1 #define MINIMAL_STDERR_OUTPUT
2
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
5 #include "llvm/IR/DataLayout.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/IRBuilder.h"
8 #include "llvm/IR/LLVMContext.h"
9 #include "llvm/IR/LegacyPassManager.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Verifier.h"
12 #include "llvm/IRReader/IRReader.h"
13 #include "llvm/Support/CommandLine.h"
14 #include "llvm/Support/SourceMgr.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Support/raw_ostream.h"
17 #include "llvm/Transforms/Scalar.h"
18 #include <cctype>
19 #include <cstdio>
20 #include <map>
21 #include <string>
22 #include <vector>
23
24 using namespace llvm;
25
26 //===----------------------------------------------------------------------===//
27 // Command-line options
28 //===----------------------------------------------------------------------===//
29
30 namespace {
31 cl::opt<std::string>
32 InputIR("input-IR",
33 cl::desc("Specify the name of an IR file to load for function definitions"),
34 cl::value_desc("input IR file name"));
35 } // namespace
36
37 //===----------------------------------------------------------------------===//
38 // Lexer
39 //===----------------------------------------------------------------------===//
40
41 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
42 // of these for known things.
43 enum Token {
44 tok_eof = -1,
45
46 // commands
47 tok_def = -2, tok_extern = -3,
48
49 // primary
50 tok_identifier = -4, tok_number = -5,
51
52 // control
53 tok_if = -6, tok_then = -7, tok_else = -8,
54 tok_for = -9, tok_in = -10,
55
56 // operators
57 tok_binary = -11, tok_unary = -12,
58
59 // var definition
60 tok_var = -13
61 };
62
63 static std::string IdentifierStr; // Filled in if tok_identifier
64 static double NumVal; // Filled in if tok_number
65
66 /// gettok - Return the next token from standard input.
gettok()67 static int gettok() {
68 static int LastChar = ' ';
69
70 // Skip any whitespace.
71 while (isspace(LastChar))
72 LastChar = getchar();
73
74 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
75 IdentifierStr = LastChar;
76 while (isalnum((LastChar = getchar())))
77 IdentifierStr += LastChar;
78
79 if (IdentifierStr == "def") return tok_def;
80 if (IdentifierStr == "extern") return tok_extern;
81 if (IdentifierStr == "if") return tok_if;
82 if (IdentifierStr == "then") return tok_then;
83 if (IdentifierStr == "else") return tok_else;
84 if (IdentifierStr == "for") return tok_for;
85 if (IdentifierStr == "in") return tok_in;
86 if (IdentifierStr == "binary") return tok_binary;
87 if (IdentifierStr == "unary") return tok_unary;
88 if (IdentifierStr == "var") return tok_var;
89 return tok_identifier;
90 }
91
92 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
93 std::string NumStr;
94 do {
95 NumStr += LastChar;
96 LastChar = getchar();
97 } while (isdigit(LastChar) || LastChar == '.');
98
99 NumVal = strtod(NumStr.c_str(), 0);
100 return tok_number;
101 }
102
103 if (LastChar == '#') {
104 // Comment until end of line.
105 do LastChar = getchar();
106 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
107
108 if (LastChar != EOF)
109 return gettok();
110 }
111
112 // Check for end of file. Don't eat the EOF.
113 if (LastChar == EOF)
114 return tok_eof;
115
116 // Otherwise, just return the character as its ascii value.
117 int ThisChar = LastChar;
118 LastChar = getchar();
119 return ThisChar;
120 }
121
122 //===----------------------------------------------------------------------===//
123 // Abstract Syntax Tree (aka Parse Tree)
124 //===----------------------------------------------------------------------===//
125
126 /// ExprAST - Base class for all expression nodes.
127 class ExprAST {
128 public:
~ExprAST()129 virtual ~ExprAST() {}
130 virtual Value *Codegen() = 0;
131 };
132
133 /// NumberExprAST - Expression class for numeric literals like "1.0".
134 class NumberExprAST : public ExprAST {
135 double Val;
136 public:
NumberExprAST(double val)137 NumberExprAST(double val) : Val(val) {}
138 virtual Value *Codegen();
139 };
140
141 /// VariableExprAST - Expression class for referencing a variable, like "a".
142 class VariableExprAST : public ExprAST {
143 std::string Name;
144 public:
VariableExprAST(const std::string & name)145 VariableExprAST(const std::string &name) : Name(name) {}
getName() const146 const std::string &getName() const { return Name; }
147 virtual Value *Codegen();
148 };
149
150 /// UnaryExprAST - Expression class for a unary operator.
151 class UnaryExprAST : public ExprAST {
152 char Opcode;
153 ExprAST *Operand;
154 public:
UnaryExprAST(char opcode,ExprAST * operand)155 UnaryExprAST(char opcode, ExprAST *operand)
156 : Opcode(opcode), Operand(operand) {}
157 virtual Value *Codegen();
158 };
159
160 /// BinaryExprAST - Expression class for a binary operator.
