1 //===-- CodeGen/AsmPrinter/WinException.cpp - Dwarf Exception Impl ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Win64 exception info into asm files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "WinException.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/WinEHFuncInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Mangler.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCStreamer.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/MC/MCWin64EH.h"
33 #include "llvm/Support/COFF.h"
34 #include "llvm/Support/Dwarf.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/FormattedStream.h"
37 #include "llvm/Target/TargetFrameLowering.h"
38 #include "llvm/Target/TargetLoweringObjectFile.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetSubtargetInfo.h"
42 using namespace llvm;
43
WinException(AsmPrinter * A)44 WinException::WinException(AsmPrinter *A) : EHStreamer(A) {
45 // MSVC's EH tables are always composed of 32-bit words. All known 64-bit
46 // platforms use an imagerel32 relocation to refer to symbols.
47 useImageRel32 = (A->getDataLayout().getPointerSizeInBits() == 64);
48 }
49
~WinException()50 WinException::~WinException() {}
51
52 /// endModule - Emit all exception information that should come after the
53 /// content.
endModule()54 void WinException::endModule() {
55 auto &OS = *Asm->OutStreamer;
56 const Module *M = MMI->getModule();
57 for (const Function &F : *M)
58 if (F.hasFnAttribute("safeseh"))
59 OS.EmitCOFFSafeSEH(Asm->getSymbol(&F));
60 }
61
beginFunction(const MachineFunction * MF)62 void WinException::beginFunction(const MachineFunction *MF) {
63 shouldEmitMoves = shouldEmitPersonality = shouldEmitLSDA = false;
64
65 // If any landing pads survive, we need an EH table.
66 bool hasLandingPads = !MMI->getLandingPads().empty();
67 bool hasEHFunclets = MMI->hasEHFunclets();
68
69 const Function *F = MF->getFunction();
70
71 shouldEmitMoves = Asm->needsSEHMoves();
72
73 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
74 unsigned PerEncoding = TLOF.getPersonalityEncoding();
75 const Function *Per = nullptr;
76 if (F->hasPersonalityFn())
77 Per = dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts());
78
79 bool forceEmitPersonality =
80 F->hasPersonalityFn() && !isNoOpWithoutInvoke(classifyEHPersonality(Per)) &&
81 F->needsUnwindTableEntry();
82
83 shouldEmitPersonality =
84 forceEmitPersonality || ((hasLandingPads || hasEHFunclets) &&
85 PerEncoding != dwarf::DW_EH_PE_omit && Per);
86
87 unsigned LSDAEncoding = TLOF.getLSDAEncoding();
88 shouldEmitLSDA = shouldEmitPersonality &&
89 LSDAEncoding != dwarf::DW_EH_PE_omit;
90
91 // If we're not using CFI, we don't want the CFI or the personality, but we
92 // might want EH tables if we had EH pads.
93 if (!Asm->MAI->usesWindowsCFI()) {
94 shouldEmitLSDA = hasEHFunclets;
95 shouldEmitPersonality = false;
96 return;
97 }
98
99 beginFunclet(MF->front(), Asm->CurrentFnSym);
100 }
101
102 /// endFunction - Gather and emit post-function exception information.
103 ///
endFunction(const MachineFunction * MF)104 void WinException::endFunction(const MachineFunction *MF) {
105 if (!shouldEmitPersonality && !shouldEmitMoves && !shouldEmitLSDA)
106 return;
107
108 const Function *F = MF->getFunction();
109 EHPersonality Per = EHPersonality::Unknown;
110 if (F->hasPersonalityFn())
111 Per = classifyEHPersonality(F->getPersonalityFn());
112
113 // Get rid of any dead landing pads if we're not using funclets. In funclet
114 // schemes, the landing pad is not actually reachable. It only exists so
115 // that we can emit the right table data.
116 if (!isFuncletEHPersonality(Per))
117 MMI->TidyLandingPads();
118
119 endFunclet();
120
121 // endFunclet will emit the necessary .xdata tables for x64 SEH.
122 if (Per == EHPersonality::MSVC_Win64SEH && MMI->hasEHFunclets())
123 return;
124
125 if (shouldEmitPersonality || shouldEmitLSDA) {
126 Asm->OutStreamer->PushSection();
127
128 // Just switch sections to the right xdata section. This use of CurrentFnSym
129 // assumes that we only emit the LSDA when ending the parent function.
130 MCSection *XData = WinEH::UnwindEmitter::getXDataSection(Asm->CurrentFnSym,
131 Asm->OutContext);
132 Asm->OutStreamer->SwitchSection(XData);
133
134 // Emit the tables appropriate to the personality function in use. If we
135 // don't recognize the personality, assume it uses an Itanium-style LSDA.
136 if (Per == EHPersonality::MSVC_Win64SEH)
137 emitCSpecificHandlerTable(MF);
138 else if (Per == EHPersonality::MSVC_X86SEH)
139 emitExceptHandlerTable(MF);
140 else if (Per == EHPersonality::MSVC_CXX)
141 emitCXXFrameHandler3Table(MF);
142 else if (Per == EHPersonality::CoreCLR)
143 emitCLRExceptionTable(MF);
144 else
145 emitExceptionTable();
146
147 Asm->OutStreamer->PopSection();
148 }
149 }
150
151 /// Retreive the MCSymbol for a GlobalValue or MachineBasicBlock.
getMCSymbolForMBB(AsmPrinter * Asm,const MachineBasicBlock * MBB)152 static MCSymbol *getMCSymbolForMBB(AsmPrinter *Asm,
153 const MachineBasicBlock *MBB) {
154 if (!MBB)
155 return nullptr;
156
157 assert(MBB->isEHFuncletEntry());
158
159 // Give catches and cleanups a name based off of their parent function and
160 // their funclet entry block's number.
161 const MachineFunction *MF = MBB->getParent();
162 const Function *F = MF->getFunction();
163 StringRef FuncLinkageName = GlobalValue::getRealLinkageName(F->getName());
164 MCContext &Ctx = MF->getContext();
165 StringRef HandlerPrefix = MBB->isCleanupFuncletEntry() ? "dtor" : "catch";
166 return Ctx.getOrCreateSymbol("?" + HandlerPrefix + "$" +
167 Twine(MBB->getNumber()) + "@?0?" +
168 FuncLinkageName + "@4HA");
169 }
170
beginFunclet(const MachineBasicBlock & MBB,MCSymbol * Sym)171 void WinException::beginFunclet(const MachineBasicBlock &MBB,
172 MCSymbol *Sym) {
173 CurrentFuncletEntry = &MBB;
174
175 const Function *F = Asm->MF->getFunction();
176 // If a symbol was not provided for the funclet, invent one.
177 if (!Sym) {
178 Sym = getMCSymbolForMBB(Asm, &MBB);
179
180 // Describe our funclet symbol as a function with internal linkage.
