1 #include "llvm/Analysis/Passes.h"
2 #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
3 #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
4 #include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
5 #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
6 #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
7 #include "llvm/IR/DataLayout.h"
8 #include "llvm/IR/DerivedTypes.h"
9 #include "llvm/IR/IRBuilder.h"
10 #include "llvm/IR/LegacyPassManager.h"
11 #include "llvm/IR/LLVMContext.h"
12 #include "llvm/IR/Module.h"
13 #include "llvm/IR/Verifier.h"
14 #include "llvm/Support/TargetSelect.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include <cctype>
17 #include <iomanip>
18 #include <iostream>
19 #include <map>
20 #include <sstream>
21 #include <string>
22 #include <vector>
23 
24 using namespace llvm;
25 using namespace llvm::orc;
26 
27 //===----------------------------------------------------------------------===//
28 // Lexer
29 //===----------------------------------------------------------------------===//
30 
31 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
32 // of these for known things.
33 enum Token {
34   tok_eof = -1,
35 
36   // commands
37   tok_def = -2, tok_extern = -3,
38 
39   // primary
40   tok_identifier = -4, tok_number = -5,
41 
42   // control
43   tok_if = -6, tok_then = -7, tok_else = -8,
44   tok_for = -9, tok_in = -10,
45 
46   // operators
47   tok_binary = -11, tok_unary = -12,
48 
49   // var definition
50   tok_var = -13
51 };
52 
53 static std::string IdentifierStr;  // Filled in if tok_identifier
54 static double NumVal;              // Filled in if tok_number
55 
56 /// gettok - Return the next token from standard input.
gettok()57 static int gettok() {
58   static int LastChar = ' ';
59 
60   // Skip any whitespace.
61   while (isspace(LastChar))
62     LastChar = getchar();
63 
64   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
65     IdentifierStr = LastChar;
66     while (isalnum((LastChar = getchar())))
67       IdentifierStr += LastChar;
68 
69     if (IdentifierStr == "def") return tok_def;
70     if (IdentifierStr == "extern") return tok_extern;
71     if (IdentifierStr == "if") return tok_if;
72     if (IdentifierStr == "then") return tok_then;
73     if (IdentifierStr == "else") return tok_else;
74     if (IdentifierStr == "for") return tok_for;
75     if (IdentifierStr == "in") return tok_in;
76     if (IdentifierStr == "binary") return tok_binary;
77     if (IdentifierStr == "unary") return tok_unary;
78     if (IdentifierStr == "var") return tok_var;
79     return tok_identifier;
80   }
81 
82   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
83     std::string NumStr;
84     do {
85       NumStr += LastChar;
86       LastChar = getchar();
87     } while (isdigit(LastChar) || LastChar == '.');
88 
89     NumVal = strtod(NumStr.c_str(), nullptr);
90     return tok_number;
91   }
92 
93   if (LastChar == '#') {
94     // Comment until end of line.
95     do LastChar = getchar();
96     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
97 
98     if (LastChar != EOF)
99       return gettok();
100   }
101 
102   // Check for end of file.  Don't eat the EOF.
103   if (LastChar == EOF)
104     return tok_eof;
105 
106   // Otherwise, just return the character as its ascii value.
107   int ThisChar = LastChar;
108   LastChar = getchar();
109   return ThisChar;
110 }
111 
112 //===----------------------------------------------------------------------===//
113 // Abstract Syntax Tree (aka Parse Tree)
114 //===----------------------------------------------------------------------===//
115 
116 class IRGenContext;
117 
118 /// ExprAST - Base class for all expression nodes.
119 struct ExprAST {
~ExprASTExprAST120   virtual ~ExprAST() {}
121   virtual Value *IRGen(IRGenContext &C) const = 0;
122 };
123 
124 /// NumberExprAST - Expression class for numeric literals like "1.0".
125 struct NumberExprAST : public ExprAST {
NumberExprASTNumberExprAST126   NumberExprAST(double Val) : Val(Val) {}
127   Value *IRGen(IRGenContext &C) const override;
128 
129   double Val;
130 };
131 
132 /// VariableExprAST - Expression class for referencing a variable, like "a".
133 struct VariableExprAST : public ExprAST {
VariableExprASTVariableExprAST134   VariableExprAST(std::string Name) : Name(std::move(Name)) {}
135   Value *IRGen(IRGenContext &C) const override;
136 
137   std::string Name;
138 };
139 
140 /// UnaryExprAST - Expression class for a unary operator.
141 struct UnaryExprAST : public ExprAST {
UnaryExprASTUnaryExprAST142   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
143     : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
144 
145   Value *IRGen(IRGenContext &C) const override;
146 
147   char Opcode;
148   std::unique_ptr<ExprAST> Operand;
149 };
150 
151 /// BinaryExprAST - Expression class for a binary operator.
152 struct BinaryExprAST : public ExprAST {
BinaryExprASTBinaryExprAST153   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
154                 std::unique_ptr<ExprAST> RHS)
155     : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
156 
157   Value *IRGen(IRGenContext &C) const override;
158 
159   char Op;
160   std::unique_ptr<ExprAST> LHS, RHS;
161 };
162 
163 /// CallExprAST - Expression class for function calls.
164 struct CallExprAST : public ExprAST {
CallExprASTCallExprAST165   CallExprAST(std::string CalleeName,
166               std::vector<std::unique_ptr<ExprAST>> Args)
167     : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
168 
169   Value *IRGen(IRGenContext &C) const override;
170 
171   std::string CalleeName;
172   std::vector<std::unique_ptr<ExprAST>> Args;
173 };
174 
175 /// IfExprAST - Expression class for if/then/else.