161 class BinaryExprAST : public ExprAST {
162 char Op;
163 ExprAST *LHS, *RHS;
164 public:
BinaryExprAST(char op,ExprAST * lhs,ExprAST * rhs)165 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
166 : Op(op), LHS(lhs), RHS(rhs) {}
167 virtual Value *Codegen();
168 };
169
170 /// CallExprAST - Expression class for function calls.
171 class CallExprAST : public ExprAST {
172 std::string Callee;
173 std::vector<ExprAST*> Args;
174 public:
CallExprAST(const std::string & callee,std::vector<ExprAST * > & args)175 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
176 : Callee(callee), Args(args) {}
177 virtual Value *Codegen();
178 };
179
180 /// IfExprAST - Expression class for if/then/else.
181 class IfExprAST : public ExprAST {
182 ExprAST *Cond, *Then, *Else;
183 public:
IfExprAST(ExprAST * cond,ExprAST * then,ExprAST * _else)184 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
185 : Cond(cond), Then(then), Else(_else) {}
186 virtual Value *Codegen();
187 };
188
189 /// ForExprAST - Expression class for for/in.
190 class ForExprAST : public ExprAST {
191 std::string VarName;
192 ExprAST *Start, *End, *Step, *Body;
193 public:
ForExprAST(const std::string & varname,ExprAST * start,ExprAST * end,ExprAST * step,ExprAST * body)194 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
195 ExprAST *step, ExprAST *body)
196 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
197 virtual Value *Codegen();
198 };
199
200 /// VarExprAST - Expression class for var/in
201 class VarExprAST : public ExprAST {
202 std::vector<std::pair<std::string, ExprAST*> > VarNames;
203 ExprAST *Body;
204 public:
VarExprAST(const std::vector<std::pair<std::string,ExprAST * >> & varnames,ExprAST * body)205 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
206 ExprAST *body)
207 : VarNames(varnames), Body(body) {}
208
209 virtual Value *Codegen();
210 };
211
212 /// PrototypeAST - This class represents the "prototype" for a function,
213 /// which captures its argument names as well as if it is an operator.
214 class PrototypeAST {
215 std::string Name;
216 std::vector<std::string> Args;
217 bool isOperator;
218 unsigned Precedence; // Precedence if a binary op.
219 public:
PrototypeAST(const std::string & name,const std::vector<std::string> & args,bool isoperator=false,unsigned prec=0)220 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
221 bool isoperator = false, unsigned prec = 0)
222 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
223
isUnaryOp() const224 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
isBinaryOp() const225 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
226
getOperatorName() const227 char getOperatorName() const {
228 assert(isUnaryOp() || isBinaryOp());
229 return Name[Name.size()-1];
230 }
231
getBinaryPrecedence() const232 unsigned getBinaryPrecedence() const { return Precedence; }
233
234 Function *Codegen();
235
236 void CreateArgumentAllocas(Function *F);
237 };
238
239 /// FunctionAST - This class represents a function definition itself.
240 class FunctionAST {
241 PrototypeAST *Proto;
242 ExprAST *Body;
243 public:
FunctionAST(PrototypeAST * proto,ExprAST * body)244 FunctionAST(PrototypeAST *proto, ExprAST *body)
245 : Proto(proto), Body(body) {}
246
247 Function *Codegen();
248 };
249
250 //===----------------------------------------------------------------------===//
251 // Parser
252 //===----------------------------------------------------------------------===//
253
254 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
255 /// token the parser is looking at. getNextToken reads another token from the
256 /// lexer and updates CurTok with its results.
257 static int CurTok;
getNextToken()258 static int getNextToken() {
259 return CurTok = gettok();
260 }
261
262 /// BinopPrecedence - This holds the precedence for each binary operator that is
263 /// defined.
264 static std::map<char, int> BinopPrecedence;
265
266 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()267 static int GetTokPrecedence() {
268 if (!isascii(CurTok))
269 return -1;
270
271 // Make sure it's a declared binop.
272 int TokPrec = BinopPrecedence[CurTok];
273 if (TokPrec <= 0) return -1;
274 return TokPrec;
275 }
276
277 /// Error* - These are little helper functions for error handling.
Error(const char * Str)278 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
ErrorP(const char * Str)279 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
ErrorF(const char * Str)280 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
281
282 static ExprAST *ParseExpression();
283
284 /// identifierexpr
285 /// ::= identifier
286 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()287 static ExprAST *ParseIdentifierExpr() {
288 std::string IdName = IdentifierStr;
289
290 getNextToken(); // eat identifier.
291
292 if (CurTok != '(') // Simple variable ref.
293 return new VariableExprAST(IdName);
294
295 // Call.
