1 #include "llvm/Analysis/Passes.h"
2 #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
3 #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
4 #include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
5 #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
6 #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
7 #include "llvm/IR/DataLayout.h"
8 #include "llvm/IR/DerivedTypes.h"
9 #include "llvm/IR/IRBuilder.h"
10 #include "llvm/IR/LegacyPassManager.h"
11 #include "llvm/IR/LLVMContext.h"
12 #include "llvm/IR/Module.h"
13 #include "llvm/IR/Verifier.h"
14 #include "llvm/Support/TargetSelect.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include <cctype>
17 #include <iomanip>
18 #include <iostream>
19 #include <map>
20 #include <sstream>
21 #include <string>
22 #include <vector>
23
24 using namespace llvm;
25 using namespace llvm::orc;
26
27 //===----------------------------------------------------------------------===//
28 // Lexer
29 //===----------------------------------------------------------------------===//
30
31 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
32 // of these for known things.
33 enum Token {
34 tok_eof = -1,
35
36 // commands
37 tok_def = -2, tok_extern = -3,
38
39 // primary
40 tok_identifier = -4, tok_number = -5,
41
42 // control
43 tok_if = -6, tok_then = -7, tok_else = -8,
44 tok_for = -9, tok_in = -10,
45
46 // operators
47 tok_binary = -11, tok_unary = -12,
48
49 // var definition
50 tok_var = -13
51 };
52
53 static std::string IdentifierStr; // Filled in if tok_identifier
54 static double NumVal; // Filled in if tok_number
55
56 /// gettok - Return the next token from standard input.
gettok()57 static int gettok() {
58 static int LastChar = ' ';
59
60 // Skip any whitespace.
61 while (isspace(LastChar))
62 LastChar = getchar();
63
64 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
65 IdentifierStr = LastChar;
66 while (isalnum((LastChar = getchar())))
67 IdentifierStr += LastChar;
68
69 if (IdentifierStr == "def") return tok_def;
70 if (IdentifierStr == "extern") return tok_extern;
71 if (IdentifierStr == "if") return tok_if;
72 if (IdentifierStr == "then") return tok_then;
73 if (IdentifierStr == "else") return tok_else;
74 if (IdentifierStr == "for") return tok_for;
75 if (IdentifierStr == "in") return tok_in;
76 if (IdentifierStr == "binary") return tok_binary;
77 if (IdentifierStr == "unary") return tok_unary;
78 if (IdentifierStr == "var") return tok_var;
79 return tok_identifier;
80 }
81
82 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
83 std::string NumStr;
84 do {
85 NumStr += LastChar;
86 LastChar = getchar();
87 } while (isdigit(LastChar) || LastChar == '.');
88
89 NumVal = strtod(NumStr.c_str(), nullptr);
90 return tok_number;
91 }
92
93 if (LastChar == '#') {
94 // Comment until end of line.
95 do LastChar = getchar();
96 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
97
98 if (LastChar != EOF)
99 return gettok();
100 }
101
102 // Check for end of file. Don't eat the EOF.
103 if (LastChar == EOF)
104 return tok_eof;
105
106 // Otherwise, just return the character as its ascii value.
107 int ThisChar = LastChar;
108 LastChar = getchar();
109 return ThisChar;
110 }
111
112 //===----------------------------------------------------------------------===//
113 // Abstract Syntax Tree (aka Parse Tree)
114 //===----------------------------------------------------------------------===//
115
116 class IRGenContext;
117
118 /// ExprAST - Base class for all expression nodes.
119 struct ExprAST {
~ExprASTExprAST120 virtual ~ExprAST() {}
121 virtual Value *IRGen(IRGenContext &C) const = 0;
122 };
123
124 /// NumberExprAST - Expression class for numeric literals like "1.0".
125 struct NumberExprAST : public ExprAST {
NumberExprASTNumberExprAST126 NumberExprAST(double Val) : Val(Val) {}
127 Value *IRGen(IRGenContext &C) const override;
128
129 double Val;
130 };
131
132 /// VariableExprAST - Expression class for referencing a variable, like "a".
133 struct VariableExprAST : public ExprAST {
VariableExprASTVariableExprAST134 VariableExprAST(std::string Name) : Name(std::move(Name)) {}
135 Value *IRGen(IRGenContext &C) const override;
136
137 std::string Name;
138 };
139
140 /// UnaryExprAST - Expression class for a unary operator.
141 struct UnaryExprAST : public ExprAST {
UnaryExprASTUnaryExprAST142 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
143 : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
144
145 Value *IRGen(IRGenContext &C) const override;
146
147 char Opcode;
148 std::unique_ptr<ExprAST> Operand;
149 };
150
151 /// BinaryExprAST - Expression class for a binary operator.
152 struct BinaryExprAST : public ExprAST {
BinaryExprASTBinaryExprAST153 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
154 std::unique_ptr<ExprAST> RHS)
155 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
156
157 Value *IRGen(IRGenContext &C) const override;
158
159 char Op;
160 std::unique_ptr<ExprAST> LHS, RHS;
161 };
162
163 /// CallExprAST - Expression class for function calls.
164 struct CallExprAST : public ExprAST {
CallExprASTCallExprAST165 CallExprAST(std::string CalleeName,
166 std::vector<std::unique_ptr<ExprAST>> Args)
167 : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
168
169 Value *IRGen(IRGenContext &C) const override;
170
171 std::string CalleeName;
172 std::vector<std::unique_ptr<ExprAST>> Args;
173 };
174
175 /// IfExprAST - Expression class for if/then/else.