181 Asm->OutStreamer->BeginCOFFSymbolDef(Sym);
182 Asm->OutStreamer->EmitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC);
183 Asm->OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION
184 << COFF::SCT_COMPLEX_TYPE_SHIFT);
185 Asm->OutStreamer->EndCOFFSymbolDef();
186
187 // We want our funclet's entry point to be aligned such that no nops will be
188 // present after the label.
189 Asm->EmitAlignment(std::max(Asm->MF->getAlignment(), MBB.getAlignment()),
190 F);
191
192 // Now that we've emitted the alignment directive, point at our funclet.
193 Asm->OutStreamer->EmitLabel(Sym);
194 }
195
196 // Mark 'Sym' as starting our funclet.
197 if (shouldEmitMoves || shouldEmitPersonality)
198 Asm->OutStreamer->EmitWinCFIStartProc(Sym);
199
200 if (shouldEmitPersonality) {
201 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
202 const Function *PerFn = nullptr;
203
204 // Determine which personality routine we are using for this funclet.
205 if (F->hasPersonalityFn())
206 PerFn = dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts());
207 const MCSymbol *PersHandlerSym =
208 TLOF.getCFIPersonalitySymbol(PerFn, *Asm->Mang, Asm->TM, MMI);
209
210 // Classify the personality routine so that we may reason about it.
211 EHPersonality Per = EHPersonality::Unknown;
212 if (F->hasPersonalityFn())
213 Per = classifyEHPersonality(F->getPersonalityFn());
214
215 // Do not emit a .seh_handler directive if it is a C++ cleanup funclet.
216 if (Per != EHPersonality::MSVC_CXX ||
217 !CurrentFuncletEntry->isCleanupFuncletEntry())
218 Asm->OutStreamer->EmitWinEHHandler(PersHandlerSym, true, true);
219 }
220 }
221
endFunclet()222 void WinException::endFunclet() {
223 // No funclet to process? Great, we have nothing to do.
224 if (!CurrentFuncletEntry)
225 return;
226
227 if (shouldEmitMoves || shouldEmitPersonality) {
228 const Function *F = Asm->MF->getFunction();
229 EHPersonality Per = EHPersonality::Unknown;
230 if (F->hasPersonalityFn())
231 Per = classifyEHPersonality(F->getPersonalityFn());
232
233 // The .seh_handlerdata directive implicitly switches section, push the
234 // current section so that we may return to it.
235 Asm->OutStreamer->PushSection();
236
237 // Emit an UNWIND_INFO struct describing the prologue.
238 Asm->OutStreamer->EmitWinEHHandlerData();
239
240 if (Per == EHPersonality::MSVC_CXX && shouldEmitPersonality &&
241 !CurrentFuncletEntry->isCleanupFuncletEntry()) {
242 // If this is a C++ catch funclet (or the parent function),
243 // emit a reference to the LSDA for the parent function.
244 StringRef FuncLinkageName = GlobalValue::getRealLinkageName(F->getName());
245 MCSymbol *FuncInfoXData = Asm->OutContext.getOrCreateSymbol(
246 Twine("$cppxdata$", FuncLinkageName));
247 Asm->OutStreamer->EmitValue(create32bitRef(FuncInfoXData), 4);
248 } else if (Per == EHPersonality::MSVC_Win64SEH && MMI->hasEHFunclets() &&
249 !CurrentFuncletEntry->isEHFuncletEntry()) {
250 // If this is the parent function in Win64 SEH, emit the LSDA immediately
251 // following .seh_handlerdata.
252 emitCSpecificHandlerTable(Asm->MF);
253 }
254
255 // Switch back to the previous section now that we are done writing to
256 // .xdata.
257 Asm->OutStreamer->PopSection();
258
259 // Emit a .seh_endproc directive to mark the end of the function.
260 Asm->OutStreamer->EmitWinCFIEndProc();
261 }
262
263 // Let's make sure we don't try to end the same funclet twice.
264 CurrentFuncletEntry = nullptr;
265 }
266
create32bitRef(const MCSymbol * Value)267 const MCExpr *WinException::create32bitRef(const MCSymbol *Value) {
268 if (!Value)
269 return MCConstantExpr::create(0, Asm->OutContext);
270 return MCSymbolRefExpr::create(Value, useImageRel32
271 ? MCSymbolRefExpr::VK_COFF_IMGREL32
272 : MCSymbolRefExpr::VK_None,
273 Asm->OutContext);
274 }
275
create32bitRef(const GlobalValue * GV)276 const MCExpr *WinException::create32bitRef(const GlobalValue *GV) {
277 if (!GV)
278 return MCConstantExpr::create(0, Asm->OutContext);
279 return create32bitRef(Asm->getSymbol(GV));
280 }
281
getLabelPlusOne(const MCSymbol * Label)282 const MCExpr *WinException::getLabelPlusOne(const MCSymbol *Label) {
283 return MCBinaryExpr::createAdd(create32bitRef(Label),
284 MCConstantExpr::create(1, Asm->OutContext),
285 Asm->OutContext);
286 }
287
getOffset(const MCSymbol * OffsetOf,const MCSymbol * OffsetFrom)288 const MCExpr *WinException::getOffset(const MCSymbol *OffsetOf,
289 const MCSymbol *OffsetFrom) {
290 return MCBinaryExpr::createSub(
291 MCSymbolRefExpr::create(OffsetOf, Asm->OutContext),
292 MCSymbolRefExpr::create(OffsetFrom, Asm->OutContext), Asm->OutContext);
293 }
294
getOffsetPlusOne(const MCSymbol * OffsetOf,const MCSymbol * OffsetFrom)295 const MCExpr *WinException::getOffsetPlusOne(const MCSymbol *OffsetOf,
296 const MCSymbol *OffsetFrom) {
297 return MCBinaryExpr::createAdd(getOffset(OffsetOf, OffsetFrom),
298 MCConstantExpr::create(1, Asm->OutContext),
299 Asm->OutContext);
300 }
301
getFrameIndexOffset(int FrameIndex,const WinEHFuncInfo & FuncInfo)302 int WinException::getFrameIndexOffset(int FrameIndex,
303 const WinEHFuncInfo &FuncInfo) {
304 const TargetFrameLowering &TFI = *Asm->MF->getSubtarget().getFrameLowering();
305 unsigned UnusedReg;
306 if (Asm->MAI->usesWindowsCFI())
307 return TFI.getFrameIndexReferenceFromSP(*Asm->MF, FrameIndex, UnusedReg);
308 // For 32-bit, offsets should be relative to the end of the EH registration
309 // node. For 64-bit, it's relative to SP at the end of the prologue.
310 assert(FuncInfo.EHRegNodeEndOffset != INT_MAX);
311 int Offset = TFI.getFrameIndexReference(*Asm->MF, FrameIndex, UnusedReg);
312 Offset += FuncInfo.EHRegNodeEndOffset;
313 return Offset;
314 }
315
316 namespace {
317
318 /// Top-level state used to represent unwind to caller
319 const int NullState = -1;
320
321 struct InvokeStateChange {
322 /// EH Label immediately after the last invoke in the previous state, or
323 /// nullptr if the previous state was the null state.