296 getNextToken(); // eat (
297 std::vector<ExprAST*> Args;
298 if (CurTok != ')') {
299 while (1) {
300 ExprAST *Arg = ParseExpression();
301 if (!Arg) return 0;
302 Args.push_back(Arg);
303
304 if (CurTok == ')') break;
305
306 if (CurTok != ',')
307 return Error("Expected ')' or ',' in argument list");
308 getNextToken();
309 }
310 }
311
312 // Eat the ')'.
313 getNextToken();
314
315 return new CallExprAST(IdName, Args);
316 }
317
318 /// numberexpr ::= number
ParseNumberExpr()319 static ExprAST *ParseNumberExpr() {
320 ExprAST *Result = new NumberExprAST(NumVal);
321 getNextToken(); // consume the number
322 return Result;
323 }
324
325 /// parenexpr ::= '(' expression ')'
ParseParenExpr()326 static ExprAST *ParseParenExpr() {
327 getNextToken(); // eat (.
328 ExprAST *V = ParseExpression();
329 if (!V) return 0;
330
331 if (CurTok != ')')
332 return Error("expected ')'");
333 getNextToken(); // eat ).
334 return V;
335 }
336
337 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()338 static ExprAST *ParseIfExpr() {
339 getNextToken(); // eat the if.
340
341 // condition.
342 ExprAST *Cond = ParseExpression();
343 if (!Cond) return 0;
344
345 if (CurTok != tok_then)
346 return Error("expected then");
347 getNextToken(); // eat the then
348
349 ExprAST *Then = ParseExpression();
350 if (Then == 0) return 0;
351
352 if (CurTok != tok_else)
353 return Error("expected else");
354
355 getNextToken();
356
357 ExprAST *Else = ParseExpression();
358 if (!Else) return 0;
359
360 return new IfExprAST(Cond, Then, Else);
361 }
362
363 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()364 static ExprAST *ParseForExpr() {
365 getNextToken(); // eat the for.
366
367 if (CurTok != tok_identifier)
368 return Error("expected identifier after for");
369
370 std::string IdName = IdentifierStr;
371 getNextToken(); // eat identifier.
372
373 if (CurTok != '=')
374 return Error("expected '=' after for");
375 getNextToken(); // eat '='.
376
377
378 ExprAST *Start = ParseExpression();
379 if (Start == 0) return 0;
380 if (CurTok != ',')
381 return Error("expected ',' after for start value");
382 getNextToken();
383
384 ExprAST *End = ParseExpression();
385 if (End == 0) return 0;
386
387 // The step value is optional.
388 ExprAST *Step = 0;
389 if (CurTok == ',') {
390 getNextToken();
391 Step = ParseExpression();
392 if (Step == 0) return 0;
393 }
394
395 if (CurTok != tok_in)
396 return Error("expected 'in' after for");
397 getNextToken(); // eat 'in'.
398
399 ExprAST *Body = ParseExpression();
400 if (Body == 0) return 0;
401
402 return new ForExprAST(IdName, Start, End, Step, Body);
403 }
404
405 /// varexpr ::= 'var' identifier ('=' expression)?
406 // (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()407 static ExprAST *ParseVarExpr() {
408 getNextToken(); // eat the var.
409
410 std::vector<std::pair<std::string, ExprAST*> > VarNames;
411
412 // At least one variable name is required.
413 if (CurTok != tok_identifier)
414 return Error("expected identifier after var");
415
416 while (1) {
417 std::string Name = IdentifierStr;
418 getNextToken(); // eat identifier.
419
420 // Read the optional initializer.
421 ExprAST *Init = 0;
422 if (CurTok == '=') {
423 getNextToken(); // eat the '='.
424
425 Init = ParseExpression();
426 if (Init == 0) return 0;
427 }
428
429 VarNames.push_back(std::make_pair(Name, Init));
430
431 // End of var list, exit loop.
432 if (CurTok != ',') break;
433 getNextToken(); // eat the ','.
434
435 if (CurTok != tok_identifier)
436 return Error("expected identifier list after var");
437 }
438
439 // At this point, we have to have 'in'.
440 if (CurTok != tok_in)
441 return Error("expected 'in' keyword after 'var'");
442 getNextToken(); // eat 'in'.
443
444 ExprAST *Body = ParseExpression();
445 if (Body == 0) return 0;
446
447 return new VarExprAST(VarNames, Body);
448 }
449
450 /// primary
451 /// ::= identifierexpr
452 /// ::= numberexpr
453 /// ::= parenexpr
454 /// ::= ifexpr
455 /// ::= forexpr
456 /// ::= varexpr
ParsePrimary()457 static ExprAST *ParsePrimary() {
458 switch (CurTok) {
459 default: return Error("unknown token when expecting an expression");
460 case tok_identifier: return ParseIdentifierExpr();
461 case tok_number: return ParseNumberExpr();
462 case '(': return ParseParenExpr();
463 case tok_if: return ParseIfExpr();
464 case tok_for: return ParseForExpr();
465 case tok_var: return ParseVarExpr();
466 }
467 }
468
469 /// unary
470 /// ::= primary
471 /// ::= '!' unary
ParseUnary()472 static ExprAST *ParseUnary() {
473 // If the current token is not an operator, it must be a primary expr.