176 struct IfExprAST : public ExprAST {
IfExprASTIfExprAST177 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
178 std::unique_ptr<ExprAST> Else)
179 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
180 Value *IRGen(IRGenContext &C) const override;
181
182 std::unique_ptr<ExprAST> Cond, Then, Else;
183 };
184
185 /// ForExprAST - Expression class for for/in.
186 struct ForExprAST : public ExprAST {
ForExprASTForExprAST187 ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
188 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
189 std::unique_ptr<ExprAST> Body)
190 : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
191 Step(std::move(Step)), Body(std::move(Body)) {}
192
193 Value *IRGen(IRGenContext &C) const override;
194
195 std::string VarName;
196 std::unique_ptr<ExprAST> Start, End, Step, Body;
197 };
198
199 /// VarExprAST - Expression class for var/in
200 struct VarExprAST : public ExprAST {
201 typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
202 typedef std::vector<Binding> BindingList;
203
VarExprASTVarExprAST204 VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
205 : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
206
207 Value *IRGen(IRGenContext &C) const override;
208
209 BindingList VarBindings;
210 std::unique_ptr<ExprAST> Body;
211 };
212
213 /// PrototypeAST - This class represents the "prototype" for a function,
214 /// which captures its argument names as well as if it is an operator.
215 struct PrototypeAST {
PrototypeASTPrototypeAST216 PrototypeAST(std::string Name, std::vector<std::string> Args,
217 bool IsOperator = false, unsigned Precedence = 0)
218 : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
219 Precedence(Precedence) {}
220
221 Function *IRGen(IRGenContext &C) const;
222 void CreateArgumentAllocas(Function *F, IRGenContext &C);
223
isUnaryOpPrototypeAST224 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOpPrototypeAST225 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
226
getOperatorNamePrototypeAST227 char getOperatorName() const {
228 assert(isUnaryOp() || isBinaryOp());
229 return Name[Name.size()-1];
230 }
231
232 std::string Name;
233 std::vector<std::string> Args;
234 bool IsOperator;
235 unsigned Precedence; // Precedence if a binary op.
236 };
237
238 /// FunctionAST - This class represents a function definition itself.
239 struct FunctionAST {
FunctionASTFunctionAST240 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
241 std::unique_ptr<ExprAST> Body)
242 : Proto(std::move(Proto)), Body(std::move(Body)) {}
243
244 Function *IRGen(IRGenContext &C) const;
245
246 std::unique_ptr<PrototypeAST> Proto;
247 std::unique_ptr<ExprAST> Body;
248 };
249
250 //===----------------------------------------------------------------------===//
251 // Parser
252 //===----------------------------------------------------------------------===//
253
254 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
255 /// token the parser is looking at. getNextToken reads another token from the
256 /// lexer and updates CurTok with its results.
257 static int CurTok;
getNextToken()258 static int getNextToken() {
259 return CurTok = gettok();
260 }
261
262 /// BinopPrecedence - This holds the precedence for each binary operator that is
263 /// defined.
264 static std::map<char, int> BinopPrecedence;
265
266 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()267 static int GetTokPrecedence() {
268 if (!isascii(CurTok))
269 return -1;
270
271 // Make sure it's a declared binop.
272 int TokPrec = BinopPrecedence[CurTok];
273 if (TokPrec <= 0) return -1;
274 return TokPrec;
275 }
276
277 template <typename T>
ErrorU(const std::string & Str)278 std::unique_ptr<T> ErrorU(const std::string &Str) {
279 std::cerr << "Error: " << Str << "\n";
280 return nullptr;
281 }
282
283 template <typename T>
ErrorP(const std::string & Str)284 T* ErrorP(const std::string &Str) {
285 std::cerr << "Error: " << Str << "\n";
286 return nullptr;
287 }
288
289 static std::unique_ptr<ExprAST> ParseExpression();
290
291 /// identifierexpr
292 /// ::= identifier
293 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()294 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
295 std::string IdName = IdentifierStr;
296
297 getNextToken(); // eat identifier.
298
299 if (CurTok != '(') // Simple variable ref.
300 return llvm::make_unique<VariableExprAST>(IdName);
301
302 // Call.
303 getNextToken(); // eat (
304 std::vector<std::unique_ptr<ExprAST>> Args;
305 if (CurTok != ')') {
306 while (1) {
307 auto Arg = ParseExpression();
308 if (!Arg) return nullptr;
309 Args.push_back(std::move(Arg));
310
311 if (CurTok == ')') break;
312
313 if (CurTok != ',')
314 return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
315 getNextToken();
316 }
317 }
318
319 // Eat the ')'.
320 getNextToken();
321
322 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
323 }
324
325 /// numberexpr ::= number
ParseNumberExpr()326 static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
327 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
328 getNextToken(); // consume the number
329 return Result;
330 }
331
332 /// parenexpr ::= '(' expression ')'
ParseParenExpr()333 static std::unique_ptr<ExprAST> ParseParenExpr() {
334 getNextToken(); // eat (.
335 auto V = ParseExpression();
336 if (!V)
337 return nullptr;
338
339 if (CurTok != ')')
340 return ErrorU<ExprAST>("expected ')'");
341 getNextToken(); // eat ).