176 struct IfExprAST : public ExprAST {
IfExprASTIfExprAST177   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
178             std::unique_ptr<ExprAST> Else)
179     : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
180   Value *IRGen(IRGenContext &C) const override;
181 
182   std::unique_ptr<ExprAST> Cond, Then, Else;
183 };
184 
185 /// ForExprAST - Expression class for for/in.
186 struct ForExprAST : public ExprAST {
ForExprASTForExprAST187   ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
188              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
189              std::unique_ptr<ExprAST> Body)
190     : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
191       Step(std::move(Step)), Body(std::move(Body)) {}
192 
193   Value *IRGen(IRGenContext &C) const override;
194 
195   std::string VarName;
196   std::unique_ptr<ExprAST> Start, End, Step, Body;
197 };
198 
199 /// VarExprAST - Expression class for var/in
200 struct VarExprAST : public ExprAST {
201   typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
202   typedef std::vector<Binding> BindingList;
203 
VarExprASTVarExprAST204   VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
205     : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
206 
207   Value *IRGen(IRGenContext &C) const override;
208 
209   BindingList VarBindings;
210   std::unique_ptr<ExprAST> Body;
211 };
212 
213 /// PrototypeAST - This class represents the "prototype" for a function,
214 /// which captures its argument names as well as if it is an operator.
215 struct PrototypeAST {
PrototypeASTPrototypeAST216   PrototypeAST(std::string Name, std::vector<std::string> Args,
217                bool IsOperator = false, unsigned Precedence = 0)
218     : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
219       Precedence(Precedence) {}
220 
221   Function *IRGen(IRGenContext &C) const;
222   void CreateArgumentAllocas(Function *F, IRGenContext &C);
223 
isUnaryOpPrototypeAST224   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOpPrototypeAST225   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
226 
getOperatorNamePrototypeAST227   char getOperatorName() const {
228     assert(isUnaryOp() || isBinaryOp());
229     return Name[Name.size()-1];
230   }
231 
232   std::string Name;
233   std::vector<std::string> Args;
234   bool IsOperator;
235   unsigned Precedence;  // Precedence if a binary op.
236 };
237 
238 /// FunctionAST - This class represents a function definition itself.
239 struct FunctionAST {
FunctionASTFunctionAST240   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
241               std::unique_ptr<ExprAST> Body)
242     : Proto(std::move(Proto)), Body(std::move(Body)) {}
243 
244   Function *IRGen(IRGenContext &C) const;
245 
246   std::unique_ptr<PrototypeAST> Proto;
247   std::unique_ptr<ExprAST> Body;
248 };
249 
250 //===----------------------------------------------------------------------===//
251 // Parser
252 //===----------------------------------------------------------------------===//
253 
254 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
255 /// token the parser is looking at.  getNextToken reads another token from the
256 /// lexer and updates CurTok with its results.
257 static int CurTok;
getNextToken()258 static int getNextToken() {
259   return CurTok = gettok();
260 }
261 
262 /// BinopPrecedence - This holds the precedence for each binary operator that is
263 /// defined.
264 static std::map<char, int> BinopPrecedence;
265 
266 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()267 static int GetTokPrecedence() {
268   if (!isascii(CurTok))
269     return -1;
270 
271   // Make sure it's a declared binop.
272   int TokPrec = BinopPrecedence[CurTok];
273   if (TokPrec <= 0) return -1;
274   return TokPrec;
275 }
276 
277 template <typename T>
ErrorU(const std::string & Str)278 std::unique_ptr<T> ErrorU(const std::string &Str) {
279   std::cerr << "Error: " << Str << "\n";
280   return nullptr;
281 }
282 
283 template <typename T>
ErrorP(const std::string & Str)284 T* ErrorP(const std::string &Str) {
285   std::cerr << "Error: " << Str << "\n";
286   return nullptr;
287 }
288 
289 static std::unique_ptr<ExprAST> ParseExpression();
290 
291 /// identifierexpr
292 ///   ::= identifier
293 ///   ::= identifier '(' expression* ')'
ParseIdentifierExpr()294 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
295   std::string IdName = IdentifierStr;
296 
297   getNextToken();  // eat identifier.
298 
299   if (CurTok != '(') // Simple variable ref.
300     return llvm::make_unique<VariableExprAST>(IdName);
301 
302   // Call.
303   getNextToken();  // eat (
304   std::vector<std::unique_ptr<ExprAST>> Args;
305   if (CurTok != ')') {
306     while (1) {
307       auto Arg = ParseExpression();
308       if (!Arg) return nullptr;
309       Args.push_back(std::move(Arg));
310 
311       if (CurTok == ')') break;
312 
313       if (CurTok != ',')
314         return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
315       getNextToken();
316     }
317   }
318 
319   // Eat the ')'.
320   getNextToken();
321 
322   return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
323 }
324 
325 /// numberexpr ::= number
ParseNumberExpr()326 static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
327   auto Result = llvm::make_unique<NumberExprAST>(NumVal);
328   getNextToken(); // consume the number
329   return Result;
330 }
331 
332 /// parenexpr ::= '(' expression ')'
ParseParenExpr()333 static std::unique_ptr<ExprAST> ParseParenExpr() {
334   getNextToken();  // eat (.
