
720 /// ::= unary LETTER (id)
ParsePrototype()721 static std::unique_ptr<PrototypeAST> ParsePrototype() {
722 std::string FnName;
723
724 SourceLocation FnLoc = CurLoc;
725
726 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
727 unsigned BinaryPrecedence = 30;
728
729 switch (CurTok) {
730 default:
731 return ErrorP("Expected function name in prototype");
732 case tok_identifier:
733 FnName = IdentifierStr;
734 Kind = 0;
735 getNextToken();
736 break;
737 case tok_unary:
738 getNextToken();
739 if (!isascii(CurTok))
740 return ErrorP("Expected unary operator");
741 FnName = "unary";
742 FnName += (char)CurTok;
743 Kind = 1;
744 getNextToken();
745 break;
746 case tok_binary:
747 getNextToken();
748 if (!isascii(CurTok))
749 return ErrorP("Expected binary operator");
750 FnName = "binary";
751 FnName += (char)CurTok;
752 Kind = 2;
753 getNextToken();
754
755 // Read the precedence if present.
756 if (CurTok == tok_number) {
757 if (NumVal < 1 || NumVal > 100)
758 return ErrorP("Invalid precedecnce: must be 1..100");
759 BinaryPrecedence = (unsigned)NumVal;
760 getNextToken();
761 }
762 break;
763 }
764
765 if (CurTok != '(')
766 return ErrorP("Expected '(' in prototype");
767
768 std::vector<std::string> ArgNames;
769 while (getNextToken() == tok_identifier)
770 ArgNames.push_back(IdentifierStr);
771 if (CurTok != ')')
772 return ErrorP("Expected ')' in prototype");
773
774 // success.
775 getNextToken(); // eat ')'.
776
777 // Verify right number of names for operator.
778 if (Kind && ArgNames.size() != Kind)
779 return ErrorP("Invalid number of operands for operator");
780
781 return llvm::make_unique<PrototypeAST>(FnLoc, FnName, ArgNames, Kind != 0,
782 BinaryPrecedence);
783 }
784
785 /// definition ::= 'def' prototype expression
ParseDefinition()786 static std::unique_ptr<FunctionAST> ParseDefinition() {
787 getNextToken(); // eat def.
788 auto Proto = ParsePrototype();
789 if (!Proto)
790 return nullptr;
791
792 if (auto E = ParseExpression())
793 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
794 return nullptr;
795 }
796
797 /// toplevelexpr ::= expression
ParseTopLevelExpr()798 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
799 SourceLocation FnLoc = CurLoc;
800 if (auto E = ParseExpression()) {
801 // Make an anonymous proto.
802 auto Proto = llvm::make_unique<PrototypeAST>(FnLoc, "__anon_expr",
803 std::vector<std::string>());
804 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
805 }
806 return nullptr;
807 }
808
809 /// external ::= 'extern' prototype
ParseExtern()810 static std::unique_ptr<PrototypeAST> ParseExtern() {
811 getNextToken(); // eat extern.
812 return ParsePrototype();
813 }
814
815 //===----------------------------------------------------------------------===//
816 // Debug Info Support
817 //===----------------------------------------------------------------------===//
818
819 static std::unique_ptr<DIBuilder> DBuilder;
820
getDoubleTy()821 DIType *DebugInfo::getDoubleTy() {
822 if (DblTy)
823 return DblTy;
824
825 DblTy = DBuilder->createBasicType("double", 64, 64, dwarf::DW_ATE_float);
826 return DblTy;
827 }
828
emitLocation(ExprAST * AST)829 void DebugInfo::emitLocation(ExprAST *AST) {
830 if (!AST)
831 return Builder.SetCurrentDebugLocation(DebugLoc());
832 DIScope *Scope;
833 if (LexicalBlocks.empty())
834 Scope = TheCU;
835 else
836 Scope = LexicalBlocks.back();
837 Builder.SetCurrentDebugLocation(
838 DebugLoc::get(AST->getLine(), AST->getCol(), Scope));
839 }
840
CreateFunctionType(unsigned NumArgs,DIFile * Unit)841 static DISubroutineType *CreateFunctionType(unsigned NumArgs, DIFile *Unit) {
842 SmallVector<Metadata *, 8> EltTys;
843 DIType *DblTy = KSDbgInfo.getDoubleTy();
844
845 // Add the result type.