324 const MCSymbol *PreviousEndLabel;
325
326 /// EH label immediately before the first invoke in the new state, or nullptr
327 /// if the new state is the null state.
328 const MCSymbol *NewStartLabel;
329
330 /// State of the invoke following NewStartLabel, or NullState to indicate
331 /// the presence of calls which may unwind to caller.
332 int NewState;
333 };
334
335 /// Iterator that reports all the invoke state changes in a range of machine
336 /// basic blocks. Changes to the null state are reported whenever a call that
337 /// may unwind to caller is encountered. The MBB range is expected to be an
338 /// entire function or funclet, and the start and end of the range are treated
339 /// as being in the NullState even if there's not an unwind-to-caller call
340 /// before the first invoke or after the last one (i.e., the first state change
341 /// reported is the first change to something other than NullState, and a
342 /// change back to NullState is always reported at the end of iteration).
343 class InvokeStateChangeIterator {
InvokeStateChangeIterator(const WinEHFuncInfo & EHInfo,MachineFunction::const_iterator MFI,MachineFunction::const_iterator MFE,MachineBasicBlock::const_iterator MBBI,int BaseState)344 InvokeStateChangeIterator(const WinEHFuncInfo &EHInfo,
345 MachineFunction::const_iterator MFI,
346 MachineFunction::const_iterator MFE,
347 MachineBasicBlock::const_iterator MBBI,
348 int BaseState)
349 : EHInfo(EHInfo), MFI(MFI), MFE(MFE), MBBI(MBBI), BaseState(BaseState) {
350 LastStateChange.PreviousEndLabel = nullptr;
351 LastStateChange.NewStartLabel = nullptr;
352 LastStateChange.NewState = BaseState;
353 scan();
354 }
355
356 public:
357 static iterator_range<InvokeStateChangeIterator>
range(const WinEHFuncInfo & EHInfo,MachineFunction::const_iterator Begin,MachineFunction::const_iterator End,int BaseState=NullState)358 range(const WinEHFuncInfo &EHInfo, MachineFunction::const_iterator Begin,
359 MachineFunction::const_iterator End, int BaseState = NullState) {
360 // Reject empty ranges to simplify bookkeeping by ensuring that we can get
361 // the end of the last block.
362 assert(Begin != End);
363 auto BlockBegin = Begin->begin();
364 auto BlockEnd = std::prev(End)->end();
365 return make_range(
366 InvokeStateChangeIterator(EHInfo, Begin, End, BlockBegin, BaseState),
367 InvokeStateChangeIterator(EHInfo, End, End, BlockEnd, BaseState));
368 }
369
370 // Iterator methods.
operator ==(const InvokeStateChangeIterator & O) const371 bool operator==(const InvokeStateChangeIterator &O) const {
372 assert(BaseState == O.BaseState);
373 // Must be visiting same block.
374 if (MFI != O.MFI)
375 return false;
376 // Must be visiting same isntr.
377 if (MBBI != O.MBBI)
378 return false;
379 // At end of block/instr iteration, we can still have two distinct states:
380 // one to report the final EndLabel, and another indicating the end of the
381 // state change iteration. Check for CurrentEndLabel equality to
382 // distinguish these.
383 return CurrentEndLabel == O.CurrentEndLabel;
384 }
385
operator !=(const InvokeStateChangeIterator & O) const386 bool operator!=(const InvokeStateChangeIterator &O) const {
387 return !operator==(O);
388 }
operator *()389 InvokeStateChange &operator*() { return LastStateChange; }
operator ->()390 InvokeStateChange *operator->() { return &LastStateChange; }
operator ++()391 InvokeStateChangeIterator &operator++() { return scan(); }
392
393 private:
394 InvokeStateChangeIterator &scan();
395
396 const WinEHFuncInfo &EHInfo;
397 const MCSymbol *CurrentEndLabel = nullptr;
398 MachineFunction::const_iterator MFI;
399 MachineFunction::const_iterator MFE;
400 MachineBasicBlock::const_iterator MBBI;
401 InvokeStateChange LastStateChange;
402 bool VisitingInvoke = false;
403 int BaseState;
404 };
405
406 } // end anonymous namespace
407
scan()408 InvokeStateChangeIterator &InvokeStateChangeIterator::scan() {
409 bool IsNewBlock = false;
410 for (; MFI != MFE; ++MFI, IsNewBlock = true) {
411 if (IsNewBlock)
412 MBBI = MFI->begin();
413 for (auto MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
414 const MachineInstr &MI = *MBBI;
415 if (!VisitingInvoke && LastStateChange.NewState != BaseState &&
416 MI.isCall() && !EHStreamer::callToNoUnwindFunction(&MI)) {
417 // Indicate a change of state to the null state. We don't have
418 // start/end EH labels handy but the caller won't expect them for
419 // null state regions.
420 LastStateChange.PreviousEndLabel = CurrentEndLabel;
421 LastStateChange.NewStartLabel = nullptr;
422 LastStateChange.NewState = BaseState;
423 CurrentEndLabel = nullptr;
424 // Don't re-visit this instr on the next scan
425 ++MBBI;
426 return *this;
427 }
428
429 // All other state changes are at EH labels before/after invokes.
430 if (!MI.isEHLabel())
431 continue;
432 MCSymbol *Label = MI.getOperand(0).getMCSymbol();
433 if (Label == CurrentEndLabel) {
434 VisitingInvoke = false;
435 continue;
436 }
437 auto InvokeMapIter = EHInfo.LabelToStateMap.find(Label);
438 // Ignore EH labels that aren't the ones inserted before an invoke
439 if (InvokeMapIter == EHInfo.LabelToStateMap.end())
440 continue;
441 auto &StateAndEnd = InvokeMapIter->second;
442 int NewState = StateAndEnd.first;
443 // Keep track of the fact that we're between EH start/end labels so
444 // we know not to treat the inoke we'll see as unwinding to caller.
445 VisitingInvoke = true;
446 if (NewState == LastStateChange.NewState) {
447 // The state isn't actually changing here. Record the new end and
448 // keep going.
449 CurrentEndLabel = StateAndEnd.second;
450 continue;
451 }
452 // Found a state change to report
453 LastStateChange.PreviousEndLabel = CurrentEndLabel;
454 LastStateChange.NewStartLabel = Label;
455 LastStateChange.NewState = NewState;
456 // Start keeping track of the new current end
457 CurrentEndLabel = StateAndEnd.second;
458 // Don't re-visit this instr on the next scan
459 ++MBBI;
460 return *this;
461 }
462 }
463 // Iteration hit the end of the block range.
464 if (LastStateChange.NewState != BaseState) {
465 // Report the end of the last new state
466 LastStateChange.PreviousEndLabel = CurrentEndLabel;
467 LastStateChange.NewStartLabel = nullptr;
468 LastStateChange.NewState = BaseState;
469 // Leave CurrentEndLabel non-null to distinguish this state from end.