335   auto V = ParseExpression();
336   if (!V)
337     return nullptr;
338 
339   if (CurTok != ')')
340     return ErrorU<ExprAST>("expected ')'");
341   getNextToken();  // eat ).
342   return V;
343 }
344 
345 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()346 static std::unique_ptr<ExprAST> ParseIfExpr() {
347   getNextToken();  // eat the if.
348 
349   // condition.
350   auto Cond = ParseExpression();
351   if (!Cond)
352     return nullptr;
353 
354   if (CurTok != tok_then)
355     return ErrorU<ExprAST>("expected then");
356   getNextToken();  // eat the then
357 
358   auto Then = ParseExpression();
359   if (!Then)
360     return nullptr;
361 
362   if (CurTok != tok_else)
363     return ErrorU<ExprAST>("expected else");
364 
365   getNextToken();
366 
367   auto Else = ParseExpression();
368   if (!Else)
369     return nullptr;
370 
371   return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
372                                       std::move(Else));
373 }
374 
375 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()376 static std::unique_ptr<ForExprAST> ParseForExpr() {
377   getNextToken();  // eat the for.
378 
379   if (CurTok != tok_identifier)
380     return ErrorU<ForExprAST>("expected identifier after for");
381 
382   std::string IdName = IdentifierStr;
383   getNextToken();  // eat identifier.
384 
385   if (CurTok != '=')
386     return ErrorU<ForExprAST>("expected '=' after for");
387   getNextToken();  // eat '='.
388 
389   auto Start = ParseExpression();
390   if (!Start)
391     return nullptr;
392   if (CurTok != ',')
393     return ErrorU<ForExprAST>("expected ',' after for start value");
394   getNextToken();
395 
396   auto End = ParseExpression();
397   if (!End)
398     return nullptr;
399 
400   // The step value is optional.
401   std::unique_ptr<ExprAST> Step;
402   if (CurTok == ',') {
403     getNextToken();
404     Step = ParseExpression();
405     if (!Step)
406       return nullptr;
407   }
408 
409   if (CurTok != tok_in)
410     return ErrorU<ForExprAST>("expected 'in' after for");
411   getNextToken();  // eat 'in'.
412 
413   auto Body = ParseExpression();
414   if (Body)
415     return nullptr;
416 
417   return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
418                                        std::move(Step), std::move(Body));
419 }
420 
421 /// varexpr ::= 'var' identifier ('=' expression)?
422 //                    (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()423 static std::unique_ptr<VarExprAST> ParseVarExpr() {
424   getNextToken();  // eat the var.
425 
426   VarExprAST::BindingList VarBindings;
427 
428   // At least one variable name is required.
429   if (CurTok != tok_identifier)
430     return ErrorU<VarExprAST>("expected identifier after var");
431 
432   while (1) {
433     std::string Name = IdentifierStr;
434     getNextToken();  // eat identifier.
435 
436     // Read the optional initializer.
437     std::unique_ptr<ExprAST> Init;
438     if (CurTok == '=') {
439       getNextToken(); // eat the '='.
440 
441       Init = ParseExpression();
442       if (!Init)
443         return nullptr;
444     }
445 
446     VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
447 
448     // End of var list, exit loop.
449     if (CurTok != ',') break;
450     getNextToken(); // eat the ','.
451 
452     if (CurTok != tok_identifier)
453       return ErrorU<VarExprAST>("expected identifier list after var");
454   }
455 
456   // At this point, we have to have 'in'.
457   if (CurTok != tok_in)
458     return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
459   getNextToken();  // eat 'in'.
460 
461   auto Body = ParseExpression();
462   if (!Body)
463     return nullptr;
464 
465   return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
466 }
467 
468 /// primary
469 ///   ::= identifierexpr
470 ///   ::= numberexpr
471 ///   ::= parenexpr
472 ///   ::= ifexpr
473 ///   ::= forexpr
474 ///   ::= varexpr
ParsePrimary()475 static std::unique_ptr<ExprAST> ParsePrimary() {
476   switch (CurTok) {
477   default: return ErrorU<ExprAST>("unknown token when expecting an expression");
478   case tok_identifier: return ParseIdentifierExpr();
479   case tok_number:     return ParseNumberExpr();
480   case '(':            return ParseParenExpr();
481   case tok_if:         return ParseIfExpr();
482   case tok_for:        return ParseForExpr();
483   case tok_var:        return ParseVarExpr();
484   }
485 }
486 
487 /// unary
488 ///   ::= primary
489 ///   ::= '!' unary
ParseUnary()490 static std::unique_ptr<ExprAST> ParseUnary() {
491   // If the current token is not an operator, it must be a primary expr.
492   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
493     return ParsePrimary();
494 
495   // If this is a unary operator, read it.
496   int Opc = CurTok;
497   getNextToken();
498   if (auto Operand = ParseUnary())
499     return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
500   return nullptr;
501 }
502 
503 /// binoprhs
504 ///   ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)505 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
506                                               std::unique_ptr<ExprAST> LHS) {
507   // If this is a binop, find its precedence.
508   while (1) {
509     int TokPrec = GetTokPrecedence();
510 
511     // If this is a binop that binds at least as tightly as the current binop,
512     // consume it, otherwise we are done.
513     if (TokPrec < ExprPrec)
514       return LHS;
515 
516     // Okay, we know this is a binop.
517     int BinOp = CurTok;
518     getNextToken();  // eat binop
519 
520     // Parse the unary expression after the binary operator.