846 EltTys.push_back(DblTy);
847
848 for (unsigned i = 0, e = NumArgs; i != e; ++i)
849 EltTys.push_back(DblTy);
850
851 return DBuilder->createSubroutineType(DBuilder->getOrCreateTypeArray(EltTys));
852 }
853
854 //===----------------------------------------------------------------------===//
855 // Code Generation
856 //===----------------------------------------------------------------------===//
857
858 static std::unique_ptr<Module> TheModule;
859 static std::map<std::string, AllocaInst *> NamedValues;
860 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
861 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
862
ErrorV(const char * Str)863 Value *ErrorV(const char *Str) {
864 Error(Str);
865 return nullptr;
866 }
867
getFunction(std::string Name)868 Function *getFunction(std::string Name) {
869 // First, see if the function has already been added to the current module.
870 if (auto *F = TheModule->getFunction(Name))
871 return F;
872
873 // If not, check whether we can codegen the declaration from some existing
874 // prototype.
875 auto FI = FunctionProtos.find(Name);
876 if (FI != FunctionProtos.end())
877 return FI->second->codegen();
878
879 // If no existing prototype exists, return null.
880 return nullptr;
881 }
882
883 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
884 /// the function. This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)885 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
886 const std::string &VarName) {
887 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
888 TheFunction->getEntryBlock().begin());
889 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), nullptr,
890 VarName.c_str());
891 }
892
codegen()893 Value *NumberExprAST::codegen() {
894 KSDbgInfo.emitLocation(this);
895 return ConstantFP::get(getGlobalContext(), APFloat(Val));
896 }
897
codegen()898 Value *VariableExprAST::codegen() {
899 // Look this variable up in the function.
900 Value *V = NamedValues[Name];
901 if (!V)
902 return ErrorV("Unknown variable name");
903
904 KSDbgInfo.emitLocation(this);
905 // Load the value.
906 return Builder.CreateLoad(V, Name.c_str());
907 }
908
codegen()909 Value *UnaryExprAST::codegen() {
910 Value *OperandV = Operand->codegen();
911 if (!OperandV)
912 return nullptr;
913
914 Function *F = getFunction(std::string("unary") + Opcode);
915 if (!F)
916 return ErrorV("Unknown unary operator");
917
918 KSDbgInfo.emitLocation(this);
919 return Builder.CreateCall(F, OperandV, "unop");
920 }
921
codegen()922 Value *BinaryExprAST::codegen() {
923 KSDbgInfo.emitLocation(this);
924
925 // Special case '=' because we don't want to emit the LHS as an expression.
926 if (Op == '=') {
927 // Assignment requires the LHS to be an identifier.
928 // This assume we're building without RTTI because LLVM builds that way by
929 // default. If you build LLVM with RTTI this can be changed to a
930 // dynamic_cast for automatic error checking.
931 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
932 if (!LHSE)
933 return ErrorV("destination of '=' must be a variable");
934 // Codegen the RHS.
935 Value *Val = RHS->codegen();
936 if (!Val)
937 return nullptr;
938
939 // Look up the name.
940 Value *Variable = NamedValues[LHSE->getName()];
941 if (!Variable)
942 return ErrorV("Unknown variable name");
943
944 Builder.CreateStore(Val, Variable);
945 return Val;
946 }
947
948 Value *L = LHS->codegen();
949 Value *R = RHS->codegen();
950 if (!L || !R)
951 return nullptr;
952
953 switch (Op) {
954 case '+':
955 return Builder.CreateFAdd(L, R, "addtmp");
956 case '-':
957 return Builder.CreateFSub(L, R, "subtmp");
958 case '*':
959 return Builder.CreateFMul(L, R, "multmp");
960 case '<':
961 L = Builder.CreateFCmpULT(L, R, "cmptmp");
962 // Convert bool 0/1 to double 0.0 or 1.0
963 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
964 "booltmp");
965 default:
966 break;
967 }
968
969 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
970 // a call to it.