342 return V;
343 }
344
345 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()346 static std::unique_ptr<ExprAST> ParseIfExpr() {
347 getNextToken(); // eat the if.
348
349 // condition.
350 auto Cond = ParseExpression();
351 if (!Cond)
352 return nullptr;
353
354 if (CurTok != tok_then)
355 return ErrorU<ExprAST>("expected then");
356 getNextToken(); // eat the then
357
358 auto Then = ParseExpression();
359 if (!Then)
360 return nullptr;
361
362 if (CurTok != tok_else)
363 return ErrorU<ExprAST>("expected else");
364
365 getNextToken();
366
367 auto Else = ParseExpression();
368 if (!Else)
369 return nullptr;
370
371 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
372 std::move(Else));
373 }
374
375 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()376 static std::unique_ptr<ForExprAST> ParseForExpr() {
377 getNextToken(); // eat the for.
378
379 if (CurTok != tok_identifier)
380 return ErrorU<ForExprAST>("expected identifier after for");
381
382 std::string IdName = IdentifierStr;
383 getNextToken(); // eat identifier.
384
385 if (CurTok != '=')
386 return ErrorU<ForExprAST>("expected '=' after for");
387 getNextToken(); // eat '='.
388
389 auto Start = ParseExpression();
390 if (!Start)
391 return nullptr;
392 if (CurTok != ',')
393 return ErrorU<ForExprAST>("expected ',' after for start value");
394 getNextToken();
395
396 auto End = ParseExpression();
397 if (!End)
398 return nullptr;
399
400 // The step value is optional.
401 std::unique_ptr<ExprAST> Step;
402 if (CurTok == ',') {
403 getNextToken();
404 Step = ParseExpression();
405 if (!Step)
406 return nullptr;
407 }
408
409 if (CurTok != tok_in)
410 return ErrorU<ForExprAST>("expected 'in' after for");
411 getNextToken(); // eat 'in'.
412
413 auto Body = ParseExpression();
414 if (Body)
415 return nullptr;
416
417 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
418 std::move(Step), std::move(Body));
419 }
420
421 /// varexpr ::= 'var' identifier ('=' expression)?
422 // (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()423 static std::unique_ptr<VarExprAST> ParseVarExpr() {
424 getNextToken(); // eat the var.
425
426 VarExprAST::BindingList VarBindings;
427
428 // At least one variable name is required.
429 if (CurTok != tok_identifier)
430 return ErrorU<VarExprAST>("expected identifier after var");
431
432 while (1) {
433 std::string Name = IdentifierStr;
434 getNextToken(); // eat identifier.
435
436 // Read the optional initializer.
437 std::unique_ptr<ExprAST> Init;
438 if (CurTok == '=') {
439 getNextToken(); // eat the '='.
440
441 Init = ParseExpression();
442 if (!Init)
443 return nullptr;
444 }
445
446 VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
447
448 // End of var list, exit loop.
449 if (CurTok != ',') break;
450 getNextToken(); // eat the ','.
451
452 if (CurTok != tok_identifier)
453 return ErrorU<VarExprAST>("expected identifier list after var");
454 }
455
456 // At this point, we have to have 'in'.
457 if (CurTok != tok_in)
458 return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
459 getNextToken(); // eat 'in'.
460
461 auto Body = ParseExpression();
462 if (!Body)
463 return nullptr;
464
465 return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
466 }
467
468 /// primary
469 /// ::= identifierexpr
470 /// ::= numberexpr
471 /// ::= parenexpr
472 /// ::= ifexpr
473 /// ::= forexpr
474 /// ::= varexpr
ParsePrimary()475 static std::unique_ptr<ExprAST> ParsePrimary() {
476 switch (CurTok) {
477 default: return ErrorU<ExprAST>("unknown token when expecting an expression");
478 case tok_identifier: return ParseIdentifierExpr();
479 case tok_number: return ParseNumberExpr();
480 case '(': return ParseParenExpr();
481 case tok_if: return ParseIfExpr();
482 case tok_for: return ParseForExpr();
483 case tok_var: return ParseVarExpr();
484 }
485 }
486
487 /// unary
488 /// ::= primary
489 /// ::= '!' unary
ParseUnary()490 static std::unique_ptr<ExprAST> ParseUnary() {
491 // If the current token is not an operator, it must be a primary expr.
492 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
493 return ParsePrimary();
494
495 // If this is a unary operator, read it.
496 int Opc = CurTok;
497 getNextToken();
498 if (auto Operand = ParseUnary())
499 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
500 return nullptr;
501 }
502
503 /// binoprhs
504 /// ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)505 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
506 std::unique_ptr<ExprAST> LHS) {
507 // If this is a binop, find its precedence.
508 while (1) {
509 int TokPrec = GetTokPrecedence();
510
511 // If this is a binop that binds at least as tightly as the current binop,
512 // consume it, otherwise we are done.
513 if (TokPrec < ExprPrec)
514 return LHS;
515
516 // Okay, we know this is a binop.
517 int BinOp = CurTok;
518 getNextToken(); // eat binop
519
520 // Parse the unary expression after the binary operator.
521 auto RHS = ParseUnary();
522 if (!RHS)
523 return nullptr;
524
525 // If BinOp binds less tightly with RHS than the operator after RHS, let
526 // the pending operator take RHS as its LHS.