521     auto RHS = ParseUnary();
522     if (!RHS)
523       return nullptr;
524 
525     // If BinOp binds less tightly with RHS than the operator after RHS, let
526     // the pending operator take RHS as its LHS.
527     int NextPrec = GetTokPrecedence();
528     if (TokPrec < NextPrec) {
529       RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
530       if (!RHS)
531         return nullptr;
532     }
533 
534     // Merge LHS/RHS.
535     LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
536   }
537 }
538 
539 /// expression
540 ///   ::= unary binoprhs
541 ///
ParseExpression()542 static std::unique_ptr<ExprAST> ParseExpression() {
543   auto LHS = ParseUnary();
544   if (!LHS)
545     return nullptr;
546 
547   return ParseBinOpRHS(0, std::move(LHS));
548 }
549 
550 /// prototype
551 ///   ::= id '(' id* ')'
552 ///   ::= binary LETTER number? (id, id)
553 ///   ::= unary LETTER (id)
ParsePrototype()554 static std::unique_ptr<PrototypeAST> ParsePrototype() {
555   std::string FnName;
556 
557   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
558   unsigned BinaryPrecedence = 30;
559 
560   switch (CurTok) {
561   default:
562     return ErrorU<PrototypeAST>("Expected function name in prototype");
563   case tok_identifier:
564     FnName = IdentifierStr;
565     Kind = 0;
566     getNextToken();
567     break;
568   case tok_unary:
569     getNextToken();
570     if (!isascii(CurTok))
571       return ErrorU<PrototypeAST>("Expected unary operator");
572     FnName = "unary";
573     FnName += (char)CurTok;
574     Kind = 1;
575     getNextToken();
576     break;
577   case tok_binary:
578     getNextToken();
579     if (!isascii(CurTok))
580       return ErrorU<PrototypeAST>("Expected binary operator");
581     FnName = "binary";
582     FnName += (char)CurTok;
583     Kind = 2;
584     getNextToken();
585 
586     // Read the precedence if present.
587     if (CurTok == tok_number) {
588       if (NumVal < 1 || NumVal > 100)
589         return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
590       BinaryPrecedence = (unsigned)NumVal;
591       getNextToken();
592     }
593     break;
594   }
595 
596   if (CurTok != '(')
597     return ErrorU<PrototypeAST>("Expected '(' in prototype");
598 
599   std::vector<std::string> ArgNames;
600   while (getNextToken() == tok_identifier)
601     ArgNames.push_back(IdentifierStr);
602   if (CurTok != ')')
603     return ErrorU<PrototypeAST>("Expected ')' in prototype");
604 
605   // success.
606   getNextToken();  // eat ')'.
607 
608   // Verify right number of names for operator.
609   if (Kind && ArgNames.size() != Kind)
610     return ErrorU<PrototypeAST>("Invalid number of operands for operator");
611 
612   return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
613                                          BinaryPrecedence);
614 }
615 
616 /// definition ::= 'def' prototype expression
ParseDefinition()617 static std::unique_ptr<FunctionAST> ParseDefinition() {
618   getNextToken();  // eat def.
619   auto Proto = ParsePrototype();
620   if (!Proto)
621     return nullptr;
622 
623   if (auto Body = ParseExpression())
624     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
625   return nullptr;
626 }
627 
628 /// toplevelexpr ::= expression
ParseTopLevelExpr()629 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
630   if (auto E = ParseExpression()) {
631     // Make an anonymous proto.
632     auto Proto =
633       llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
634     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
635   }
636   return nullptr;
637 }
638 
639 /// external ::= 'extern' prototype
ParseExtern()640 static std::unique_ptr<PrototypeAST> ParseExtern() {
641   getNextToken();  // eat extern.
642   return ParsePrototype();
643 }
644 
645 //===----------------------------------------------------------------------===//
646 // Code Generation
647 //===----------------------------------------------------------------------===//
648 
649 // FIXME: Obviously we can do better than this
GenerateUniqueName(const std::string & Root)650 std::string GenerateUniqueName(const std::string &Root) {
651   static int i = 0;
652   std::ostringstream NameStream;
653   NameStream << Root << ++i;
654   return NameStream.str();
655 }
656 
MakeLegalFunctionName(std::string Name)657 std::string MakeLegalFunctionName(std::string Name)
658 {
659   std::string NewName;
660   assert(!Name.empty() && "Base name must not be empty");
661 
662   // Start with what we have
663   NewName = Name;
664 
665   // Look for a numberic first character
666   if (NewName.find_first_of("0123456789") == 0) {
667     NewName.insert(0, 1, 'n');
668   }
669 
670   // Replace illegal characters with their ASCII equivalent
671   std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
672   size_t pos;
673   while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
674     std::ostringstream NumStream;
675     NumStream << (int)NewName.at(pos);
676     NewName = NewName.replace(pos, 1, NumStream.str());
677   }
678 
679   return NewName;
680 }
681 
682 class SessionContext {
683 public:
SessionContext(LLVMContext & C)684   SessionContext(LLVMContext &C)
685     : Context(C), TM(EngineBuilder().selectTarget()) {}
getLLVMContext() const686   LLVMContext& getLLVMContext() const { return Context; }
getTarget()687   TargetMachine& getTarget() { return *TM; }
688   void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
689   PrototypeAST* getPrototypeAST(const std::string &Name);
690 private:
691   typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
692 
693   LLVMContext &Context;
694   std::unique_ptr<TargetMachine> TM;
695 
696   PrototypeMap Prototypes;
697 };
698 
addPrototypeAST(std::unique_ptr<PrototypeAST> P)699 void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
700   Prototypes[P->Name] = std::move(P);
701 }
702 