971 Function *F = getFunction(std::string("binary") + Op);
972 assert(F && "binary operator not found!");
973
974 Value *Ops[] = {L, R};
975 return Builder.CreateCall(F, Ops, "binop");
976 }
977
codegen()978 Value *CallExprAST::codegen() {
979 KSDbgInfo.emitLocation(this);
980
981 // Look up the name in the global module table.
982 Function *CalleeF = getFunction(Callee);
983 if (!CalleeF)
984 return ErrorV("Unknown function referenced");
985
986 // If argument mismatch error.
987 if (CalleeF->arg_size() != Args.size())
988 return ErrorV("Incorrect # arguments passed");
989
990 std::vector<Value *> ArgsV;
991 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
992 ArgsV.push_back(Args[i]->codegen());
993 if (!ArgsV.back())
994 return nullptr;
995 }
996
997 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
998 }
999
codegen()1000 Value *IfExprAST::codegen() {
1001 KSDbgInfo.emitLocation(this);
1002
1003 Value *CondV = Cond->codegen();
1004 if (!CondV)
1005 return nullptr;
1006
1007 // Convert condition to a bool by comparing equal to 0.0.
1008 CondV = Builder.CreateFCmpONE(
1009 CondV, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "ifcond");
1010
1011 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1012
1013 // Create blocks for the then and else cases. Insert the 'then' block at the
1014 // end of the function.
1015 BasicBlock *ThenBB =
1016 BasicBlock::Create(getGlobalContext(), "then", TheFunction);
1017 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
1018 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
1019
1020 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1021
1022 // Emit then value.
1023 Builder.SetInsertPoint(ThenBB);
1024
1025 Value *ThenV = Then->codegen();
1026 if (!ThenV)
1027 return nullptr;
1028
1029 Builder.CreateBr(MergeBB);
1030 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1031 ThenBB = Builder.GetInsertBlock();
1032
1033 // Emit else block.
1034 TheFunction->getBasicBlockList().push_back(ElseBB);
1035 Builder.SetInsertPoint(ElseBB);
1036
1037 Value *ElseV = Else->codegen();
1038 if (!ElseV)
1039 return nullptr;
1040
1041 Builder.CreateBr(MergeBB);
1042 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1043 ElseBB = Builder.GetInsertBlock();
1044
1045 // Emit merge block.
1046 TheFunction->getBasicBlockList().push_back(MergeBB);
1047 Builder.SetInsertPoint(MergeBB);
1048 PHINode *PN =
1049 Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, "iftmp");
1050
1051 PN->addIncoming(ThenV, ThenBB);
1052 PN->addIncoming(ElseV, ElseBB);
1053 return PN;
1054 }
1055
1056 // Output for-loop as:
1057 // var = alloca double
1058 // ...
1059 // start = startexpr
1060 // store start -> var
1061 // goto loop
1062 // loop:
1063 // ...
1064 // bodyexpr
1065 // ...
1066 // loopend:
1067 // step = stepexpr
1068 // endcond = endexpr
1069 //
1070 // curvar = load var
1071 // nextvar = curvar + step
1072 // store nextvar -> var
1073 // br endcond, loop, endloop
1074 // outloop:
codegen()1075 Value *ForExprAST::codegen() {
1076 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1077
1078 // Create an alloca for the variable in the entry block.
1079 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1080
1081 KSDbgInfo.emitLocation(this);
1082
1083 // Emit the start code first, without 'variable' in scope.
1084 Value *StartVal = Start->codegen();
1085 if (!StartVal)
1086 return nullptr;
1087
1088 // Store the value into the alloca.
1089 Builder.CreateStore(StartVal, Alloca);
1090
1091 // Make the new basic block for the loop header, inserting after current
1092 // block.
1093 BasicBlock *LoopBB =
1094 BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
1095
1096 // Insert an explicit fall through from the current block to the LoopBB.