470 assert(CurrentEndLabel != nullptr);
471 return *this;
472 }
473 // We've reported all state changes and hit the end state.
474 CurrentEndLabel = nullptr;
475 return *this;
476 }
477
478 /// Emit the language-specific data that __C_specific_handler expects. This
479 /// handler lives in the x64 Microsoft C runtime and allows catching or cleaning
480 /// up after faults with __try, __except, and __finally. The typeinfo values
481 /// are not really RTTI data, but pointers to filter functions that return an
482 /// integer (1, 0, or -1) indicating how to handle the exception. For __finally
483 /// blocks and other cleanups, the landing pad label is zero, and the filter
484 /// function is actually a cleanup handler with the same prototype. A catch-all
485 /// entry is modeled with a null filter function field and a non-zero landing
486 /// pad label.
487 ///
488 /// Possible filter function return values:
489 /// EXCEPTION_EXECUTE_HANDLER (1):
490 /// Jump to the landing pad label after cleanups.
491 /// EXCEPTION_CONTINUE_SEARCH (0):
492 /// Continue searching this table or continue unwinding.
493 /// EXCEPTION_CONTINUE_EXECUTION (-1):
494 /// Resume execution at the trapping PC.
495 ///
496 /// Inferred table structure:
497 /// struct Table {
498 /// int NumEntries;
499 /// struct Entry {
500 /// imagerel32 LabelStart;
501 /// imagerel32 LabelEnd;
502 /// imagerel32 FilterOrFinally; // One means catch-all.
503 /// imagerel32 LabelLPad; // Zero means __finally.
504 /// } Entries[NumEntries];
505 /// };
emitCSpecificHandlerTable(const MachineFunction * MF)506 void WinException::emitCSpecificHandlerTable(const MachineFunction *MF) {
507 auto &OS = *Asm->OutStreamer;
508 MCContext &Ctx = Asm->OutContext;
509 const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo();
510
511 // Emit a label assignment with the SEH frame offset so we can use it for
512 // llvm.x86.seh.recoverfp.
513 StringRef FLinkageName =
514 GlobalValue::getRealLinkageName(MF->getFunction()->getName());
515 MCSymbol *ParentFrameOffset =
516 Ctx.getOrCreateParentFrameOffsetSymbol(FLinkageName);
517 const MCExpr *MCOffset =
518 MCConstantExpr::create(FuncInfo.SEHSetFrameOffset, Ctx);
519 Asm->OutStreamer->EmitAssignment(ParentFrameOffset, MCOffset);
520
521 // Use the assembler to compute the number of table entries through label
522 // difference and division.
523 MCSymbol *TableBegin =
524 Ctx.createTempSymbol("lsda_begin", /*AlwaysAddSuffix=*/true);
525 MCSymbol *TableEnd =
526 Ctx.createTempSymbol("lsda_end", /*AlwaysAddSuffix=*/true);
527 const MCExpr *LabelDiff = getOffset(TableEnd, TableBegin);
528 const MCExpr *EntrySize = MCConstantExpr::create(16, Ctx);
529 const MCExpr *EntryCount = MCBinaryExpr::createDiv(LabelDiff, EntrySize, Ctx);
530 OS.EmitValue(EntryCount, 4);
531
532 OS.EmitLabel(TableBegin);
533
534 // Iterate over all the invoke try ranges. Unlike MSVC, LLVM currently only
535 // models exceptions from invokes. LLVM also allows arbitrary reordering of
536 // the code, so our tables end up looking a bit different. Rather than
537 // trying to match MSVC's tables exactly, we emit a denormalized table. For
538 // each range of invokes in the same state, we emit table entries for all
539 // the actions that would be taken in that state. This means our tables are
540 // slightly bigger, which is OK.
541 const MCSymbol *LastStartLabel = nullptr;
542 int LastEHState = -1;
543 // Break out before we enter into a finally funclet.
544 // FIXME: We need to emit separate EH tables for cleanups.
545 MachineFunction::const_iterator End = MF->end();
546 MachineFunction::const_iterator Stop = std::next(MF->begin());
547 while (Stop != End && !Stop->isEHFuncletEntry())
548 ++Stop;
549 for (const auto &StateChange :
550 InvokeStateChangeIterator::range(FuncInfo, MF->begin(), Stop)) {
551 // Emit all the actions for the state we just transitioned out of
552 // if it was not the null state
553 if (LastEHState != -1)
554 emitSEHActionsForRange(FuncInfo, LastStartLabel,
555 StateChange.PreviousEndLabel, LastEHState);
556 LastStartLabel = StateChange.NewStartLabel;
557 LastEHState = StateChange.NewState;
558 }
559
560 OS.EmitLabel(TableEnd);
561 }
562
emitSEHActionsForRange(const WinEHFuncInfo & FuncInfo,const MCSymbol * BeginLabel,const MCSymbol * EndLabel,int State)563 void WinException::emitSEHActionsForRange(const WinEHFuncInfo &FuncInfo,
564 const MCSymbol *BeginLabel,
565 const MCSymbol *EndLabel, int State) {
566 auto &OS = *Asm->OutStreamer;
567 MCContext &Ctx = Asm->OutContext;
568
569 assert(BeginLabel && EndLabel);
570 while (State != -1) {
571 const SEHUnwindMapEntry &UME = FuncInfo.SEHUnwindMap[State];
572 const MCExpr *FilterOrFinally;
573 const MCExpr *ExceptOrNull;
574 auto *Handler = UME.Handler.get<MachineBasicBlock *>();
575 if (UME.IsFinally) {
576 FilterOrFinally = create32bitRef(getMCSymbolForMBB(Asm, Handler));
577 ExceptOrNull = MCConstantExpr::create(0, Ctx);
578 } else {
579 // For an except, the filter can be 1 (catch-all) or a function
580 // label.
581 FilterOrFinally = UME.Filter ? create32bitRef(UME.Filter)
582 : MCConstantExpr::create(1, Ctx);
583 ExceptOrNull = create32bitRef(Handler->getSymbol());
584 }
585
586 OS.EmitValue(getLabelPlusOne(BeginLabel), 4);
587 OS.EmitValue(getLabelPlusOne(EndLabel), 4);
588 OS.EmitValue(FilterOrFinally, 4);
589 OS.EmitValue(ExceptOrNull, 4);
590
591 assert(UME.ToState < State && "states should decrease");
592 State = UME.ToState;
593 }
594 }
595
emitCXXFrameHandler3Table(const MachineFunction * MF)596 void WinException::emitCXXFrameHandler3Table(const MachineFunction *MF) {
597 const Function *F = MF->getFunction();
598 auto &OS = *Asm->OutStreamer;
599 const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo();
600
601 StringRef FuncLinkageName = GlobalValue::getRealLinkageName(F->getName());
602
603 SmallVector<std::pair<const MCExpr *, int>, 4> IPToStateTable;
604 MCSymbol *FuncInfoXData = nullptr;
605 if (shouldEmitPersonality) {
606 // If we're 64-bit, emit a pointer to the C++ EH data, and build a map from
607 // IPs to state numbers.