getPrototypeAST(const std::string & Name)703 PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
704   PrototypeMap::iterator I = Prototypes.find(Name);
705   if (I != Prototypes.end())
706     return I->second.get();
707   return nullptr;
708 }
709 
710 class IRGenContext {
711 public:
712 
IRGenContext(SessionContext & S)713   IRGenContext(SessionContext &S)
714     : Session(S),
715       M(new Module(GenerateUniqueName("jit_module_"),
716                    Session.getLLVMContext())),
717       Builder(Session.getLLVMContext()) {
718     M->setDataLayout(Session.getTarget().createDataLayout());
719   }
720 
getSession()721   SessionContext& getSession() { return Session; }
getM() const722   Module& getM() const { return *M; }
takeM()723   std::unique_ptr<Module> takeM() { return std::move(M); }
getBuilder()724   IRBuilder<>& getBuilder() { return Builder; }
getLLVMContext()725   LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
726   Function* getPrototype(const std::string &Name);
727 
728   std::map<std::string, AllocaInst*> NamedValues;
729 private:
730   SessionContext &Session;
731   std::unique_ptr<Module> M;
732   IRBuilder<> Builder;
733 };
734 
getPrototype(const std::string & Name)735 Function* IRGenContext::getPrototype(const std::string &Name) {
736   if (Function *ExistingProto = M->getFunction(Name))
737     return ExistingProto;
738   if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
739     return ProtoAST->IRGen(*this);
740   return nullptr;
741 }
742 
743 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
744 /// the function.  This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)745 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
746                                           const std::string &VarName) {
747   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
748                  TheFunction->getEntryBlock().begin());
749   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), nullptr,
750                            VarName.c_str());
751 }
752 
IRGen(IRGenContext & C) const753 Value *NumberExprAST::IRGen(IRGenContext &C) const {
754   return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
755 }
756 
IRGen(IRGenContext & C) const757 Value *VariableExprAST::IRGen(IRGenContext &C) const {
758   // Look this variable up in the function.
759   Value *V = C.NamedValues[Name];
760 
761   if (!V)
762     return ErrorP<Value>("Unknown variable name '" + Name + "'");
763 
764   // Load the value.
765   return C.getBuilder().CreateLoad(V, Name.c_str());
766 }
767 
IRGen(IRGenContext & C) const768 Value *UnaryExprAST::IRGen(IRGenContext &C) const {
769   if (Value *OperandV = Operand->IRGen(C)) {
770     std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
771     if (Function *F = C.getPrototype(FnName))
772       return C.getBuilder().CreateCall(F, OperandV, "unop");
773     return ErrorP<Value>("Unknown unary operator");
774   }
775 
776   // Could not codegen operand - return null.
777   return nullptr;
778 }
779 
IRGen(IRGenContext & C) const780 Value *BinaryExprAST::IRGen(IRGenContext &C) const {
781   // Special case '=' because we don't want to emit the LHS as an expression.
782   if (Op == '=') {
783     // Assignment requires the LHS to be an identifier.
784     auto &LHSVar = static_cast<VariableExprAST &>(*LHS);
785     // Codegen the RHS.
786     Value *Val = RHS->IRGen(C);
787     if (!Val) return nullptr;
788 
789     // Look up the name.
790     if (auto Variable = C.NamedValues[LHSVar.Name]) {
791       C.getBuilder().CreateStore(Val, Variable);
792       return Val;
793     }
794     return ErrorP<Value>("Unknown variable name");
795   }
796 
797   Value *L = LHS->IRGen(C);
798   Value *R = RHS->IRGen(C);
799   if (!L || !R) return nullptr;
800 
801   switch (Op) {
802   case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
803   case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
804   case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
805   case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
806   case '<':
807     L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
808     // Convert bool 0/1 to double 0.0 or 1.0
809     return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
810                                 "booltmp");
811   default: break;
812   }
813 
814   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
815   // a call to it.
816   std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
817   if (Function *F = C.getPrototype(FnName)) {
818     Value *Ops[] = { L, R };
819     return C.getBuilder().CreateCall(F, Ops, "binop");
820   }
821 
822   return ErrorP<Value>("Unknown binary operator");
823 }
824 
IRGen(IRGenContext & C) const825 Value *CallExprAST::IRGen(IRGenContext &C) const {
826   // Look up the name in the global module table.
827   if (auto CalleeF = C.getPrototype(CalleeName)) {
828     // If argument mismatch error.
829     if (CalleeF->arg_size() != Args.size())
830       return ErrorP<Value>("Incorrect # arguments passed");
831 
832     std::vector<Value*> ArgsV;
833     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
834       ArgsV.push_back(Args[i]->IRGen(C));
835       if (!ArgsV.back()) return nullptr;
836     }
837 
838     return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
839   }
840 
841   return ErrorP<Value>("Unknown function referenced");
842 }
843 
IRGen(IRGenContext & C) const844 Value *IfExprAST::IRGen(IRGenContext &C) const {
845   Value *CondV = Cond->IRGen(C);
846   if (!CondV) return nullptr;
847 
848   // Convert condition to a bool by comparing equal to 0.0.
849   ConstantFP *FPZero =
850     ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
851   CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
852 
853   Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
854 
855   // Create blocks for the then and else cases.  Insert the 'then' block at the
856   // end of the function.
