1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements bookkeeping for "interesting" users of expressions
11 // computed from induction variables.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/CodeMetrics.h"
18 #include "llvm/Analysis/IVUsers.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "iv-users"
35 
36 char IVUsers::ID = 0;
37 INITIALIZE_PASS_BEGIN(IVUsers, "iv-users",
38                       "Induction Variable Users", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)39 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
40 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
41 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
42 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
43 INITIALIZE_PASS_END(IVUsers, "iv-users",
44                       "Induction Variable Users", false, true)
45 
46 Pass *llvm::createIVUsersPass() {
47   return new IVUsers();
48 }
49 
50 /// isInteresting - Test whether the given expression is "interesting" when
51 /// used by the given expression, within the context of analyzing the
52 /// given loop.
isInteresting(const SCEV * S,const Instruction * I,const Loop * L,ScalarEvolution * SE,LoopInfo * LI)53 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
54                           ScalarEvolution *SE, LoopInfo *LI) {
55   // An addrec is interesting if it's affine or if it has an interesting start.
56   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
57     // Keep things simple. Don't touch loop-variant strides unless they're
58     // only used outside the loop and we can simplify them.
59     if (AR->getLoop() == L)
60       return AR->isAffine() ||
61              (!L->contains(I) &&
62               SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
63     // Otherwise recurse to see if the start value is interesting, and that
64     // the step value is not interesting, since we don't yet know how to
65     // do effective SCEV expansions for addrecs with interesting steps.
66     return isInteresting(AR->getStart(), I, L, SE, LI) &&
67           !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
68   }
69 
70   // An add is interesting if exactly one of its operands is interesting.
71   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
72     bool AnyInterestingYet = false;
73     for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
74          OI != OE; ++OI)
75       if (isInteresting(*OI, I, L, SE, LI)) {
76         if (AnyInterestingYet)
77           return false;
78         AnyInterestingYet = true;
79       }
80     return AnyInterestingYet;
81   }
82 
83   // Nothing else is interesting here.
84   return false;
85 }
86 
87 /// Return true if all loop headers that dominate this block are in simplified
88 /// form.
isSimplifiedLoopNest(BasicBlock * BB,const DominatorTree * DT,const LoopInfo * LI,SmallPtrSetImpl<Loop * > & SimpleLoopNests)89 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
90                                  const LoopInfo *LI,
91                                  SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
92   Loop *NearestLoop = nullptr;
93   for (DomTreeNode *Rung = DT->getNode(BB);
94        Rung; Rung = Rung->getIDom()) {
95     BasicBlock *DomBB = Rung->getBlock();
96     Loop *DomLoop = LI->getLoopFor(DomBB);
97     if (DomLoop && DomLoop->getHeader() == DomBB) {
98       // If the domtree walk reaches a loop with no preheader, return false.
99       if (!DomLoop->isLoopSimplifyForm())
100         return false;
101       // If we have already checked this loop nest, stop checking.
102       if (SimpleLoopNests.count(DomLoop))
103         break;
104       // If we have not already checked this loop nest, remember the loop
105       // header nearest to BB. The nearest loop may not contain BB.
106       if (!NearestLoop)
107         NearestLoop = DomLoop;
108     }
109   }
110   if (NearestLoop)
111     SimpleLoopNests.insert(NearestLoop);
112   return true;
113 }
114 
115 /// AddUsersImpl - Inspect the specified instruction.  If it is a
116 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
117 /// return true.  Otherwise, return false.
AddUsersImpl(Instruction * I,SmallPtrSetImpl<Loop * > & SimpleLoopNests)118 bool IVUsers::AddUsersImpl(Instruction *I,
119                            SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
120   const DataLayout &DL = I->getModule()->getDataLayout();
121 
122   // Add this IV user to the Processed set before returning false to ensure that
123   // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
124   if (!Processed.insert(I).second)
125     return true;    // Instruction already handled.
126 
127   if (!SE->isSCEVable(I->getType()))
128     return false;   // Void and FP expressions cannot be reduced.
129 
130   // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
131   // pass to SCEVExpander. Expressions are not safe to expand if they represent
132   // operations that are not safe to speculate, namely integer division.
133   if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
134     return false;
135 
136   // LSR is not APInt clean, do not touch integers bigger than 64-bits.