608 FuncInfoXData =
609 Asm->OutContext.getOrCreateSymbol(Twine("$cppxdata$", FuncLinkageName));
610 computeIP2StateTable(MF, FuncInfo, IPToStateTable);
611 } else {
612 FuncInfoXData = Asm->OutContext.getOrCreateLSDASymbol(FuncLinkageName);
613 }
614
615 int UnwindHelpOffset = 0;
616 if (Asm->MAI->usesWindowsCFI())
617 UnwindHelpOffset =
618 getFrameIndexOffset(FuncInfo.UnwindHelpFrameIdx, FuncInfo);
619
620 MCSymbol *UnwindMapXData = nullptr;
621 MCSymbol *TryBlockMapXData = nullptr;
622 MCSymbol *IPToStateXData = nullptr;
623 if (!FuncInfo.CxxUnwindMap.empty())
624 UnwindMapXData = Asm->OutContext.getOrCreateSymbol(
625 Twine("$stateUnwindMap$", FuncLinkageName));
626 if (!FuncInfo.TryBlockMap.empty())
627 TryBlockMapXData =
628 Asm->OutContext.getOrCreateSymbol(Twine("$tryMap$", FuncLinkageName));
629 if (!IPToStateTable.empty())
630 IPToStateXData =
631 Asm->OutContext.getOrCreateSymbol(Twine("$ip2state$", FuncLinkageName));
632
633 // FuncInfo {
634 // uint32_t MagicNumber
635 // int32_t MaxState;
636 // UnwindMapEntry *UnwindMap;
637 // uint32_t NumTryBlocks;
638 // TryBlockMapEntry *TryBlockMap;
639 // uint32_t IPMapEntries; // always 0 for x86
640 // IPToStateMapEntry *IPToStateMap; // always 0 for x86
641 // uint32_t UnwindHelp; // non-x86 only
642 // ESTypeList *ESTypeList;
643 // int32_t EHFlags;
644 // }
645 // EHFlags & 1 -> Synchronous exceptions only, no async exceptions.
646 // EHFlags & 2 -> ???
647 // EHFlags & 4 -> The function is noexcept(true), unwinding can't continue.
648 OS.EmitValueToAlignment(4);
649 OS.EmitLabel(FuncInfoXData);
650 OS.EmitIntValue(0x19930522, 4); // MagicNumber
651 OS.EmitIntValue(FuncInfo.CxxUnwindMap.size(), 4); // MaxState
652 OS.EmitValue(create32bitRef(UnwindMapXData), 4); // UnwindMap
653 OS.EmitIntValue(FuncInfo.TryBlockMap.size(), 4); // NumTryBlocks
654 OS.EmitValue(create32bitRef(TryBlockMapXData), 4); // TryBlockMap
655 OS.EmitIntValue(IPToStateTable.size(), 4); // IPMapEntries
656 OS.EmitValue(create32bitRef(IPToStateXData), 4); // IPToStateMap
657 if (Asm->MAI->usesWindowsCFI())
658 OS.EmitIntValue(UnwindHelpOffset, 4); // UnwindHelp
659 OS.EmitIntValue(0, 4); // ESTypeList
660 OS.EmitIntValue(1, 4); // EHFlags
661
662 // UnwindMapEntry {
663 // int32_t ToState;
664 // void (*Action)();
665 // };
666 if (UnwindMapXData) {
667 OS.EmitLabel(UnwindMapXData);
668 for (const CxxUnwindMapEntry &UME : FuncInfo.CxxUnwindMap) {
669 MCSymbol *CleanupSym =
670 getMCSymbolForMBB(Asm, UME.Cleanup.dyn_cast<MachineBasicBlock *>());
671 OS.EmitIntValue(UME.ToState, 4); // ToState
672 OS.EmitValue(create32bitRef(CleanupSym), 4); // Action
673 }
674 }
675
676 // TryBlockMap {
677 // int32_t TryLow;
678 // int32_t TryHigh;
679 // int32_t CatchHigh;
680 // int32_t NumCatches;
681 // HandlerType *HandlerArray;
682 // };
683 if (TryBlockMapXData) {
684 OS.EmitLabel(TryBlockMapXData);
685 SmallVector<MCSymbol *, 1> HandlerMaps;
686 for (size_t I = 0, E = FuncInfo.TryBlockMap.size(); I != E; ++I) {
687 const WinEHTryBlockMapEntry &TBME = FuncInfo.TryBlockMap[I];
688
689 MCSymbol *HandlerMapXData = nullptr;
690 if (!TBME.HandlerArray.empty())
691 HandlerMapXData =
692 Asm->OutContext.getOrCreateSymbol(Twine("$handlerMap$")
693 .concat(Twine(I))
694 .concat("$")
695 .concat(FuncLinkageName));
696 HandlerMaps.push_back(HandlerMapXData);
697
698 // TBMEs should form intervals.
699 assert(0 <= TBME.TryLow && "bad trymap interval");
700 assert(TBME.TryLow <= TBME.TryHigh && "bad trymap interval");
701 assert(TBME.TryHigh < TBME.CatchHigh && "bad trymap interval");
702 assert(TBME.CatchHigh < int(FuncInfo.CxxUnwindMap.size()) &&
703 "bad trymap interval");
704
705 OS.EmitIntValue(TBME.TryLow, 4); // TryLow
706 OS.EmitIntValue(TBME.TryHigh, 4); // TryHigh
707 OS.EmitIntValue(TBME.CatchHigh, 4); // CatchHigh
708 OS.EmitIntValue(TBME.HandlerArray.size(), 4); // NumCatches
709 OS.EmitValue(create32bitRef(HandlerMapXData), 4); // HandlerArray
710 }
711
712 // All funclets use the same parent frame offset currently.
713 unsigned ParentFrameOffset = 0;
714 if (shouldEmitPersonality) {
715 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
716 ParentFrameOffset = TFI->getWinEHParentFrameOffset(*MF);
717 }
718
719 for (size_t I = 0, E = FuncInfo.TryBlockMap.size(); I != E; ++I) {
720 const WinEHTryBlockMapEntry &TBME = FuncInfo.TryBlockMap[I];
721 MCSymbol *HandlerMapXData = HandlerMaps[I];
722 if (!HandlerMapXData)
723 continue;
724 // HandlerType {
725 // int32_t Adjectives;
726 // TypeDescriptor *Type;
727 // int32_t CatchObjOffset;
728 // void (*Handler)();
729 // int32_t ParentFrameOffset; // x64 only
730 // };
731 OS.EmitLabel(HandlerMapXData);
732 for (const WinEHHandlerType &HT : TBME.HandlerArray) {
733 // Get the frame escape label with the offset of the catch object. If
734 // the index is INT_MAX, then there is no catch object, and we should
735 // emit an offset of zero, indicating that no copy will occur.