474 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
475 return ParsePrimary();
476
477 // If this is a unary operator, read it.
478 int Opc = CurTok;
479 getNextToken();
480 if (ExprAST *Operand = ParseUnary())
481 return new UnaryExprAST(Opc, Operand);
482 return 0;
483 }
484
485 /// binoprhs
486 /// ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,ExprAST * LHS)487 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
488 // If this is a binop, find its precedence.
489 while (1) {
490 int TokPrec = GetTokPrecedence();
491
492 // If this is a binop that binds at least as tightly as the current binop,
493 // consume it, otherwise we are done.
494 if (TokPrec < ExprPrec)
495 return LHS;
496
497 // Okay, we know this is a binop.
498 int BinOp = CurTok;
499 getNextToken(); // eat binop
500
501 // Parse the unary expression after the binary operator.
502 ExprAST *RHS = ParseUnary();
503 if (!RHS) return 0;
504
505 // If BinOp binds less tightly with RHS than the operator after RHS, let
506 // the pending operator take RHS as its LHS.
507 int NextPrec = GetTokPrecedence();
508 if (TokPrec < NextPrec) {
509 RHS = ParseBinOpRHS(TokPrec+1, RHS);
510 if (RHS == 0) return 0;
511 }
512
513 // Merge LHS/RHS.
514 LHS = new BinaryExprAST(BinOp, LHS, RHS);
515 }
516 }
517
518 /// expression
519 /// ::= unary binoprhs
520 ///
ParseExpression()521 static ExprAST *ParseExpression() {
522 ExprAST *LHS = ParseUnary();
523 if (!LHS) return 0;
524
525 return ParseBinOpRHS(0, LHS);
526 }
527
528 /// prototype
529 /// ::= id '(' id* ')'
530 /// ::= binary LETTER number? (id, id)
531 /// ::= unary LETTER (id)
ParsePrototype()532 static PrototypeAST *ParsePrototype() {
533 std::string FnName;
534
535 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
536 unsigned BinaryPrecedence = 30;
537
538 switch (CurTok) {
539 default:
540 return ErrorP("Expected function name in prototype");
541 case tok_identifier:
542 FnName = IdentifierStr;
543 Kind = 0;
544 getNextToken();
545 break;
546 case tok_unary:
547 getNextToken();
548 if (!isascii(CurTok))
549 return ErrorP("Expected unary operator");
550 FnName = "unary";
551 FnName += (char)CurTok;
552 Kind = 1;
553 getNextToken();
554 break;
555 case tok_binary:
556 getNextToken();
557 if (!isascii(CurTok))
558 return ErrorP("Expected binary operator");
559 FnName = "binary";
560 FnName += (char)CurTok;
561 Kind = 2;
562 getNextToken();
563
564 // Read the precedence if present.
565 if (CurTok == tok_number) {
566 if (NumVal < 1 || NumVal > 100)
567 return ErrorP("Invalid precedecnce: must be 1..100");
568 BinaryPrecedence = (unsigned)NumVal;
569 getNextToken();
570 }
571 break;
572 }
573
574 if (CurTok != '(')
575 return ErrorP("Expected '(' in prototype");
576
577 std::vector<std::string> ArgNames;
578 while (getNextToken() == tok_identifier)
579 ArgNames.push_back(IdentifierStr);
580 if (CurTok != ')')
581 return ErrorP("Expected ')' in prototype");
582
583 // success.
584 getNextToken(); // eat ')'.
585
586 // Verify right number of names for operator.
587 if (Kind && ArgNames.size() != Kind)
588 return ErrorP("Invalid number of operands for operator");
589
590 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
591 }
592
593 /// definition ::= 'def' prototype expression
ParseDefinition()594 static FunctionAST *ParseDefinition() {
595 getNextToken(); // eat def.
596 PrototypeAST *Proto = ParsePrototype();
597 if (Proto == 0) return 0;
598
599 if (ExprAST *E = ParseExpression())
600 return new FunctionAST(Proto, E);
601 return 0;
602 }
603
604 /// toplevelexpr ::= expression
ParseTopLevelExpr()605 static FunctionAST *ParseTopLevelExpr() {
606 if (ExprAST *E = ParseExpression()) {
607 // Make an anonymous proto.
608 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
609 return new FunctionAST(Proto, E);
610 }
611 return 0;
612 }
613
614 /// external ::= 'extern' prototype
ParseExtern()615 static PrototypeAST *ParseExtern() {
616 getNextToken(); // eat extern.