1097 Builder.CreateBr(LoopBB);
1098
1099 // Start insertion in LoopBB.
1100 Builder.SetInsertPoint(LoopBB);
1101
1102 // Within the loop, the variable is defined equal to the PHI node. If it
1103 // shadows an existing variable, we have to restore it, so save it now.
1104 AllocaInst *OldVal = NamedValues[VarName];
1105 NamedValues[VarName] = Alloca;
1106
1107 // Emit the body of the loop. This, like any other expr, can change the
1108 // current BB. Note that we ignore the value computed by the body, but don't
1109 // allow an error.
1110 if (!Body->codegen())
1111 return nullptr;
1112
1113 // Emit the step value.
1114 Value *StepVal = nullptr;
1115 if (Step) {
1116 StepVal = Step->codegen();
1117 if (!StepVal)
1118 return nullptr;
1119 } else {
1120 // If not specified, use 1.0.
1121 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
1122 }
1123
1124 // Compute the end condition.
1125 Value *EndCond = End->codegen();
1126 if (!EndCond)
1127 return nullptr;
1128
1129 // Reload, increment, and restore the alloca. This handles the case where
1130 // the body of the loop mutates the variable.
1131 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1132 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
1133 Builder.CreateStore(NextVar, Alloca);
1134
1135 // Convert condition to a bool by comparing equal to 0.0.
1136 EndCond = Builder.CreateFCmpONE(
1137 EndCond, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "loopcond");
1138
1139 // Create the "after loop" block and insert it.
1140 BasicBlock *AfterBB =
1141 BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
1142
1143 // Insert the conditional branch into the end of LoopEndBB.
1144 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1145
1146 // Any new code will be inserted in AfterBB.
1147 Builder.SetInsertPoint(AfterBB);
1148
1149 // Restore the unshadowed variable.
1150 if (OldVal)
1151 NamedValues[VarName] = OldVal;
1152 else
1153 NamedValues.erase(VarName);
1154
1155 // for expr always returns 0.0.
1156 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
1157 }
1158
codegen()1159 Value *VarExprAST::codegen() {
1160 std::vector<AllocaInst *> OldBindings;
1161
1162 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1163
1164 // Register all variables and emit their initializer.
1165 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1166 const std::string &VarName = VarNames[i].first;
1167 ExprAST *Init = VarNames[i].second.get();
1168
1169 // Emit the initializer before adding the variable to scope, this prevents
1170 // the initializer from referencing the variable itself, and permits stuff
1171 // like this:
1172 // var a = 1 in
1173 // var a = a in ... # refers to outer 'a'.
1174 Value *InitVal;
1175 if (Init) {
1176 InitVal = Init->codegen();
1177 if (!InitVal)
1178 return nullptr;
1179 } else { // If not specified, use 0.0.
1180 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1181 }
1182
1183 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1184 Builder.CreateStore(InitVal, Alloca);
1185
1186 // Remember the old variable binding so that we can restore the binding when
1187 // we unrecurse.
1188 OldBindings.push_back(NamedValues[VarName]);
1189
1190 // Remember this binding.
1191 NamedValues[VarName] = Alloca;
1192 }
1193
1194 KSDbgInfo.emitLocation(this);
1195
1196 // Codegen the body, now that all vars are in scope.
1197 Value *BodyVal = Body->codegen();
1198 if (!BodyVal)
1199 return nullptr;
1200
1201 // Pop all our variables from scope.
1202 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1203 NamedValues[VarNames[i].first] = OldBindings[i];
1204
1205 // Return the body computation.
1206 return BodyVal;
1207 }
1208
codegen()1209 Function *PrototypeAST::codegen() {
1210 // Make the function type: double(double,double) etc.
1211 std::vector<Type *> Doubles(Args.size(),
1212 Type::getDoubleTy(getGlobalContext()));
1213 FunctionType *FT =
1214 FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
1215
1216 Function *F =
1217 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1218
1219 // Set names for all arguments.