857   BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
858   BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
859   BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
860 
861   C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
862 
863   // Emit then value.
864   C.getBuilder().SetInsertPoint(ThenBB);
865 
866   Value *ThenV = Then->IRGen(C);
867   if (!ThenV) return nullptr;
868 
869   C.getBuilder().CreateBr(MergeBB);
870   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
871   ThenBB = C.getBuilder().GetInsertBlock();
872 
873   // Emit else block.
874   TheFunction->getBasicBlockList().push_back(ElseBB);
875   C.getBuilder().SetInsertPoint(ElseBB);
876 
877   Value *ElseV = Else->IRGen(C);
878   if (!ElseV) return nullptr;
879 
880   C.getBuilder().CreateBr(MergeBB);
881   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
882   ElseBB = C.getBuilder().GetInsertBlock();
883 
884   // Emit merge block.
885   TheFunction->getBasicBlockList().push_back(MergeBB);
886   C.getBuilder().SetInsertPoint(MergeBB);
887   PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
888                                   "iftmp");
889 
890   PN->addIncoming(ThenV, ThenBB);
891   PN->addIncoming(ElseV, ElseBB);
892   return PN;
893 }
894 
IRGen(IRGenContext & C) const895 Value *ForExprAST::IRGen(IRGenContext &C) const {
896   // Output this as:
897   //   var = alloca double
898   //   ...
899   //   start = startexpr
900   //   store start -> var
901   //   goto loop
902   // loop:
903   //   ...
904   //   bodyexpr
905   //   ...
906   // loopend:
907   //   step = stepexpr
908   //   endcond = endexpr
909   //
910   //   curvar = load var
911   //   nextvar = curvar + step
912   //   store nextvar -> var
913   //   br endcond, loop, endloop
914   // outloop:
915 
916   Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
917 
918   // Create an alloca for the variable in the entry block.
919   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
920 
921   // Emit the start code first, without 'variable' in scope.
922   Value *StartVal = Start->IRGen(C);
923   if (!StartVal) return nullptr;
924 
925   // Store the value into the alloca.
926   C.getBuilder().CreateStore(StartVal, Alloca);
927 
928   // Make the new basic block for the loop header, inserting after current
929   // block.
930   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
931 
932   // Insert an explicit fall through from the current block to the LoopBB.
933   C.getBuilder().CreateBr(LoopBB);
934 
935   // Start insertion in LoopBB.
936   C.getBuilder().SetInsertPoint(LoopBB);
937 
938   // Within the loop, the variable is defined equal to the PHI node.  If it
939   // shadows an existing variable, we have to restore it, so save it now.
940   AllocaInst *OldVal = C.NamedValues[VarName];
941   C.NamedValues[VarName] = Alloca;
942 
943   // Emit the body of the loop.  This, like any other expr, can change the
944   // current BB.  Note that we ignore the value computed by the body, but don't
945   // allow an error.
946   if (!Body->IRGen(C))
947     return nullptr;
948 
949   // Emit the step value.
950   Value *StepVal;
951   if (Step) {
952     StepVal = Step->IRGen(C);
953     if (!StepVal) return nullptr;
954   } else {
955     // If not specified, use 1.0.
956     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
957   }
958 
959   // Compute the end condition.
960   Value *EndCond = End->IRGen(C);
961   if (!EndCond) return nullptr;
962 
963   // Reload, increment, and restore the alloca.  This handles the case where
964   // the body of the loop mutates the variable.
965   Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
966   Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
967   C.getBuilder().CreateStore(NextVar, Alloca);
968 
969   // Convert condition to a bool by comparing equal to 0.0.
970   EndCond = C.getBuilder().CreateFCmpONE(EndCond,
971                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
972                                   "loopcond");
973 
974   // Create the "after loop" block and insert it.
975   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
976 
977   // Insert the conditional branch into the end of LoopEndBB.
978   C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
979 
980   // Any new code will be inserted in AfterBB.
981   C.getBuilder().SetInsertPoint(AfterBB);
982 
983   // Restore the unshadowed variable.
984   if (OldVal)
985     C.NamedValues[VarName] = OldVal;
986   else
987     C.NamedValues.erase(VarName);
988 
989   // for expr always returns 0.0.
990   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
991 }
992 
IRGen(IRGenContext & C) const993 Value *VarExprAST::IRGen(IRGenContext &C) const {
994   std::vector<AllocaInst *> OldBindings;
995 
996   Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
997 
998   // Register all variables and emit their initializer.
999   for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
1000     auto &VarName = VarBindings[i].first;
1001     auto &Init = VarBindings[i].second;
1002 
1003     // Emit the initializer before adding the variable to scope, this prevents
1004     // the initializer from referencing the variable itself, and permits stuff
1005     // like this:
1006     //  var a = 1 in
1007     //    var a = a in ...   # refers to outer 'a'.
1008     Value *InitVal;
1009     if (Init) {
1010       InitVal = Init->IRGen(C);
1011       if (!InitVal) return nullptr;
1012     } else // If not specified, use 0.0.
1013       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1014 
1015     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1016     C.getBuilder().CreateStore(InitVal, Alloca);
1017 
1018     // Remember the old variable binding so that we can restore the binding when
1019     // we unrecurse.
1020     OldBindings.push_back(C.NamedValues[VarName]);
1021 
1022     // Remember this binding.
1023     C.NamedValues[VarName] = Alloca;
1024   }
1025 
1026   // Codegen the body, now that all vars are in scope.