527 int NextPrec = GetTokPrecedence();
528 if (TokPrec < NextPrec) {
529 RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
530 if (!RHS)
531 return nullptr;
532 }
533
534 // Merge LHS/RHS.
535 LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
536 }
537 }
538
539 /// expression
540 /// ::= unary binoprhs
541 ///
ParseExpression()542 static std::unique_ptr<ExprAST> ParseExpression() {
543 auto LHS = ParseUnary();
544 if (!LHS)
545 return nullptr;
546
547 return ParseBinOpRHS(0, std::move(LHS));
548 }
549
550 /// prototype
551 /// ::= id '(' id* ')'
552 /// ::= binary LETTER number? (id, id)
553 /// ::= unary LETTER (id)
ParsePrototype()554 static std::unique_ptr<PrototypeAST> ParsePrototype() {
555 std::string FnName;
556
557 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
558 unsigned BinaryPrecedence = 30;
559
560 switch (CurTok) {
561 default:
562 return ErrorU<PrototypeAST>("Expected function name in prototype");
563 case tok_identifier:
564 FnName = IdentifierStr;
565 Kind = 0;
566 getNextToken();
567 break;
568 case tok_unary:
569 getNextToken();
570 if (!isascii(CurTok))
571 return ErrorU<PrototypeAST>("Expected unary operator");
572 FnName = "unary";
573 FnName += (char)CurTok;
574 Kind = 1;
575 getNextToken();
576 break;
577 case tok_binary:
578 getNextToken();
579 if (!isascii(CurTok))
580 return ErrorU<PrototypeAST>("Expected binary operator");
581 FnName = "binary";
582 FnName += (char)CurTok;
583 Kind = 2;
584 getNextToken();
585
586 // Read the precedence if present.
587 if (CurTok == tok_number) {
588 if (NumVal < 1 || NumVal > 100)
589 return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
590 BinaryPrecedence = (unsigned)NumVal;
591 getNextToken();
592 }
593 break;
594 }
595
596 if (CurTok != '(')
597 return ErrorU<PrototypeAST>("Expected '(' in prototype");
598
599 std::vector<std::string> ArgNames;
600 while (getNextToken() == tok_identifier)
601 ArgNames.push_back(IdentifierStr);
602 if (CurTok != ')')
603 return ErrorU<PrototypeAST>("Expected ')' in prototype");
604
605 // success.
606 getNextToken(); // eat ')'.
607
608 // Verify right number of names for operator.
609 if (Kind && ArgNames.size() != Kind)
610 return ErrorU<PrototypeAST>("Invalid number of operands for operator");
611
612 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
613 BinaryPrecedence);
614 }
615
616 /// definition ::= 'def' prototype expression
ParseDefinition()617 static std::unique_ptr<FunctionAST> ParseDefinition() {
618 getNextToken(); // eat def.
619 auto Proto = ParsePrototype();
620 if (!Proto)
621 return nullptr;
622
623 if (auto Body = ParseExpression())
624 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
625 return nullptr;
626 }
627
628 /// toplevelexpr ::= expression
ParseTopLevelExpr()629 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
630 if (auto E = ParseExpression()) {
631 // Make an anonymous proto.
632 auto Proto =
633 llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
634 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
635 }
636 return nullptr;
637 }
638
639 /// external ::= 'extern' prototype
ParseExtern()640 static std::unique_ptr<PrototypeAST> ParseExtern() {
641 getNextToken(); // eat extern.
642 return ParsePrototype();
643 }
644
645 //===----------------------------------------------------------------------===//
646 // Code Generation
647 //===----------------------------------------------------------------------===//
648
649 // FIXME: Obviously we can do better than this
GenerateUniqueName(const std::string & Root)650 std::string GenerateUniqueName(const std::string &Root) {
651 static int i = 0;
652 std::ostringstream NameStream;
653 NameStream << Root << ++i;
654 return NameStream.str();
655 }
656
MakeLegalFunctionName(std::string Name)657 std::string MakeLegalFunctionName(std::string Name)
658 {
659 std::string NewName;
660 assert(!Name.empty() && "Base name must not be empty");
661
662 // Start with what we have
663 NewName = Name;
664
665 // Look for a numberic first character
666 if (NewName.find_first_of("0123456789") == 0) {
667 NewName.insert(0, 1, 'n');
668 }
669
670 // Replace illegal characters with their ASCII equivalent
671 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
672 size_t pos;
673 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
674 std::ostringstream NumStream;
675 NumStream << (int)NewName.at(pos);
676 NewName = NewName.replace(pos, 1, NumStream.str());
677 }
678
679 return NewName;
680 }
681
682 class SessionContext {
683 public:
SessionContext(LLVMContext & C)684 SessionContext(LLVMContext &C)
685 : Context(C), TM(EngineBuilder().selectTarget()) {}
getLLVMContext() const686 LLVMContext& getLLVMContext() const { return Context; }
getTarget()687 TargetMachine& getTarget() { return *TM; }
688 void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
689 PrototypeAST* getPrototypeAST(const std::string &Name);
690 private:
691 typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
692
693 LLVMContext &Context;
694 std::unique_ptr<TargetMachine> TM;
695
696 PrototypeMap Prototypes;
697 };
698
addPrototypeAST(std::unique_ptr<PrototypeAST> P)699 void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
700 Prototypes[P->Name] = std::move(P);
701 }
702
getPrototypeAST(const std::string & Name)703 PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
704 PrototypeMap::iterator I = Prototypes.find(Name);
705 if (I != Prototypes.end())
706 return I->second.get();
707 return nullptr;
708 }
709
710 class IRGenContext {