736 const MCExpr *FrameAllocOffsetRef = nullptr;
737 if (HT.CatchObj.FrameIndex != INT_MAX) {
738 int Offset = getFrameIndexOffset(HT.CatchObj.FrameIndex, FuncInfo);
739 FrameAllocOffsetRef = MCConstantExpr::create(Offset, Asm->OutContext);
740 } else {
741 FrameAllocOffsetRef = MCConstantExpr::create(0, Asm->OutContext);
742 }
743
744 MCSymbol *HandlerSym =
745 getMCSymbolForMBB(Asm, HT.Handler.dyn_cast<MachineBasicBlock *>());
746
747 OS.EmitIntValue(HT.Adjectives, 4); // Adjectives
748 OS.EmitValue(create32bitRef(HT.TypeDescriptor), 4); // Type
749 OS.EmitValue(FrameAllocOffsetRef, 4); // CatchObjOffset
750 OS.EmitValue(create32bitRef(HandlerSym), 4); // Handler
751 if (shouldEmitPersonality)
752 OS.EmitIntValue(ParentFrameOffset, 4); // ParentFrameOffset
753 }
754 }
755 }
756
757 // IPToStateMapEntry {
758 // void *IP;
759 // int32_t State;
760 // };
761 if (IPToStateXData) {
762 OS.EmitLabel(IPToStateXData);
763 for (auto &IPStatePair : IPToStateTable) {
764 OS.EmitValue(IPStatePair.first, 4); // IP
765 OS.EmitIntValue(IPStatePair.second, 4); // State
766 }
767 }
768 }
769
computeIP2StateTable(const MachineFunction * MF,const WinEHFuncInfo & FuncInfo,SmallVectorImpl<std::pair<const MCExpr *,int>> & IPToStateTable)770 void WinException::computeIP2StateTable(
771 const MachineFunction *MF, const WinEHFuncInfo &FuncInfo,
772 SmallVectorImpl<std::pair<const MCExpr *, int>> &IPToStateTable) {
773
774 for (MachineFunction::const_iterator FuncletStart = MF->begin(),
775 FuncletEnd = MF->begin(),
776 End = MF->end();
777 FuncletStart != End; FuncletStart = FuncletEnd) {
778 // Find the end of the funclet
779 while (++FuncletEnd != End) {
780 if (FuncletEnd->isEHFuncletEntry()) {
781 break;
782 }
783 }
784
785 // Don't emit ip2state entries for cleanup funclets. Any interesting
786 // exceptional actions in cleanups must be handled in a separate IR
787 // function.
788 if (FuncletStart->isCleanupFuncletEntry())
789 continue;
790
791 MCSymbol *StartLabel;
792 int BaseState;
793 if (FuncletStart == MF->begin()) {
794 BaseState = NullState;
795 StartLabel = Asm->getFunctionBegin();
796 } else {
797 auto *FuncletPad =
798 cast<FuncletPadInst>(FuncletStart->getBasicBlock()->getFirstNonPHI());
799 assert(FuncInfo.FuncletBaseStateMap.count(FuncletPad) != 0);
800 BaseState = FuncInfo.FuncletBaseStateMap.find(FuncletPad)->second;
801 StartLabel = getMCSymbolForMBB(Asm, &*FuncletStart);
802 }
803 assert(StartLabel && "need local function start label");
804 IPToStateTable.push_back(
805 std::make_pair(create32bitRef(StartLabel), BaseState));
806
807 for (const auto &StateChange : InvokeStateChangeIterator::range(
808 FuncInfo, FuncletStart, FuncletEnd, BaseState)) {
809 // Compute the label to report as the start of this entry; use the EH
810 // start label for the invoke if we have one, otherwise (this is a call
811 // which may unwind to our caller and does not have an EH start label, so)
812 // use the previous end label.
813 const MCSymbol *ChangeLabel = StateChange.NewStartLabel;
814 if (!ChangeLabel)
815 ChangeLabel = StateChange.PreviousEndLabel;
816 // Emit an entry indicating that PCs after 'Label' have this EH state.
817 IPToStateTable.push_back(
818 std::make_pair(getLabelPlusOne(ChangeLabel), StateChange.NewState));
819 // FIXME: assert that NewState is between CatchLow and CatchHigh.
820 }
821 }
822 }
823
emitEHRegistrationOffsetLabel(const WinEHFuncInfo & FuncInfo,StringRef FLinkageName)824 void WinException::emitEHRegistrationOffsetLabel(const WinEHFuncInfo &FuncInfo,
825 StringRef FLinkageName) {
826 // Outlined helpers called by the EH runtime need to know the offset of the EH
827 // registration in order to recover the parent frame pointer. Now that we know
828 // we've code generated the parent, we can emit the label assignment that
829 // those helpers use to get the offset of the registration node.
830 MCContext &Ctx = Asm->OutContext;
831 MCSymbol *ParentFrameOffset =
832 Ctx.getOrCreateParentFrameOffsetSymbol(FLinkageName);
833 unsigned UnusedReg;
834 const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering();
835 int64_t Offset = TFI->getFrameIndexReference(
836 *Asm->MF, FuncInfo.EHRegNodeFrameIndex, UnusedReg);
837 const MCExpr *MCOffset = MCConstantExpr::create(Offset, Ctx);
838 Asm->OutStreamer->EmitAssignment(ParentFrameOffset, MCOffset);
839 }
840
841 /// Emit the language-specific data that _except_handler3 and 4 expect. This is
842 /// functionally equivalent to the __C_specific_handler table, except it is
843 /// indexed by state number instead of IP.
emitExceptHandlerTable(const MachineFunction * MF)844 void WinException::emitExceptHandlerTable(const MachineFunction *MF) {
845 MCStreamer &OS = *Asm->OutStreamer;
846 const Function *F = MF->getFunction();
847 StringRef FLinkageName = GlobalValue::getRealLinkageName(F->getName());
848
849 const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo();
850 emitEHRegistrationOffsetLabel(FuncInfo, FLinkageName);
851
852 // Emit the __ehtable label that we use for llvm.x86.seh.lsda.
853 MCSymbol *LSDALabel = Asm->OutContext.getOrCreateLSDASymbol(FLinkageName);
854 OS.EmitValueToAlignment(4);
855 OS.EmitLabel(LSDALabel);
856
857 const Function *Per =
858 dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts());
859 StringRef PerName = Per->getName();
860 int BaseState = -1;
861 if (PerName == "_except_handler4") {
862 // The LSDA for _except_handler4 starts with this struct, followed by the
863 // scope table:
864 //
865 // struct EH4ScopeTable {
866 // int32_t GSCookieOffset;
867 // int32_t GSCookieXOROffset;
868 // int32_t EHCookieOffset;
869 // int32_t EHCookieXOROffset;
870 // ScopeTableEntry ScopeRecord[];
871 // };
872 //
873 // Only the EHCookieOffset field appears to vary, and it appears to be the
874 // offset from the final saved SP value to the retaddr.