1027   Value *BodyVal = Body->IRGen(C);
1028   if (!BodyVal) return nullptr;
1029 
1030   // Pop all our variables from scope.
1031   for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
1032     C.NamedValues[VarBindings[i].first] = OldBindings[i];
1033 
1034   // Return the body computation.
1035   return BodyVal;
1036 }
1037 
IRGen(IRGenContext & C) const1038 Function *PrototypeAST::IRGen(IRGenContext &C) const {
1039   std::string FnName = MakeLegalFunctionName(Name);
1040 
1041   // Make the function type:  double(double,double) etc.
1042   std::vector<Type*> Doubles(Args.size(),
1043                              Type::getDoubleTy(getGlobalContext()));
1044   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1045                                        Doubles, false);
1046   Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
1047                                  &C.getM());
1048 
1049   // If F conflicted, there was already something named 'FnName'.  If it has a
1050   // body, don't allow redefinition or reextern.
1051   if (F->getName() != FnName) {
1052     // Delete the one we just made and get the existing one.
1053     F->eraseFromParent();
1054     F = C.getM().getFunction(Name);
1055 
1056     // If F already has a body, reject this.
1057     if (!F->empty()) {
1058       ErrorP<Function>("redefinition of function");
1059       return nullptr;
1060     }
1061 
1062     // If F took a different number of args, reject.
1063     if (F->arg_size() != Args.size()) {
1064       ErrorP<Function>("redefinition of function with different # args");
1065       return nullptr;
1066     }
1067   }
1068 
1069   // Set names for all arguments.
1070   unsigned Idx = 0;
1071   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1072        ++AI, ++Idx)
1073     AI->setName(Args[Idx]);
1074 
1075   return F;
1076 }
1077 
1078 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1079 /// argument in the symbol table so that references to it will succeed.
CreateArgumentAllocas(Function * F,IRGenContext & C)1080 void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
1081   Function::arg_iterator AI = F->arg_begin();
1082   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1083     // Create an alloca for this variable.
1084     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1085 
1086     // Store the initial value into the alloca.
1087     C.getBuilder().CreateStore(&*AI, Alloca);
1088 
1089     // Add arguments to variable symbol table.
1090     C.NamedValues[Args[Idx]] = Alloca;
1091   }
1092 }
1093 
IRGen(IRGenContext & C) const1094 Function *FunctionAST::IRGen(IRGenContext &C) const {
1095   C.NamedValues.clear();
1096 
1097   Function *TheFunction = Proto->IRGen(C);
1098   if (!TheFunction)
1099     return nullptr;
1100 
1101   // If this is an operator, install it.
1102   if (Proto->isBinaryOp())
1103     BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
1104 
1105   // Create a new basic block to start insertion into.
1106   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1107   C.getBuilder().SetInsertPoint(BB);
1108 
1109   // Add all arguments to the symbol table and create their allocas.
1110   Proto->CreateArgumentAllocas(TheFunction, C);
1111 
1112   if (Value *RetVal = Body->IRGen(C)) {
1113     // Finish off the function.
1114     C.getBuilder().CreateRet(RetVal);
1115 
1116     // Validate the generated code, checking for consistency.
1117     verifyFunction(*TheFunction);
1118 
1119     return TheFunction;
1120   }
1121 
1122   // Error reading body, remove function.
1123   TheFunction->eraseFromParent();
1124 
1125   if (Proto->isBinaryOp())
1126     BinopPrecedence.erase(Proto->getOperatorName());
1127   return nullptr;
1128 }
1129 
1130 //===----------------------------------------------------------------------===//
1131 // Top-Level parsing and JIT Driver
1132 //===----------------------------------------------------------------------===//
1133 
IRGen(SessionContext & S,const FunctionAST & F)1134 static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
1135                                            const FunctionAST &F) {
1136   IRGenContext C(S);
1137   auto LF = F.IRGen(C);
1138   if (!LF)
1139     return nullptr;
1140 #ifndef MINIMAL_STDERR_OUTPUT
1141   fprintf(stderr, "Read function definition:");
1142   LF->dump();
1143 #endif
1144   return C.takeM();
1145 }
1146 
1147 template <typename T>
singletonSet(T t)1148 static std::vector<T> singletonSet(T t) {
1149   std::vector<T> Vec;
1150   Vec.push_back(std::move(t));
1151   return Vec;
1152 }
1153 
1154 class KaleidoscopeJIT {
1155 public:
1156   typedef ObjectLinkingLayer<> ObjLayerT;
1157   typedef IRCompileLayer<ObjLayerT> CompileLayerT;
1158   typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
1159 
1160   typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;
1161 
KaleidoscopeJIT(SessionContext & Session)1162   KaleidoscopeJIT(SessionContext &Session)
1163       : DL(Session.getTarget().createDataLayout()),
1164         CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())),
1165         LazyEmitLayer(CompileLayer) {}
1166 
mangle(const std::string & Name)1167   std::string mangle(const std::string &Name) {
1168     std::string MangledName;
1169     {
1170       raw_string_ostream MangledNameStream(MangledName);
1171       Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
1172     }
1173     return MangledName;
1174   }
1175 
addModule(std::unique_ptr<Module> M)1176   ModuleHandleT addModule(std::unique_ptr<Module> M) {
1177     // We need a memory manager to allocate memory and resolve symbols for this
1178     // new module. Create one that resolves symbols by looking back into the
1179     // JIT.