711 public:
712
IRGenContext(SessionContext & S)713 IRGenContext(SessionContext &S)
714 : Session(S),
715 M(new Module(GenerateUniqueName("jit_module_"),
716 Session.getLLVMContext())),
717 Builder(Session.getLLVMContext()) {
718 M->setDataLayout(Session.getTarget().createDataLayout());
719 }
720
getSession()721 SessionContext& getSession() { return Session; }
getM() const722 Module& getM() const { return *M; }
takeM()723 std::unique_ptr<Module> takeM() { return std::move(M); }
getBuilder()724 IRBuilder<>& getBuilder() { return Builder; }
getLLVMContext()725 LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
726 Function* getPrototype(const std::string &Name);
727
728 std::map<std::string, AllocaInst*> NamedValues;
729 private:
730 SessionContext &Session;
731 std::unique_ptr<Module> M;
732 IRBuilder<> Builder;
733 };
734
getPrototype(const std::string & Name)735 Function* IRGenContext::getPrototype(const std::string &Name) {
736 if (Function *ExistingProto = M->getFunction(Name))
737 return ExistingProto;
738 if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
739 return ProtoAST->IRGen(*this);
740 return nullptr;
741 }
742
743 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
744 /// the function. This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)745 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
746 const std::string &VarName) {
747 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
748 TheFunction->getEntryBlock().begin());
749 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), nullptr,
750 VarName.c_str());
751 }
752
IRGen(IRGenContext & C) const753 Value *NumberExprAST::IRGen(IRGenContext &C) const {
754 return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
755 }
756
IRGen(IRGenContext & C) const757 Value *VariableExprAST::IRGen(IRGenContext &C) const {
758 // Look this variable up in the function.
759 Value *V = C.NamedValues[Name];
760
761 if (!V)
762 return ErrorP<Value>("Unknown variable name '" + Name + "'");
763
764 // Load the value.
765 return C.getBuilder().CreateLoad(V, Name.c_str());
766 }
767
IRGen(IRGenContext & C) const768 Value *UnaryExprAST::IRGen(IRGenContext &C) const {
769 if (Value *OperandV = Operand->IRGen(C)) {
770 std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
771 if (Function *F = C.getPrototype(FnName))
772 return C.getBuilder().CreateCall(F, OperandV, "unop");
773 return ErrorP<Value>("Unknown unary operator");
774 }
775
776 // Could not codegen operand - return null.
777 return nullptr;
778 }
779
IRGen(IRGenContext & C) const780 Value *BinaryExprAST::IRGen(IRGenContext &C) const {
781 // Special case '=' because we don't want to emit the LHS as an expression.
782 if (Op == '=') {
783 // Assignment requires the LHS to be an identifier.
784 auto &LHSVar = static_cast<VariableExprAST &>(*LHS);
785 // Codegen the RHS.
786 Value *Val = RHS->IRGen(C);
787 if (!Val) return nullptr;
788
789 // Look up the name.
790 if (auto Variable = C.NamedValues[LHSVar.Name]) {
791 C.getBuilder().CreateStore(Val, Variable);
792 return Val;
793 }
794 return ErrorP<Value>("Unknown variable name");
795 }
796
797 Value *L = LHS->IRGen(C);
798 Value *R = RHS->IRGen(C);
799 if (!L || !R) return nullptr;
800
801 switch (Op) {
802 case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
803 case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
804 case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
805 case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
806 case '<':
807 L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
808 // Convert bool 0/1 to double 0.0 or 1.0
809 return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
810 "booltmp");
811 default: break;
812 }
813
814 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
815 // a call to it.
816 std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
817 if (Function *F = C.getPrototype(FnName)) {
818 Value *Ops[] = { L, R };
819 return C.getBuilder().CreateCall(F, Ops, "binop");
820 }
821
822 return ErrorP<Value>("Unknown binary operator");
823 }
824
IRGen(IRGenContext & C) const825 Value *CallExprAST::IRGen(IRGenContext &C) const {
826 // Look up the name in the global module table.
827 if (auto CalleeF = C.getPrototype(CalleeName)) {
828 // If argument mismatch error.
829 if (CalleeF->arg_size() != Args.size())
830 return ErrorP<Value>("Incorrect # arguments passed");
831
832 std::vector<Value*> ArgsV;
833 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
834 ArgsV.push_back(Args[i]->IRGen(C));
835 if (!ArgsV.back()) return nullptr;
836 }
837
838 return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
839 }
840
841 return ErrorP<Value>("Unknown function referenced");
842 }
843
IRGen(IRGenContext & C) const844 Value *IfExprAST::IRGen(IRGenContext &C) const {
845 Value *CondV = Cond->IRGen(C);
846 if (!CondV) return nullptr;
847
848 // Convert condition to a bool by comparing equal to 0.0.
849 ConstantFP *FPZero =
850 ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
851 CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
852
853 Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
854
855 // Create blocks for the then and else cases. Insert the 'then' block at the
856 // end of the function.
857 BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
858 BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
859 BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
860
861 C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
862
863 // Emit then value.