617 return ParsePrototype();
618 }
619
620 //===----------------------------------------------------------------------===//
621 // Code Generation
622 //===----------------------------------------------------------------------===//
623
624 static Module *TheModule;
625 static FunctionPassManager *TheFPM;
626 static IRBuilder<> Builder(getGlobalContext());
627 static std::map<std::string, AllocaInst*> NamedValues;
628
ErrorV(const char * Str)629 Value *ErrorV(const char *Str) { Error(Str); return 0; }
630
631 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
632 /// the function. This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)633 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
634 const std::string &VarName) {
635 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
636 TheFunction->getEntryBlock().begin());
637 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
638 VarName.c_str());
639 }
640
Codegen()641 Value *NumberExprAST::Codegen() {
642 return ConstantFP::get(getGlobalContext(), APFloat(Val));
643 }
644
Codegen()645 Value *VariableExprAST::Codegen() {
646 // Look this variable up in the function.
647 Value *V = NamedValues[Name];
648 if (V == 0) return ErrorV("Unknown variable name");
649
650 // Load the value.
651 return Builder.CreateLoad(V, Name.c_str());
652 }
653
Codegen()654 Value *UnaryExprAST::Codegen() {
655 Value *OperandV = Operand->Codegen();
656 if (OperandV == 0) return 0;
657 #ifdef USE_MCJIT
658 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
659 #else
660 Function *F = TheModule->getFunction(std::string("unary")+Opcode);
661 #endif
662 if (F == 0)
663 return ErrorV("Unknown unary operator");
664
665 return Builder.CreateCall(F, OperandV, "unop");
666 }
667
Codegen()668 Value *BinaryExprAST::Codegen() {
669 // Special case '=' because we don't want to emit the LHS as an expression.
670 if (Op == '=') {
671 // Assignment requires the LHS to be an identifier.
672 // For now, I'm building without RTTI because LLVM builds that way by
673 // default and so we need to build that way to use the command line supprt.
674 // If you build LLVM with RTTI this can be changed back to a dynamic_cast.
675 VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS);
676 if (!LHSE)
677 return ErrorV("destination of '=' must be a variable");
678 // Codegen the RHS.
679 Value *Val = RHS->Codegen();
680 if (Val == 0) return 0;
681
682 // Look up the name.
683 Value *Variable = NamedValues[LHSE->getName()];
684 if (Variable == 0) return ErrorV("Unknown variable name");
685
686 Builder.CreateStore(Val, Variable);
687 return Val;
688 }
689
690 Value *L = LHS->Codegen();
691 Value *R = RHS->Codegen();
692 if (L == 0 || R == 0) return 0;
693
694 switch (Op) {
695 case '+': return Builder.CreateFAdd(L, R, "addtmp");
696 case '-': return Builder.CreateFSub(L, R, "subtmp");
697 case '*': return Builder.CreateFMul(L, R, "multmp");
698 case '/': return Builder.CreateFDiv(L, R, "divtmp");
699 case '<':
700 L = Builder.CreateFCmpULT(L, R, "cmptmp");
701 // Convert bool 0/1 to double 0.0 or 1.0
702 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
703 "booltmp");
704 default: break;
705 }
706
707 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
708 // a call to it.
709 Function *F = TheModule->getFunction(std::string("binary")+Op);
710 assert(F && "binary operator not found!");
711
712 Value *Ops[] = { L, R };
713 return Builder.CreateCall(F, Ops, "binop");
714 }
715
Codegen()716 Value *CallExprAST::Codegen() {
717 // Look up the name in the global module table.
718 Function *CalleeF = TheModule->getFunction(Callee);
719 if (CalleeF == 0) {
720 char error_str[64];
721 sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
722 return ErrorV(error_str);
723 }
724
725 // If argument mismatch error.
726 if (CalleeF->arg_size() != Args.size())
727 return ErrorV("Incorrect # arguments passed");
728
729 std::vector<Value*> ArgsV;
730 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
731 ArgsV.push_back(Args[i]->Codegen());
732 if (ArgsV.back() == 0) return 0;
733 }
734
735 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
736 }
737
Codegen()738 Value *IfExprAST::Codegen() {
739 Value *CondV = Cond->Codegen();
740 if (CondV == 0) return 0;
741
742 // Convert condition to a bool by comparing equal to 0.0.
743 CondV = Builder.CreateFCmpONE(CondV,
744 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
745 "ifcond");
746
747 Function *TheFunction = Builder.GetInsertBlock()->getParent();
748
749 // Create blocks for the then and else cases. Insert the 'then' block at the
750 // end of the function.
751 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
752 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
753 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
754
755 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
756
757 // Emit then value.