1180     auto Resolver = createLambdaResolver(
1181                       [&](const std::string &Name) {
1182                         if (auto Sym = findSymbol(Name))
1183                           return RuntimeDyld::SymbolInfo(Sym.getAddress(),
1184                                                          Sym.getFlags());
1185                         return RuntimeDyld::SymbolInfo(nullptr);
1186                       },
1187                       [](const std::string &S) { return nullptr; } );
1188 
1189     return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)),
1190                                       make_unique<SectionMemoryManager>(),
1191                                       std::move(Resolver));
1192   }
1193 
removeModule(ModuleHandleT H)1194   void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
1195 
findSymbol(const std::string & Name)1196   JITSymbol findSymbol(const std::string &Name) {
1197     return LazyEmitLayer.findSymbol(Name, true);
1198   }
1199 
findUnmangledSymbol(const std::string Name)1200   JITSymbol findUnmangledSymbol(const std::string Name) {
1201     return findSymbol(mangle(Name));
1202   }
1203 
1204 private:
1205   const DataLayout DL;
1206   ObjLayerT ObjectLayer;
1207   CompileLayerT CompileLayer;
1208   LazyEmitLayerT LazyEmitLayer;
1209 };
1210 
HandleDefinition(SessionContext & S,KaleidoscopeJIT & J)1211 static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
1212   if (auto F = ParseDefinition()) {
1213     if (auto M = IRGen(S, *F)) {
1214       S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
1215       J.addModule(std::move(M));
1216     }
1217   } else {
1218     // Skip token for error recovery.
1219     getNextToken();
1220   }
1221 }
1222 
HandleExtern(SessionContext & S)1223 static void HandleExtern(SessionContext &S) {
1224   if (auto P = ParseExtern())
1225     S.addPrototypeAST(std::move(P));
1226   else {
1227     // Skip token for error recovery.
1228     getNextToken();
1229   }
1230 }
1231 
HandleTopLevelExpression(SessionContext & S,KaleidoscopeJIT & J)1232 static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
1233   // Evaluate a top-level expression into an anonymous function.
1234   if (auto F = ParseTopLevelExpr()) {
1235     IRGenContext C(S);
1236     if (auto ExprFunc = F->IRGen(C)) {
1237 #ifndef MINIMAL_STDERR_OUTPUT
1238       std::cerr << "Expression function:\n";
1239       ExprFunc->dump();
1240 #endif
1241       // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
1242       // this module as soon as we've executed Function ExprFunc.
1243       auto H = J.addModule(C.takeM());
1244 
1245       // Get the address of the JIT'd function in memory.
1246       auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
1247 
1248       // Cast it to the right type (takes no arguments, returns a double) so we
1249       // can call it as a native function.
1250       double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
1251 #ifdef MINIMAL_STDERR_OUTPUT
1252       FP();
1253 #else
1254       std::cerr << "Evaluated to " << FP() << "\n";
1255 #endif
1256 
1257       // Remove the function.
1258       J.removeModule(H);
1259     }
1260   } else {
1261     // Skip token for error recovery.
1262     getNextToken();
1263   }
1264 }
1265 
1266 /// top ::= definition | external | expression | ';'
MainLoop()1267 static void MainLoop() {
1268   SessionContext S(getGlobalContext());
1269   KaleidoscopeJIT J(S);
1270 
1271   while (1) {
1272     switch (CurTok) {
1273     case tok_eof:    return;
1274     case ';':        getNextToken(); continue;  // ignore top-level semicolons.
1275     case tok_def:    HandleDefinition(S, J); break;
1276     case tok_extern: HandleExtern(S); break;
1277     default:         HandleTopLevelExpression(S, J); break;
1278     }
1279 #ifndef MINIMAL_STDERR_OUTPUT
1280     std::cerr << "ready> ";
1281 #endif
1282   }
1283 }
1284 
1285 //===----------------------------------------------------------------------===//
1286 // "Library" functions that can be "extern'd" from user code.
1287 //===----------------------------------------------------------------------===//
1288 
1289 /// putchard - putchar that takes a double and returns 0.
1290 extern "C"
putchard(double X)1291 double putchard(double X) {
1292   putchar((char)X);
1293   return 0;
1294 }
1295 
1296 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1297 extern "C"
printd(double X)1298 double printd(double X) {
1299   printf("%f", X);
1300   return 0;
1301 }
1302 
1303 extern "C"
printlf()1304 double printlf() {
1305   printf("\n");
1306   return 0;
1307 }
1308 
1309 //===----------------------------------------------------------------------===//
1310 // Main driver code.
1311 //===----------------------------------------------------------------------===//
1312 
main()1313 int main() {
1314   InitializeNativeTarget();
1315   InitializeNativeTargetAsmPrinter();
1316   InitializeNativeTargetAsmParser();
1317 
1318   // Install standard binary operators.
1319   // 1 is lowest precedence.
1320   BinopPrecedence['='] = 2;
1321   BinopPrecedence['<'] = 10;
1322   BinopPrecedence['+'] = 20;
1323   BinopPrecedence['-'] = 20;
1324   BinopPrecedence['/'] = 40;
1325   BinopPrecedence['*'] = 40;  // highest.
1326 
1327   // Prime the first token.
1328 #ifndef MINIMAL_STDERR_OUTPUT
1329   std::cerr << "ready> ";
1330 #endif
1331   getNextToken();
1332 
1333   std::cerr << std::fixed;
1334 
1335   // Run the main "interpreter loop" now.
1336   MainLoop();
1337 
1338   return 0;
1339 }
1340