864 C.getBuilder().SetInsertPoint(ThenBB);
865
866 Value *ThenV = Then->IRGen(C);
867 if (!ThenV) return nullptr;
868
869 C.getBuilder().CreateBr(MergeBB);
870 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
871 ThenBB = C.getBuilder().GetInsertBlock();
872
873 // Emit else block.
874 TheFunction->getBasicBlockList().push_back(ElseBB);
875 C.getBuilder().SetInsertPoint(ElseBB);
876
877 Value *ElseV = Else->IRGen(C);
878 if (!ElseV) return nullptr;
879
880 C.getBuilder().CreateBr(MergeBB);
881 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
882 ElseBB = C.getBuilder().GetInsertBlock();
883
884 // Emit merge block.
885 TheFunction->getBasicBlockList().push_back(MergeBB);
886 C.getBuilder().SetInsertPoint(MergeBB);
887 PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
888 "iftmp");
889
890 PN->addIncoming(ThenV, ThenBB);
891 PN->addIncoming(ElseV, ElseBB);
892 return PN;
893 }
894
IRGen(IRGenContext & C) const895 Value *ForExprAST::IRGen(IRGenContext &C) const {
896 // Output this as:
897 // var = alloca double
898 // ...
899 // start = startexpr
900 // store start -> var
901 // goto loop
902 // loop:
903 // ...
904 // bodyexpr
905 // ...
906 // loopend:
907 // step = stepexpr
908 // endcond = endexpr
909 //
910 // curvar = load var
911 // nextvar = curvar + step
912 // store nextvar -> var
913 // br endcond, loop, endloop
914 // outloop:
915
916 Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
917
918 // Create an alloca for the variable in the entry block.
919 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
920
921 // Emit the start code first, without 'variable' in scope.
922 Value *StartVal = Start->IRGen(C);
923 if (!StartVal) return nullptr;
924
925 // Store the value into the alloca.
926 C.getBuilder().CreateStore(StartVal, Alloca);
927
928 // Make the new basic block for the loop header, inserting after current
929 // block.
930 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
931
932 // Insert an explicit fall through from the current block to the LoopBB.
933 C.getBuilder().CreateBr(LoopBB);
934
935 // Start insertion in LoopBB.
936 C.getBuilder().SetInsertPoint(LoopBB);
937
938 // Within the loop, the variable is defined equal to the PHI node. If it
939 // shadows an existing variable, we have to restore it, so save it now.
940 AllocaInst *OldVal = C.NamedValues[VarName];
941 C.NamedValues[VarName] = Alloca;
942
943 // Emit the body of the loop. This, like any other expr, can change the
944 // current BB. Note that we ignore the value computed by the body, but don't
945 // allow an error.
946 if (!Body->IRGen(C))
947 return nullptr;
948
949 // Emit the step value.
950 Value *StepVal;
951 if (Step) {
952 StepVal = Step->IRGen(C);
953 if (!StepVal) return nullptr;
954 } else {
955 // If not specified, use 1.0.
956 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
957 }
958
959 // Compute the end condition.
960 Value *EndCond = End->IRGen(C);
961 if (!EndCond) return nullptr;
962
963 // Reload, increment, and restore the alloca. This handles the case where
964 // the body of the loop mutates the variable.
965 Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
966 Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
967 C.getBuilder().CreateStore(NextVar, Alloca);
968
969 // Convert condition to a bool by comparing equal to 0.0.
970 EndCond = C.getBuilder().CreateFCmpONE(EndCond,
971 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
972 "loopcond");
973
974 // Create the "after loop" block and insert it.
975 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
976
977 // Insert the conditional branch into the end of LoopEndBB.
978 C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
979
980 // Any new code will be inserted in AfterBB.
981 C.getBuilder().SetInsertPoint(AfterBB);
982
983 // Restore the unshadowed variable.
984 if (OldVal)
985 C.NamedValues[VarName] = OldVal;
986 else
987 C.NamedValues.erase(VarName);
988
989 // for expr always returns 0.0.
990 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
991 }
992
IRGen(IRGenContext & C) const993 Value *VarExprAST::IRGen(IRGenContext &C) const {
994 std::vector<AllocaInst *> OldBindings;
995
996 Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
997
998 // Register all variables and emit their initializer.
999 for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
1000 auto &VarName = VarBindings[i].first;
1001 auto &Init = VarBindings[i].second;
1002
1003 // Emit the initializer before adding the variable to scope, this prevents
1004 // the initializer from referencing the variable itself, and permits stuff
1005 // like this:
1006 // var a = 1 in
1007 // var a = a in ... # refers to outer 'a'.
1008 Value *InitVal;
1009 if (Init) {
1010 InitVal = Init->IRGen(C);
1011 if (!InitVal) return nullptr;
1012 } else // If not specified, use 0.0.
1013 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1014
1015 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1016 C.getBuilder().CreateStore(InitVal, Alloca);
1017
1018 // Remember the old variable binding so that we can restore the binding when
1019 // we unrecurse.
1020 OldBindings.push_back(C.NamedValues[VarName]);
1021
1022 // Remember this binding.
1023 C.NamedValues[VarName] = Alloca;
1024 }
1025
1026 // Codegen the body, now that all vars are in scope.
1027 Value *BodyVal = Body->IRGen(C);
1028 if (!BodyVal) return nullptr;
1029
1030 // Pop all our variables from scope.