1220 unsigned Idx = 0;
1221 for (auto &Arg : F->args())
1222 Arg.setName(Args[Idx++]);
1223
1224 return F;
1225 }
1226
codegen()1227 Function *FunctionAST::codegen() {
1228 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1229 // reference to it for use below.
1230 auto &P = *Proto;
1231 FunctionProtos[Proto->getName()] = std::move(Proto);
1232 Function *TheFunction = getFunction(P.getName());
1233 if (!TheFunction)
1234 return nullptr;
1235
1236 // If this is an operator, install it.
1237 if (P.isBinaryOp())
1238 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1239
1240 // Create a new basic block to start insertion into.
1241 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1242 Builder.SetInsertPoint(BB);
1243
1244 // Create a subprogram DIE for this function.
1245 DIFile *Unit = DBuilder->createFile(KSDbgInfo.TheCU->getFilename(),
1246 KSDbgInfo.TheCU->getDirectory());
1247 DIScope *FContext = Unit;
1248 unsigned LineNo = P.getLine();
1249 unsigned ScopeLine = LineNo;
1250 DISubprogram *SP = DBuilder->createFunction(
1251 FContext, P.getName(), StringRef(), Unit, LineNo,
1252 CreateFunctionType(TheFunction->arg_size(), Unit),
1253 false /* internal linkage */, true /* definition */, ScopeLine,
1254 DINode::FlagPrototyped, false);
1255 TheFunction->setSubprogram(SP);
1256
1257 // Push the current scope.
1258 KSDbgInfo.LexicalBlocks.push_back(SP);
1259
1260 // Unset the location for the prologue emission (leading instructions with no
1261 // location in a function are considered part of the prologue and the debugger
1262 // will run past them when breaking on a function)
1263 KSDbgInfo.emitLocation(nullptr);
1264
1265 // Record the function arguments in the NamedValues map.
1266 NamedValues.clear();
1267 unsigned ArgIdx = 0;
1268 for (auto &Arg : TheFunction->args()) {
1269 // Create an alloca for this variable.
1270 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1271
1272 // Create a debug descriptor for the variable.
1273 DILocalVariable *D = DBuilder->createParameterVariable(
1274 SP, Arg.getName(), ++ArgIdx, Unit, LineNo, KSDbgInfo.getDoubleTy(),
1275 true);
1276
1277 DBuilder->insertDeclare(Alloca, D, DBuilder->createExpression(),
1278 DebugLoc::get(LineNo, 0, SP),
1279 Builder.GetInsertBlock());
1280
1281 // Store the initial value into the alloca.
1282 Builder.CreateStore(&Arg, Alloca);
1283
1284 // Add arguments to variable symbol table.
1285 NamedValues[Arg.getName()] = Alloca;
1286 }
1287
1288 KSDbgInfo.emitLocation(Body.get());
1289
1290 if (Value *RetVal = Body->codegen()) {
1291 // Finish off the function.
1292 Builder.CreateRet(RetVal);
1293
1294 // Pop off the lexical block for the function.
1295 KSDbgInfo.LexicalBlocks.pop_back();
1296
1297 // Validate the generated code, checking for consistency.
1298 verifyFunction(*TheFunction);
1299
1300 return TheFunction;
1301 }
1302
1303 // Error reading body, remove function.
1304 TheFunction->eraseFromParent();
1305
1306 if (P.isBinaryOp())
1307 BinopPrecedence.erase(Proto->getOperatorName());
1308
1309 // Pop off the lexical block for the function since we added it
1310 // unconditionally.
1311 KSDbgInfo.LexicalBlocks.pop_back();
1312
1313 return nullptr;
1314 }
1315
1316 //===----------------------------------------------------------------------===//
1317 // Top-Level parsing and JIT Driver
1318 //===----------------------------------------------------------------------===//
1319
InitializeModule()1320 static void InitializeModule() {
1321 // Open a new module.
1322 TheModule = llvm::make_unique<Module>("my cool jit", getGlobalContext());
1323 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
1324 }
1325
HandleDefinition()1326 static void HandleDefinition() {
1327 if (auto FnAST = ParseDefinition()) {
1328 if (!FnAST->codegen())
1329 fprintf(stderr, "Error reading function definition:");
1330 } else {
1331 // Skip token for error recovery.