758 Builder.SetInsertPoint(ThenBB);
759
760 Value *ThenV = Then->Codegen();
761 if (ThenV == 0) return 0;
762
763 Builder.CreateBr(MergeBB);
764 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
765 ThenBB = Builder.GetInsertBlock();
766
767 // Emit else block.
768 TheFunction->getBasicBlockList().push_back(ElseBB);
769 Builder.SetInsertPoint(ElseBB);
770
771 Value *ElseV = Else->Codegen();
772 if (ElseV == 0) return 0;
773
774 Builder.CreateBr(MergeBB);
775 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
776 ElseBB = Builder.GetInsertBlock();
777
778 // Emit merge block.
779 TheFunction->getBasicBlockList().push_back(MergeBB);
780 Builder.SetInsertPoint(MergeBB);
781 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
782 "iftmp");
783
784 PN->addIncoming(ThenV, ThenBB);
785 PN->addIncoming(ElseV, ElseBB);
786 return PN;
787 }
788
Codegen()789 Value *ForExprAST::Codegen() {
790 // Output this as:
791 // var = alloca double
792 // ...
793 // start = startexpr
794 // store start -> var
795 // goto loop
796 // loop:
797 // ...
798 // bodyexpr
799 // ...
800 // loopend:
801 // step = stepexpr
802 // endcond = endexpr
803 //
804 // curvar = load var
805 // nextvar = curvar + step
806 // store nextvar -> var
807 // br endcond, loop, endloop
808 // outloop:
809
810 Function *TheFunction = Builder.GetInsertBlock()->getParent();
811
812 // Create an alloca for the variable in the entry block.
813 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
814
815 // Emit the start code first, without 'variable' in scope.
816 Value *StartVal = Start->Codegen();
817 if (StartVal == 0) return 0;
818
819 // Store the value into the alloca.
820 Builder.CreateStore(StartVal, Alloca);
821
822 // Make the new basic block for the loop header, inserting after current
823 // block.
824 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
825
826 // Insert an explicit fall through from the current block to the LoopBB.
827 Builder.CreateBr(LoopBB);
828
829 // Start insertion in LoopBB.
830 Builder.SetInsertPoint(LoopBB);
831
832 // Within the loop, the variable is defined equal to the PHI node. If it
833 // shadows an existing variable, we have to restore it, so save it now.
834 AllocaInst *OldVal = NamedValues[VarName];
835 NamedValues[VarName] = Alloca;
836
837 // Emit the body of the loop. This, like any other expr, can change the
838 // current BB. Note that we ignore the value computed by the body, but don't
839 // allow an error.
840 if (Body->Codegen() == 0)
841 return 0;
842
843 // Emit the step value.
844 Value *StepVal;
845 if (Step) {
846 StepVal = Step->Codegen();
847 if (StepVal == 0) return 0;
848 } else {
849 // If not specified, use 1.0.
850 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
851 }
852
853 // Compute the end condition.
854 Value *EndCond = End->Codegen();
855 if (EndCond == 0) return EndCond;
856
857 // Reload, increment, and restore the alloca. This handles the case where
858 // the body of the loop mutates the variable.
859 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
860 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
861 Builder.CreateStore(NextVar, Alloca);
862
863 // Convert condition to a bool by comparing equal to 0.0.
864 EndCond = Builder.CreateFCmpONE(EndCond,
865 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
866 "loopcond");
867
868 // Create the "after loop" block and insert it.
869 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
870
871 // Insert the conditional branch into the end of LoopEndBB.
872 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
873
874 // Any new code will be inserted in AfterBB.
875 Builder.SetInsertPoint(AfterBB);
876
877 // Restore the unshadowed variable.
878 if (OldVal)
879 NamedValues[VarName] = OldVal;
880 else
881 NamedValues.erase(VarName);
882
883
884 // for expr always returns 0.0.
885 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
886 }
887
Codegen()888 Value *VarExprAST::Codegen() {
889 std::vector<AllocaInst *> OldBindings;
890
891 Function *TheFunction = Builder.GetInsertBlock()->getParent();
892
893 // Register all variables and emit their initializer.
894 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
895 const std::string &VarName = VarNames[i].first;
896 ExprAST *Init = VarNames[i].second;
897
898 // Emit the initializer before adding the variable to scope, this prevents
899 // the initializer from referencing the variable itself, and permits stuff
900 // like this:
901 // var a = 1 in
902 // var a = a in ... # refers to outer 'a'.
903 Value *InitVal;
904 if (Init) {
905 InitVal = Init->Codegen();
906 if (InitVal == 0) return 0;
907 } else { // If not specified, use 0.0.
908 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
909 }
910
911 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
912 Builder.CreateStore(InitVal, Alloca);
913
914 // Remember the old variable binding so that we can restore the binding when
915 // we unrecurse.
916 OldBindings.push_back(NamedValues[VarName]);
917
918 // Remember this binding.
919 NamedValues[VarName] = Alloca;
920 }
921
922 // Codegen the body, now that all vars are in scope.