1031 for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
1032 C.NamedValues[VarBindings[i].first] = OldBindings[i];
1033
1034 // Return the body computation.
1035 return BodyVal;
1036 }
1037
IRGen(IRGenContext & C) const1038 Function *PrototypeAST::IRGen(IRGenContext &C) const {
1039 std::string FnName = MakeLegalFunctionName(Name);
1040
1041 // Make the function type: double(double,double) etc.
1042 std::vector<Type*> Doubles(Args.size(),
1043 Type::getDoubleTy(getGlobalContext()));
1044 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1045 Doubles, false);
1046 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
1047 &C.getM());
1048
1049 // If F conflicted, there was already something named 'FnName'. If it has a
1050 // body, don't allow redefinition or reextern.
1051 if (F->getName() != FnName) {
1052 // Delete the one we just made and get the existing one.
1053 F->eraseFromParent();
1054 F = C.getM().getFunction(Name);
1055
1056 // If F already has a body, reject this.
1057 if (!F->empty()) {
1058 ErrorP<Function>("redefinition of function");
1059 return nullptr;
1060 }
1061
1062 // If F took a different number of args, reject.
1063 if (F->arg_size() != Args.size()) {
1064 ErrorP<Function>("redefinition of function with different # args");
1065 return nullptr;
1066 }
1067 }
1068
1069 // Set names for all arguments.
1070 unsigned Idx = 0;
1071 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1072 ++AI, ++Idx)
1073 AI->setName(Args[Idx]);
1074
1075 return F;
1076 }
1077
1078 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1079 /// argument in the symbol table so that references to it will succeed.
CreateArgumentAllocas(Function * F,IRGenContext & C)1080 void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
1081 Function::arg_iterator AI = F->arg_begin();
1082 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1083 // Create an alloca for this variable.
1084 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1085
1086 // Store the initial value into the alloca.
1087 C.getBuilder().CreateStore(&*AI, Alloca);
1088
1089 // Add arguments to variable symbol table.
1090 C.NamedValues[Args[Idx]] = Alloca;
1091 }
1092 }
1093
IRGen(IRGenContext & C) const1094 Function *FunctionAST::IRGen(IRGenContext &C) const {
1095 C.NamedValues.clear();
1096
1097 Function *TheFunction = Proto->IRGen(C);
1098 if (!TheFunction)
1099 return nullptr;
1100
1101 // If this is an operator, install it.
1102 if (Proto->isBinaryOp())
1103 BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
1104
1105 // Create a new basic block to start insertion into.
1106 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1107 C.getBuilder().SetInsertPoint(BB);
1108
1109 // Add all arguments to the symbol table and create their allocas.
1110 Proto->CreateArgumentAllocas(TheFunction, C);
1111
1112 if (Value *RetVal = Body->IRGen(C)) {
1113 // Finish off the function.
1114 C.getBuilder().CreateRet(RetVal);
1115
1116 // Validate the generated code, checking for consistency.
1117 verifyFunction(*TheFunction);
1118
1119 return TheFunction;
1120 }
1121
1122 // Error reading body, remove function.
1123 TheFunction->eraseFromParent();
1124
1125 if (Proto->isBinaryOp())
1126 BinopPrecedence.erase(Proto->getOperatorName());
1127 return nullptr;
1128 }
1129
1130 //===----------------------------------------------------------------------===//
1131 // Top-Level parsing and JIT Driver
1132 //===----------------------------------------------------------------------===//
1133
IRGen(SessionContext & S,const FunctionAST & F)1134 static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
1135 const FunctionAST &F) {
1136 IRGenContext C(S);
1137 auto LF = F.IRGen(C);
1138 if (!LF)
1139 return nullptr;
1140 #ifndef MINIMAL_STDERR_OUTPUT
1141 fprintf(stderr, "Read function definition:");
1142 LF->dump();
1143 #endif
1144 return C.takeM();
1145 }
1146
1147 template <typename T>
singletonSet(T t)1148 static std::vector<T> singletonSet(T t) {
1149 std::vector<T> Vec;
1150 Vec.push_back(std::move(t));
1151 return Vec;
1152 }
1153
1154 class KaleidoscopeJIT {
1155 public:
1156 typedef ObjectLinkingLayer<> ObjLayerT;
1157 typedef IRCompileLayer<ObjLayerT> CompileLayerT;
1158 typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
1159
1160 typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;
1161
KaleidoscopeJIT(SessionContext & Session)1162 KaleidoscopeJIT(SessionContext &Session)
1163 : DL(Session.getTarget().createDataLayout()),
1164 CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())),
1165 LazyEmitLayer(CompileLayer) {}
1166
mangle(const std::string & Name)1167 std::string mangle(const std::string &Name) {
1168 std::string MangledName;
1169 {
1170 raw_string_ostream MangledNameStream(MangledName);
1171 Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
1172 }
1173 return MangledName;
1174 }
1175
addModule(std::unique_ptr<Module> M)1176 ModuleHandleT addModule(std::unique_ptr<Module> M) {
1177 // We need a memory manager to allocate memory and resolve symbols for this
1178 // new module. Create one that resolves symbols by looking back into the
1179 // JIT.