137   // Also avoid creating IVs of non-native types. For example, we don't want a
138   // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
139   uint64_t Width = SE->getTypeSizeInBits(I->getType());
140   if (Width > 64 || !DL.isLegalInteger(Width))
141     return false;
142 
143   // Don't attempt to promote ephemeral values to indvars. They will be removed
144   // later anyway.
145   if (EphValues.count(I))
146     return false;
147 
148   // Get the symbolic expression for this instruction.
149   const SCEV *ISE = SE->getSCEV(I);
150 
151   // If we've come to an uninteresting expression, stop the traversal and
152   // call this a user.
153   if (!isInteresting(ISE, I, L, SE, LI))
154     return false;
155 
156   SmallPtrSet<Instruction *, 4> UniqueUsers;
157   for (Use &U : I->uses()) {
158     Instruction *User = cast<Instruction>(U.getUser());
159     if (!UniqueUsers.insert(User).second)
160       continue;
161 
162     // Do not infinitely recurse on PHI nodes.
163     if (isa<PHINode>(User) && Processed.count(User))
164       continue;
165 
166     // Only consider IVUsers that are dominated by simplified loop
167     // headers. Otherwise, SCEVExpander will crash.
168     BasicBlock *UseBB = User->getParent();
169     // A phi's use is live out of its predecessor block.
170     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
171       unsigned OperandNo = U.getOperandNo();
172       unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
173       UseBB = PHI->getIncomingBlock(ValNo);
174     }
175     if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
176       return false;
177 
178     // Descend recursively, but not into PHI nodes outside the current loop.
179     // It's important to see the entire expression outside the loop to get
180     // choices that depend on addressing mode use right, although we won't
181     // consider references outside the loop in all cases.
182     // If User is already in Processed, we don't want to recurse into it again,
183     // but do want to record a second reference in the same instruction.
184     bool AddUserToIVUsers = false;
185     if (LI->getLoopFor(User->getParent()) != L) {
186       if (isa<PHINode>(User) || Processed.count(User) ||
187           !AddUsersImpl(User, SimpleLoopNests)) {
188         DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
189                      << "   OF SCEV: " << *ISE << '\n');
190         AddUserToIVUsers = true;
191       }
192     } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
193       DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
194                    << "   OF SCEV: " << *ISE << '\n');
195       AddUserToIVUsers = true;
196     }
197 
198     if (AddUserToIVUsers) {
199       // Okay, we found a user that we cannot reduce.
200       IVStrideUse &NewUse = AddUser(User, I);
201       // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
202       // The regular return value here is discarded; instead of recording
203       // it, we just recompute it when we need it.
204       const SCEV *OriginalISE = ISE;
205       ISE = TransformForPostIncUse(NormalizeAutodetect,
206                                    ISE, User, I,
207                                    NewUse.PostIncLoops,
208                                    *SE, *DT);
209 
210       // PostIncNormalization effectively simplifies the expression under
211       // pre-increment assumptions. Those assumptions (no wrapping) might not
212       // hold for the post-inc value. Catch such cases by making sure the
213       // transformation is invertible.
214       if (OriginalISE != ISE) {
215         const SCEV *DenormalizedISE =
216           TransformForPostIncUse(Denormalize, ISE, User, I,
217               NewUse.PostIncLoops, *SE, *DT);
218 
219         // If we normalized the expression, but denormalization doesn't give the
220         // original one, discard this user.
221         if (OriginalISE != DenormalizedISE) {
222           DEBUG(dbgs() << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
223                        << *ISE << '\n');
224           IVUses.pop_back();
225           return false;
226         }
227       }
228       DEBUG(if (SE->getSCEV(I) != ISE)
229               dbgs() << "   NORMALIZED TO: " << *ISE << '\n');
230     }
231   }
232   return true;
233 }
234 
AddUsersIfInteresting(Instruction * I)235 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
236   // SCEVExpander can only handle users that are dominated by simplified loop
237   // entries. Keep track of all loops that are only dominated by other simple
238   // loops so we don't traverse the domtree for each user.