923 Value *BodyVal = Body->Codegen();
924 if (BodyVal == 0) return 0;
925
926 // Pop all our variables from scope.
927 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
928 NamedValues[VarNames[i].first] = OldBindings[i];
929
930 // Return the body computation.
931 return BodyVal;
932 }
933
Codegen()934 Function *PrototypeAST::Codegen() {
935 // Make the function type: double(double,double) etc.
936 std::vector<Type*> Doubles(Args.size(),
937 Type::getDoubleTy(getGlobalContext()));
938 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
939 Doubles, false);
940
941 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
942 // If F conflicted, there was already something named 'Name'. If it has a
943 // body, don't allow redefinition or reextern.
944 if (F->getName() != Name) {
945 // Delete the one we just made and get the existing one.
946 F->eraseFromParent();
947 F = TheModule->getFunction(Name);
948 // If F already has a body, reject this.
949 if (!F->empty()) {
950 ErrorF("redefinition of function");
951 return 0;
952 }
953 // If F took a different number of args, reject.
954 if (F->arg_size() != Args.size()) {
955 ErrorF("redefinition of function with different # args");
956 return 0;
957 }
958 }
959
960 // Set names for all arguments.
961 unsigned Idx = 0;
962 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
963 ++AI, ++Idx)
964 AI->setName(Args[Idx]);
965
966 return F;
967 }
968
969 /// CreateArgumentAllocas - Create an alloca for each argument and register the
970 /// argument in the symbol table so that references to it will succeed.
CreateArgumentAllocas(Function * F)971 void PrototypeAST::CreateArgumentAllocas(Function *F) {
972 Function::arg_iterator AI = F->arg_begin();
973 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
974 // Create an alloca for this variable.
975 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
976
977 // Store the initial value into the alloca.
978 Builder.CreateStore(AI, Alloca);
979
980 // Add arguments to variable symbol table.
981 NamedValues[Args[Idx]] = Alloca;
982 }
983 }
984
Codegen()985 Function *FunctionAST::Codegen() {
986 NamedValues.clear();
987
988 Function *TheFunction = Proto->Codegen();
989 if (TheFunction == 0)
990 return 0;
991
992 // If this is an operator, install it.
993 if (Proto->isBinaryOp())
994 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
995
996 // Create a new basic block to start insertion into.
997 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
998 Builder.SetInsertPoint(BB);
999
1000 // Add all arguments to the symbol table and create their allocas.
1001 Proto->CreateArgumentAllocas(TheFunction);
1002
1003 if (Value *RetVal = Body->Codegen()) {
1004 // Finish off the function.
1005 Builder.CreateRet(RetVal);
1006
1007 // Validate the generated code, checking for consistency.
1008 verifyFunction(*TheFunction);
1009
1010 // Optimize the function.
1011 TheFPM->run(*TheFunction);
1012
1013 return TheFunction;
1014 }
1015
1016 // Error reading body, remove function.
1017 TheFunction->eraseFromParent();
1018
1019 if (Proto->isBinaryOp())
1020 BinopPrecedence.erase(Proto->getOperatorName());
1021 return 0;
1022 }
1023
1024 //===----------------------------------------------------------------------===//
1025 // Top-Level parsing and JIT Driver
1026 //===----------------------------------------------------------------------===//
1027
1028 static ExecutionEngine *TheExecutionEngine;
1029
HandleDefinition()1030 static void HandleDefinition() {
1031 if (FunctionAST *F = ParseDefinition()) {
1032 if (Function *LF = F->Codegen()) {
1033 #ifndef MINIMAL_STDERR_OUTPUT
1034 fprintf(stderr, "Read function definition:");
1035 LF->dump();
1036 #endif
1037 }
1038 } else {
1039 // Skip token for error recovery.
1040 getNextToken();
1041 }
1042 }
1043
HandleExtern()1044 static void HandleExtern() {
1045 if (PrototypeAST *P = ParseExtern()) {
1046 if (Function *F = P->Codegen()) {
1047 #ifndef MINIMAL_STDERR_OUTPUT
1048 fprintf(stderr, "Read extern: ");
1049 F->dump();
1050 #endif
1051 }
1052 } else {
1053 // Skip token for error recovery.
1054 getNextToken();
1055 }
1056 }
1057
HandleTopLevelExpression()1058 static void HandleTopLevelExpression() {
1059 // Evaluate a top-level expression into an anonymous function.
1060 if (FunctionAST *F = ParseTopLevelExpr()) {
1061 if (Function *LF = F->Codegen()) {
1062 // JIT the function, returning a function pointer.
1063 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1064 // Cast it to the right type (takes no arguments, returns a double) so we
1065 // can call it as a native function.