875 OS.EmitIntValue(-2, 4);
876 OS.EmitIntValue(0, 4);
877 // FIXME: Calculate.
878 OS.EmitIntValue(9999, 4);
879 OS.EmitIntValue(0, 4);
880 BaseState = -2;
881 }
882
883 assert(!FuncInfo.SEHUnwindMap.empty());
884 for (const SEHUnwindMapEntry &UME : FuncInfo.SEHUnwindMap) {
885 MCSymbol *ExceptOrFinally =
886 UME.Handler.get<MachineBasicBlock *>()->getSymbol();
887 // -1 is usually the base state for "unwind to caller", but for
888 // _except_handler4 it's -2. Do that replacement here if necessary.
889 int ToState = UME.ToState == -1 ? BaseState : UME.ToState;
890 OS.EmitIntValue(ToState, 4); // ToState
891 OS.EmitValue(create32bitRef(UME.Filter), 4); // Filter
892 OS.EmitValue(create32bitRef(ExceptOrFinally), 4); // Except/Finally
893 }
894 }
895
getRank(const WinEHFuncInfo & FuncInfo,int State)896 static int getRank(const WinEHFuncInfo &FuncInfo, int State) {
897 int Rank = 0;
898 while (State != -1) {
899 ++Rank;
900 State = FuncInfo.ClrEHUnwindMap[State].Parent;
901 }
902 return Rank;
903 }
904
getAncestor(const WinEHFuncInfo & FuncInfo,int Left,int Right)905 static int getAncestor(const WinEHFuncInfo &FuncInfo, int Left, int Right) {
906 int LeftRank = getRank(FuncInfo, Left);
907 int RightRank = getRank(FuncInfo, Right);
908
909 while (LeftRank < RightRank) {
910 Right = FuncInfo.ClrEHUnwindMap[Right].Parent;
911 --RightRank;
912 }
913
914 while (RightRank < LeftRank) {
915 Left = FuncInfo.ClrEHUnwindMap[Left].Parent;
916 --LeftRank;
917 }
918
919 while (Left != Right) {
920 Left = FuncInfo.ClrEHUnwindMap[Left].Parent;
921 Right = FuncInfo.ClrEHUnwindMap[Right].Parent;
922 }
923
924 return Left;
925 }
926
emitCLRExceptionTable(const MachineFunction * MF)927 void WinException::emitCLRExceptionTable(const MachineFunction *MF) {
928 // CLR EH "states" are really just IDs that identify handlers/funclets;
929 // states, handlers, and funclets all have 1:1 mappings between them, and a
930 // handler/funclet's "state" is its index in the ClrEHUnwindMap.
931 MCStreamer &OS = *Asm->OutStreamer;
932 const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo();
933 MCSymbol *FuncBeginSym = Asm->getFunctionBegin();
934 MCSymbol *FuncEndSym = Asm->getFunctionEnd();
935
936 // A ClrClause describes a protected region.
937 struct ClrClause {
938 const MCSymbol *StartLabel; // Start of protected region
939 const MCSymbol *EndLabel; // End of protected region
940 int State; // Index of handler protecting the protected region
941 int EnclosingState; // Index of funclet enclosing the protected region
942 };
943 SmallVector<ClrClause, 8> Clauses;
944
945 // Build a map from handler MBBs to their corresponding states (i.e. their
946 // indices in the ClrEHUnwindMap).
947 int NumStates = FuncInfo.ClrEHUnwindMap.size();
948 assert(NumStates > 0 && "Don't need exception table!");
949 DenseMap<const MachineBasicBlock *, int> HandlerStates;
950 for (int State = 0; State < NumStates; ++State) {
951 MachineBasicBlock *HandlerBlock =
952 FuncInfo.ClrEHUnwindMap[State].Handler.get<MachineBasicBlock *>();
953 HandlerStates[HandlerBlock] = State;
954 // Use this loop through all handlers to verify our assumption (used in
955 // the MinEnclosingState computation) that ancestors have lower state
956 // numbers than their descendants.
957 assert(FuncInfo.ClrEHUnwindMap[State].Parent < State &&
958 "ill-formed state numbering");
959 }
960 // Map the main function to the NullState.
961 HandlerStates[&MF->front()] = NullState;
962
963 // Write out a sentinel indicating the end of the standard (Windows) xdata
964 // and the start of the additional (CLR) info.
965 OS.EmitIntValue(0xffffffff, 4);
966 // Write out the number of funclets
967 OS.EmitIntValue(NumStates, 4);
968
969 // Walk the machine blocks/instrs, computing and emitting a few things:
970 // 1. Emit a list of the offsets to each handler entry, in lexical order.
971 // 2. Compute a map (EndSymbolMap) from each funclet to the symbol at its end.
972 // 3. Compute the list of ClrClauses, in the required order (inner before
973 // outer, earlier before later; the order by which a forward scan with
974 // early termination will find the innermost enclosing clause covering
975 // a given address).
976 // 4. A map (MinClauseMap) from each handler index to the index of the
977 // outermost funclet/function which contains a try clause targeting the
978 // key handler. This will be used to determine IsDuplicate-ness when
979 // emitting ClrClauses. The NullState value is used to indicate that the
980 // top-level function contains a try clause targeting the key handler.
981 // HandlerStack is a stack of (PendingStartLabel, PendingState) pairs for
982 // try regions we entered before entering the PendingState try but which
983 // we haven't yet exited.
984 SmallVector<std::pair<const MCSymbol *, int>, 4> HandlerStack;
985 // EndSymbolMap and MinClauseMap are maps described above.
986 std::unique_ptr<MCSymbol *[]> EndSymbolMap(new MCSymbol *[NumStates]);
987 SmallVector<int, 4> MinClauseMap((size_t)NumStates, NumStates);
988
989 // Visit the root function and each funclet.
990
991 for (MachineFunction::const_iterator FuncletStart = MF->begin(),
992 FuncletEnd = MF->begin(),
993 End = MF->end();
994 FuncletStart != End; FuncletStart = FuncletEnd) {
995 int FuncletState = HandlerStates[&*FuncletStart];
996 // Find the end of the funclet
997 MCSymbol *EndSymbol = FuncEndSym;
998 while (++FuncletEnd != End) {
999 if (FuncletEnd->isEHFuncletEntry()) {
1000 EndSymbol = getMCSymbolForMBB(Asm, &*FuncletEnd);
1001 break;
1002 }
1003 }
1004 // Emit the function/funclet end and, if this is a funclet (and not the
1005 // root function), record it in the EndSymbolMap.
1006 OS.EmitValue(getOffset(EndSymbol, FuncBeginSym), 4);
1007 if (FuncletState != NullState) {
1008 // Record the end of the handler.
1009 EndSymbolMap[FuncletState] = EndSymbol;
1010 }
1011
1012 // Walk the state changes in this function/funclet and compute its clauses.
1013 // Funclets always start in the null state.