1332 getNextToken();
1333 }
1334 }
1335
HandleExtern()1336 static void HandleExtern() {
1337 if (auto ProtoAST = ParseExtern()) {
1338 if (!ProtoAST->codegen())
1339 fprintf(stderr, "Error reading extern");
1340 else
1341 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1342 } else {
1343 // Skip token for error recovery.
1344 getNextToken();
1345 }
1346 }
1347
HandleTopLevelExpression()1348 static void HandleTopLevelExpression() {
1349 // Evaluate a top-level expression into an anonymous function.
1350 if (auto FnAST = ParseTopLevelExpr()) {
1351 if (!FnAST->codegen()) {
1352 fprintf(stderr, "Error generating code for top level expr");
1353 }
1354 } else {
1355 // Skip token for error recovery.
1356 getNextToken();
1357 }
1358 }
1359
1360 /// top ::= definition | external | expression | ';'
MainLoop()1361 static void MainLoop() {
1362 while (1) {
1363 switch (CurTok) {
1364 case tok_eof:
1365 return;
1366 case ';': // ignore top-level semicolons.
1367 getNextToken();
1368 break;
1369 case tok_def:
1370 HandleDefinition();
1371 break;
1372 case tok_extern:
1373 HandleExtern();
1374 break;
1375 default:
1376 HandleTopLevelExpression();
1377 break;
1378 }
1379 }
1380 }
1381
1382 //===----------------------------------------------------------------------===//
1383 // "Library" functions that can be "extern'd" from user code.
1384 //===----------------------------------------------------------------------===//
1385
1386 /// putchard - putchar that takes a double and returns 0.
putchard(double X)1387 extern "C" double putchard(double X) {
1388 fputc((char)X, stderr);
1389 return 0;
1390 }
1391
1392 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)1393 extern "C" double printd(double X) {
1394 fprintf(stderr, "%f\n", X);
1395 return 0;
1396 }
1397
1398 //===----------------------------------------------------------------------===//
1399 // Main driver code.
1400 //===----------------------------------------------------------------------===//
1401
main()1402 int main() {
1403 InitializeNativeTarget();
1404 InitializeNativeTargetAsmPrinter();
1405 InitializeNativeTargetAsmParser();
1406
1407 // Install standard binary operators.
1408 // 1 is lowest precedence.
1409 BinopPrecedence['='] = 2;
1410 BinopPrecedence['<'] = 10;
1411 BinopPrecedence['+'] = 20;
1412 BinopPrecedence['-'] = 20;
1413 BinopPrecedence['*'] = 40; // highest.
1414
1415 // Prime the first token.
1416 getNextToken();
1417
1418 TheJIT = llvm::make_unique<KaleidoscopeJIT>();
1419
1420 InitializeModule();
1421
1422 // Add the current debug info version into the module.
1423 TheModule->addModuleFlag(Module::Warning, "Debug Info Version",
1424 DEBUG_METADATA_VERSION);
1425
1426 // Darwin only supports dwarf2.
1427 if (Triple(sys::getProcessTriple()).isOSDarwin())
1428 TheModule->addModuleFlag(llvm::Module::Warning, "Dwarf Version", 2);
1429
1430 // Construct the DIBuilder, we do this here because we need the module.
1431 DBuilder = llvm::make_unique<DIBuilder>(*TheModule);
1432
1433 // Create the compile unit for the module.
1434 // Currently down as "fib.ks" as a filename since we're redirecting stdin
1435 // but we'd like actual source locations.
1436 KSDbgInfo.TheCU = DBuilder->createCompileUnit(
1437 dwarf::DW_LANG_C, "fib.ks", ".", "Kaleidoscope Compiler", 0, "", 0);
1438
1439 // Run the main "interpreter loop" now.
1440 MainLoop();
1441
1442 // Finalize the debug info.
1443 DBuilder->finalize();
1444
1445 // Print out all of the generated code.
1446 TheModule->dump();
1447
1448 return 0;
1449 }
1450