1066 double (*FP)() = (double (*)())(intptr_t)FPtr;
1067 #ifdef MINIMAL_STDERR_OUTPUT
1068 FP();
1069 #else
1070 fprintf(stderr, "Evaluated to %f\n", FP());
1071 #endif
1072 }
1073 } else {
1074 // Skip token for error recovery.
1075 getNextToken();
1076 }
1077 }
1078
1079 /// top ::= definition | external | expression | ';'
MainLoop()1080 static void MainLoop() {
1081 while (1) {
1082 #ifndef MINIMAL_STDERR_OUTPUT
1083 fprintf(stderr, "ready> ");
1084 #endif
1085 switch (CurTok) {
1086 case tok_eof: return;
1087 case ';': getNextToken(); break; // ignore top-level semicolons.
1088 case tok_def: HandleDefinition(); break;
1089 case tok_extern: HandleExtern(); break;
1090 default: HandleTopLevelExpression(); break;
1091 }
1092 }
1093 }
1094
1095 //===----------------------------------------------------------------------===//
1096 // "Library" functions that can be "extern'd" from user code.
1097 //===----------------------------------------------------------------------===//
1098
1099 /// putchard - putchar that takes a double and returns 0.
1100 extern "C"
putchard(double X)1101 double putchard(double X) {
1102 putchar((char)X);
1103 return 0;
1104 }
1105
1106 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1107 extern "C"
printd(double X)1108 double printd(double X) {
1109 printf("%f", X);
1110 return 0;
1111 }
1112
1113 extern "C"
printlf()1114 double printlf() {
1115 printf("\n");
1116 return 0;
1117 }
1118
1119 //===----------------------------------------------------------------------===//
1120 // Command line input file handlers
1121 //===----------------------------------------------------------------------===//
1122
parseInputIR(std::string InputFile)1123 Module* parseInputIR(std::string InputFile) {
1124 SMDiagnostic Err;
1125 Module *M = ParseIRFile(InputFile, Err, getGlobalContext());
1126 if (!M) {
1127 Err.print("IR parsing failed: ", errs());
1128 return NULL;
1129 }
1130
1131 return M;
1132 }
1133
1134 //===----------------------------------------------------------------------===//
1135 // Main driver code.
1136 //===----------------------------------------------------------------------===//
1137
main(int argc,char ** argv)1138 int main(int argc, char **argv) {
1139 InitializeNativeTarget();
1140 LLVMContext &Context = getGlobalContext();
1141
1142 cl::ParseCommandLineOptions(argc, argv,
1143 "Kaleidoscope example program\n");
1144
1145 // Install standard binary operators.
1146 // 1 is lowest precedence.
1147 BinopPrecedence['='] = 2;
1148 BinopPrecedence['<'] = 10;
1149 BinopPrecedence['+'] = 20;
1150 BinopPrecedence['-'] = 20;
1151 BinopPrecedence['/'] = 40;
1152 BinopPrecedence['*'] = 40; // highest.
1153
1154 // Make the module, which holds all the code.
1155 if (!InputIR.empty()) {
1156 TheModule = parseInputIR(InputIR);
1157 } else {
1158 TheModule = new Module("my cool jit", Context);
1159 }
1160
1161 // Create the JIT. This takes ownership of the module.
1162 std::string ErrStr;
1163 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
1164 if (!TheExecutionEngine) {
1165 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1166 exit(1);
1167 }
1168
1169 FunctionPassManager OurFPM(TheModule);
1170
1171 // Set up the optimizer pipeline. Start with registering info about how the
1172 // target lays out data structures.
1173 OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
1174 // Provide basic AliasAnalysis support for GVN.
1175 OurFPM.add(createBasicAliasAnalysisPass());
1176 // Promote allocas to registers.
1177 OurFPM.add(createPromoteMemoryToRegisterPass());
1178 // Do simple "peephole" optimizations and bit-twiddling optzns.
1179 OurFPM.add(createInstructionCombiningPass());
1180 // Reassociate expressions.
1181 OurFPM.add(createReassociatePass());
1182 // Eliminate Common SubExpressions.
1183 OurFPM.add(createGVNPass());
1184 // Simplify the control flow graph (deleting unreachable blocks, etc).
1185 OurFPM.add(createCFGSimplificationPass());
1186
1187 OurFPM.doInitialization();
1188
1189 // Set the global so the code gen can use this.
1190 TheFPM = &OurFPM;
1191
1192 // Prime the first token.
1193 #ifndef MINIMAL_STDERR_OUTPUT
1194 fprintf(stderr, "ready> ");
1195 #endif
1196 getNextToken();
1197
1198 // Run the main "interpreter loop" now.
1199 MainLoop();
1200
1201 // Print out all of the generated code.
1202 TheFPM = 0;
1203 #if !defined(MINIMAL_STDERR_OUTPUT) || defined(DUMP_FINAL_MODULE)
1204 TheModule->dump();
1205 #endif
1206 return 0;
1207 }
1208