1014 const MCSymbol *CurrentStartLabel = nullptr;
1015 int CurrentState = NullState;
1016 assert(HandlerStack.empty());
1017 for (const auto &StateChange :
1018 InvokeStateChangeIterator::range(FuncInfo, FuncletStart, FuncletEnd)) {
1019 // Close any try regions we're not still under
1020 int AncestorState =
1021 getAncestor(FuncInfo, CurrentState, StateChange.NewState);
1022 while (CurrentState != AncestorState) {
1023 assert(CurrentState != NullState && "Failed to find ancestor!");
1024 // Close the pending clause
1025 Clauses.push_back({CurrentStartLabel, StateChange.PreviousEndLabel,
1026 CurrentState, FuncletState});
1027 // Now the parent handler is current
1028 CurrentState = FuncInfo.ClrEHUnwindMap[CurrentState].Parent;
1029 // Pop the new start label from the handler stack if we've exited all
1030 // descendants of the corresponding handler.
1031 if (HandlerStack.back().second == CurrentState)
1032 CurrentStartLabel = HandlerStack.pop_back_val().first;
1033 }
1034
1035 if (StateChange.NewState != CurrentState) {
1036 // For each clause we're starting, update the MinClauseMap so we can
1037 // know which is the topmost funclet containing a clause targeting
1038 // it.
1039 for (int EnteredState = StateChange.NewState;
1040 EnteredState != CurrentState;
1041 EnteredState = FuncInfo.ClrEHUnwindMap[EnteredState].Parent) {
1042 int &MinEnclosingState = MinClauseMap[EnteredState];
1043 if (FuncletState < MinEnclosingState)
1044 MinEnclosingState = FuncletState;
1045 }
1046 // Save the previous current start/label on the stack and update to
1047 // the newly-current start/state.
1048 HandlerStack.emplace_back(CurrentStartLabel, CurrentState);
1049 CurrentStartLabel = StateChange.NewStartLabel;
1050 CurrentState = StateChange.NewState;
1051 }
1052 }
1053 assert(HandlerStack.empty());
1054 }
1055
1056 // Now emit the clause info, starting with the number of clauses.
1057 OS.EmitIntValue(Clauses.size(), 4);
1058 for (ClrClause &Clause : Clauses) {
1059 // Emit a CORINFO_EH_CLAUSE :
1060 /*
1061 struct CORINFO_EH_CLAUSE
1062 {
1063 CORINFO_EH_CLAUSE_FLAGS Flags; // actually a CorExceptionFlag
1064 DWORD TryOffset;
1065 DWORD TryLength; // actually TryEndOffset
1066 DWORD HandlerOffset;
1067 DWORD HandlerLength; // actually HandlerEndOffset
1068 union
1069 {
1070 DWORD ClassToken; // use for catch clauses
1071 DWORD FilterOffset; // use for filter clauses
1072 };
1073 };
1074
1075 enum CORINFO_EH_CLAUSE_FLAGS
1076 {
1077 CORINFO_EH_CLAUSE_NONE = 0,
1078 CORINFO_EH_CLAUSE_FILTER = 0x0001, // This clause is for a filter
1079 CORINFO_EH_CLAUSE_FINALLY = 0x0002, // This clause is a finally clause
1080 CORINFO_EH_CLAUSE_FAULT = 0x0004, // This clause is a fault clause
1081 };
1082 typedef enum CorExceptionFlag
1083 {
1084 COR_ILEXCEPTION_CLAUSE_NONE,
1085 COR_ILEXCEPTION_CLAUSE_FILTER = 0x0001, // This is a filter clause
1086 COR_ILEXCEPTION_CLAUSE_FINALLY = 0x0002, // This is a finally clause
1087 COR_ILEXCEPTION_CLAUSE_FAULT = 0x0004, // This is a fault clause
1088 COR_ILEXCEPTION_CLAUSE_DUPLICATED = 0x0008, // duplicated clause. This
1089 // clause was duplicated
1090 // to a funclet which was
1091 // pulled out of line
1092 } CorExceptionFlag;
1093 */
1094 // Add 1 to the start/end of the EH clause; the IP associated with a
1095 // call when the runtime does its scan is the IP of the next instruction
1096 // (the one to which control will return after the call), so we need
1097 // to add 1 to the end of the clause to cover that offset. We also add
1098 // 1 to the start of the clause to make sure that the ranges reported
1099 // for all clauses are disjoint. Note that we'll need some additional
1100 // logic when machine traps are supported, since in that case the IP
1101 // that the runtime uses is the offset of the faulting instruction
1102 // itself; if such an instruction immediately follows a call but the
1103 // two belong to different clauses, we'll need to insert a nop between
1104 // them so the runtime can distinguish the point to which the call will
1105 // return from the point at which the fault occurs.
1106
1107 const MCExpr *ClauseBegin =
1108 getOffsetPlusOne(Clause.StartLabel, FuncBeginSym);
1109 const MCExpr *ClauseEnd = getOffsetPlusOne(Clause.EndLabel, FuncBeginSym);
1110
1111 const ClrEHUnwindMapEntry &Entry = FuncInfo.ClrEHUnwindMap[Clause.State];
1112 MachineBasicBlock *HandlerBlock = Entry.Handler.get<MachineBasicBlock *>();
1113 MCSymbol *BeginSym = getMCSymbolForMBB(Asm, HandlerBlock);
1114 const MCExpr *HandlerBegin = getOffset(BeginSym, FuncBeginSym);
1115 MCSymbol *EndSym = EndSymbolMap[Clause.State];
1116 const MCExpr *HandlerEnd = getOffset(EndSym, FuncBeginSym);
1117
1118 uint32_t Flags = 0;
1119 switch (Entry.HandlerType) {
1120 case ClrHandlerType::Catch:
1121 // Leaving bits 0-2 clear indicates catch.
1122 break;
1123 case ClrHandlerType::Filter:
1124 Flags |= 1;
1125 break;
1126 case ClrHandlerType::Finally:
1127 Flags |= 2;
1128 break;
1129 case ClrHandlerType::Fault:
1130 Flags |= 4;
1131 break;
1132 }
1133 if (Clause.EnclosingState != MinClauseMap[Clause.State]) {
1134 // This is a "duplicate" clause; the handler needs to be entered from a
1135 // frame above the one holding the invoke.
1136 assert(Clause.EnclosingState > MinClauseMap[Clause.State]);
1137 Flags |= 8;
1138 }
1139 OS.EmitIntValue(Flags, 4);
1140
1141 // Write the clause start/end
1142 OS.EmitValue(ClauseBegin, 4);
1143 OS.EmitValue(ClauseEnd, 4);
1144
1145 // Write out the handler start/end
1146 OS.EmitValue(HandlerBegin, 4);
1147 OS.EmitValue(HandlerEnd, 4);
1148
1149 // Write out the type token or filter offset
1150 assert(Entry.HandlerType != ClrHandlerType::Filter && "NYI: filters");
1151 OS.EmitIntValue(Entry.TypeToken, 4);
1152 }
1153 }
1154