239   SmallPtrSet<Loop*,16> SimpleLoopNests;
240 
241   return AddUsersImpl(I, SimpleLoopNests);
242 }
243 
AddUser(Instruction * User,Value * Operand)244 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
245   IVUses.push_back(new IVStrideUse(this, User, Operand));
246   return IVUses.back();
247 }
248 
IVUsers()249 IVUsers::IVUsers()
250     : LoopPass(ID) {
251   initializeIVUsersPass(*PassRegistry::getPassRegistry());
252 }
253 
getAnalysisUsage(AnalysisUsage & AU) const254 void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
255   AU.addRequired<AssumptionCacheTracker>();
256   AU.addRequired<LoopInfoWrapperPass>();
257   AU.addRequired<DominatorTreeWrapperPass>();
258   AU.addRequired<ScalarEvolutionWrapperPass>();
259   AU.setPreservesAll();
260 }
261 
runOnLoop(Loop * l,LPPassManager & LPM)262 bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
263 
264   L = l;
265   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
266       *L->getHeader()->getParent());
267   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
268   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
269   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
270 
271   // Collect ephemeral values so that AddUsersIfInteresting skips them.
272   EphValues.clear();
273   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
274 
275   // Find all uses of induction variables in this loop, and categorize
276   // them by stride.  Start by finding all of the PHI nodes in the header for
277   // this loop.  If they are induction variables, inspect their uses.
278   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
279     (void)AddUsersIfInteresting(&*I);
280 
281   return false;
282 }
283 
print(raw_ostream & OS,const Module * M) const284 void IVUsers::print(raw_ostream &OS, const Module *M) const {
285   OS << "IV Users for loop ";
286   L->getHeader()->printAsOperand(OS, false);
287   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
288     OS << " with backedge-taken count "
289        << *SE->getBackedgeTakenCount(L);
290   }
291   OS << ":\n";
292 
293   for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(),
294        E = IVUses.end(); UI != E; ++UI) {
295     OS << "  ";
296     UI->getOperandValToReplace()->printAsOperand(OS, false);
297     OS << " = " << *getReplacementExpr(*UI);
298     for (PostIncLoopSet::const_iterator
299          I = UI->PostIncLoops.begin(),
300          E = UI->PostIncLoops.end(); I != E; ++I) {
301       OS << " (post-inc with loop ";
302       (*I)->getHeader()->printAsOperand(OS, false);
303       OS << ")";
304     }
305     OS << " in  ";
306     if (UI->getUser())
307       UI->getUser()->print(OS);
308     else
309       OS << "Printing <null> User";
310     OS << '\n';
311   }
312 }
313 
314 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const315 void IVUsers::dump() const {
316   print(dbgs());
317 }
318 #endif
319 
releaseMemory()320 void IVUsers::releaseMemory() {
321   Processed.clear();
322   IVUses.clear();
323 }
324 
325 /// getReplacementExpr - Return a SCEV expression which computes the
326 /// value of the OperandValToReplace.
getReplacementExpr(const IVStrideUse & IU) const327 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
328   return SE->getSCEV(IU.getOperandValToReplace());
329 }
330 
331 /// getExpr - Return the expression for the use.
getExpr(const IVStrideUse & IU) const332 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
333   return
334     TransformForPostIncUse(Normalize, getReplacementExpr(IU),
335                            IU.getUser(), IU.getOperandValToReplace(),
336                            const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
337                            *SE, *DT);
338 }
339 
findAddRecForLoop(const SCEV * S,const Loop * L)340 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
341   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
342     if (AR->getLoop() == L)
343       return AR;
344     return findAddRecForLoop(AR->getStart(), L);
345   }
346 
347   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
348     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
349          I != E; ++I)
350       if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
351         return AR;
352     return nullptr;
353   }
354 
355   return nullptr;
356 }
357 
getStride(const IVStrideUse & IU,const Loop * L) const358 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
359   if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
360     return AR->getStepRecurrence(*SE);
361   return nullptr;
362 }
363 
transformToPostInc(const Loop * L)364 void IVStrideUse::transformToPostInc(const Loop *L) {
365   PostIncLoops.insert(L);
366 }
367 
deleted()368 void IVStrideUse::deleted() {
369   // Remove this user from the list.
370   Parent->Processed.erase(this->getUser());
371   Parent->IVUses.erase(this);
372   // this now dangles!
373 }
374