1180 auto Resolver = createLambdaResolver(
1181 [&](const std::string &Name) {
1182 if (auto Sym = findSymbol(Name))
1183 return RuntimeDyld::SymbolInfo(Sym.getAddress(),
1184 Sym.getFlags());
1185 return RuntimeDyld::SymbolInfo(nullptr);
1186 },
1187 [](const std::string &S) { return nullptr; } );
1188
1189 return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)),
1190 make_unique<SectionMemoryManager>(),
1191 std::move(Resolver));
1192 }
1193
removeModule(ModuleHandleT H)1194 void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
1195
findSymbol(const std::string & Name)1196 JITSymbol findSymbol(const std::string &Name) {
1197 return LazyEmitLayer.findSymbol(Name, true);
1198 }
1199
findUnmangledSymbol(const std::string Name)1200 JITSymbol findUnmangledSymbol(const std::string Name) {
1201 return findSymbol(mangle(Name));
1202 }
1203
1204 private:
1205 const DataLayout DL;
1206 ObjLayerT ObjectLayer;
1207 CompileLayerT CompileLayer;
1208 LazyEmitLayerT LazyEmitLayer;
1209 };
1210
HandleDefinition(SessionContext & S,KaleidoscopeJIT & J)1211 static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
1212 if (auto F = ParseDefinition()) {
1213 if (auto M = IRGen(S, *F)) {
1214 S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
1215 J.addModule(std::move(M));
1216 }
1217 } else {
1218 // Skip token for error recovery.
1219 getNextToken();
1220 }
1221 }
1222
HandleExtern(SessionContext & S)1223 static void HandleExtern(SessionContext &S) {
1224 if (auto P = ParseExtern())
1225 S.addPrototypeAST(std::move(P));
1226 else {
1227 // Skip token for error recovery.
1228 getNextToken();
1229 }
1230 }
1231
HandleTopLevelExpression(SessionContext & S,KaleidoscopeJIT & J)1232 static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
1233 // Evaluate a top-level expression into an anonymous function.
1234 if (auto F = ParseTopLevelExpr()) {
1235 IRGenContext C(S);
1236 if (auto ExprFunc = F->IRGen(C)) {
1237 #ifndef MINIMAL_STDERR_OUTPUT
1238 std::cerr << "Expression function:\n";
1239 ExprFunc->dump();
1240 #endif
1241 // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
1242 // this module as soon as we've executed Function ExprFunc.
1243 auto H = J.addModule(C.takeM());
1244
1245 // Get the address of the JIT'd function in memory.
1246 auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
1247
1248 // Cast it to the right type (takes no arguments, returns a double) so we
1249 // can call it as a native function.
1250 double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
1251 #ifdef MINIMAL_STDERR_OUTPUT
1252 FP();
1253 #else
1254 std::cerr << "Evaluated to " << FP() << "\n";
1255 #endif
1256
1257 // Remove the function.
1258 J.removeModule(H);
1259 }
1260 } else {
1261 // Skip token for error recovery.
1262 getNextToken();
1263 }
1264 }
1265
1266 /// top ::= definition | external | expression | ';'
MainLoop()1267 static void MainLoop() {
1268 SessionContext S(getGlobalContext());
1269 KaleidoscopeJIT J(S);
1270
1271 while (1) {
1272 switch (CurTok) {
1273 case tok_eof: return;
1274 case ';': getNextToken(); continue; // ignore top-level semicolons.
1275 case tok_def: HandleDefinition(S, J); break;
1276 case tok_extern: HandleExtern(S); break;
1277 default: HandleTopLevelExpression(S, J); break;
1278 }
1279 #ifndef MINIMAL_STDERR_OUTPUT
1280 std::cerr << "ready> ";
1281 #endif
1282 }
1283 }
1284
1285 //===----------------------------------------------------------------------===//
1286 // "Library" functions that can be "extern'd" from user code.
1287 //===----------------------------------------------------------------------===//
1288
1289 /// putchard - putchar that takes a double and returns 0.
1290 extern "C"
putchard(double X)1291 double putchard(double X) {
1292 putchar((char)X);
1293 return 0;
1294 }
1295
1296 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1297 extern "C"
printd(double X)1298 double printd(double X) {
1299 printf("%f", X);
1300 return 0;
1301 }
1302
1303 extern "C"
printlf()1304 double printlf() {
1305 printf("\n");
1306 return 0;
1307 }
1308
1309 //===----------------------------------------------------------------------===//
1310 // Main driver code.
1311 //===----------------------------------------------------------------------===//
1312
main()1313 int main() {
1314 InitializeNativeTarget();
1315 InitializeNativeTargetAsmPrinter();
1316 InitializeNativeTargetAsmParser();
1317
1318 // Install standard binary operators.
1319 // 1 is lowest precedence.
1320 BinopPrecedence['='] = 2;
1321 BinopPrecedence['<'] = 10;
1322 BinopPrecedence['+'] = 20;
1323 BinopPrecedence['-'] = 20;
1324 BinopPrecedence['/'] = 40;
1325 BinopPrecedence['*'] = 40; // highest.
1326
1327 // Prime the first token.
1328 #ifndef MINIMAL_STDERR_OUTPUT
1329 std::cerr << "ready> ";
1330 #endif
1331 getNextToken();
1332
1333 std::cerr << std::fixed;
1334
1335 // Run the main "interpreter loop" now.
1336 MainLoop();
1337
1338 return 0;
1339 }
1340