1 //===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the execution dependency fix pass.
11 //
12 // Some X86 SSE instructions like mov, and, or, xor are available in different
13 // variants for different operand types. These variant instructions are
14 // equivalent, but on Nehalem and newer cpus there is extra latency
15 // transferring data between integer and floating point domains. ARM cores
16 // have similar issues when they are configured with both VFP and NEON
17 // pipelines.
18 //
19 // This pass changes the variant instructions to minimize domain crossings.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/ADT/PostOrderIterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/CodeGen/LivePhysRegs.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/Support/Allocator.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetSubtargetInfo.h"
34
35 using namespace llvm;
36
37 #define DEBUG_TYPE "execution-fix"
38
39 /// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track
40 /// of execution domains.
41 ///
42 /// An open DomainValue represents a set of instructions that can still switch
43 /// execution domain. Multiple registers may refer to the same open
44 /// DomainValue - they will eventually be collapsed to the same execution
45 /// domain.
46 ///
47 /// A collapsed DomainValue represents a single register that has been forced
48 /// into one of more execution domains. There is a separate collapsed
49 /// DomainValue for each register, but it may contain multiple execution
50 /// domains. A register value is initially created in a single execution
51 /// domain, but if we were forced to pay the penalty of a domain crossing, we
52 /// keep track of the fact that the register is now available in multiple
53 /// domains.
54 namespace {
55 struct DomainValue {
56 // Basic reference counting.
57 unsigned Refs;
58
59 // Bitmask of available domains. For an open DomainValue, it is the still
60 // possible domains for collapsing. For a collapsed DomainValue it is the
61 // domains where the register is available for free.
62 unsigned AvailableDomains;
63
64 // Pointer to the next DomainValue in a chain. When two DomainValues are
65 // merged, Victim.Next is set to point to Victor, so old DomainValue
66 // references can be updated by following the chain.
67 DomainValue *Next;
68
69 // Twiddleable instructions using or defining these registers.
70 SmallVector<MachineInstr*, 8> Instrs;
71
72 // A collapsed DomainValue has no instructions to twiddle - it simply keeps
73 // track of the domains where the registers are already available.
isCollapsed__anone7243c1d0111::DomainValue74 bool isCollapsed() const { return Instrs.empty(); }
75
76 // Is domain available?
hasDomain__anone7243c1d0111::DomainValue77 bool hasDomain(unsigned domain) const {
78 assert(domain <
79 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
80 "undefined behavior");
81 return AvailableDomains & (1u << domain);
82 }
83
84 // Mark domain as available.
addDomain__anone7243c1d0111::DomainValue85 void addDomain(unsigned domain) {
86 AvailableDomains |= 1u << domain;
87 }
88
89 // Restrict to a single domain available.
setSingleDomain__anone7243c1d0111::DomainValue90 void setSingleDomain(unsigned domain) {
91 AvailableDomains = 1u << domain;
92 }
93
94 // Return bitmask of domains that are available and in mask.
getCommonDomains__anone7243c1d0111::DomainValue95 unsigned getCommonDomains(unsigned mask) const {
96 return AvailableDomains & mask;
97 }
98
99 // First domain available.
getFirstDomain__anone7243c1d0111::DomainValue100 unsigned getFirstDomain() const {
101 return countTrailingZeros(AvailableDomains);
102 }
103
DomainValue__anone7243c1d0111::DomainValue104 DomainValue() : Refs(0) { clear(); }
105
106 // Clear this DomainValue and point to next which has all its data.
clear__anone7243c1d0111::DomainValue107 void clear() {
108 AvailableDomains = 0;
109 Next = nullptr;
110 Instrs.clear();
111 }
112 };
113 }
114
115 namespace {
116 /// Information about a live register.
117 struct LiveReg {
118 /// Value currently in this register, or NULL when no value is being tracked.
119 /// This counts as a DomainValue reference.
120 DomainValue *Value;
121
122 /// Instruction that defined this register, relative to the beginning of the
123 /// current basic block. When a LiveReg is used to represent a live-out
124 /// register, this value is relative to the end of the basic block, so it
125 /// will be a negative number.
126 int Def;
127 };
128 } // anonymous namespace
129
130 namespace {
131 class ExeDepsFix : public MachineFunctionPass {
132 static char ID;
133 SpecificBumpPtrAllocator<DomainValue> Allocator;
134 SmallVector<DomainValue*,16> Avail;
135
136 const TargetRegisterClass *const RC;
137 MachineFunction *MF;
138 const TargetInstrInfo *TII;
139 const TargetRegisterInfo *TRI;
140 std::vector<SmallVector<int, 1>> AliasMap;
141 const unsigned NumRegs;
142 LiveReg *LiveRegs;
143 typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap;
144 LiveOutMap LiveOuts;
145
146 /// List of undefined register reads in this block in forward order.
147 std::vector<std::pair<MachineInstr*, unsigned> > UndefReads;
148
149 /// Storage for register unit liveness.
150 LivePhysRegs LiveRegSet;
151
152 /// Current instruction number.
153 /// The first instruction in each basic block is 0.
154 int CurInstr;
155
156 /// True when the current block has a predecessor that hasn't been visited
157 /// yet.
158 bool SeenUnknownBackEdge;
159
160 public:
ExeDepsFix(const TargetRegisterClass * rc)161 ExeDepsFix(const TargetRegisterClass *rc)
162 : MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {}
163
getAnalysisUsage(AnalysisUsage & AU) const164 void getAnalysisUsage(AnalysisUsage &AU) const override {
165 AU.setPreservesAll();
166 MachineFunctionPass::getAnalysisUsage(AU);
167 }
168
169 bool runOnMachineFunction(MachineFunction &MF) override;
170
getPassName() const171 const char *getPassName() const override {
172 return "Execution dependency fix";
173 }
174
175 private:
176 iterator_range<SmallVectorImpl<int>::const_iterator>
177 regIndices(unsigned Reg) const;
178
179 // DomainValue allocation.
180 DomainValue *alloc(int domain = -1);
retain(DomainValue * DV)181 DomainValue *retain(DomainValue *DV) {
182 if (DV) ++DV->Refs;
183 return DV;
184 }
185 void release(DomainValue*);
186 DomainValue *resolve(DomainValue*&);
187
188 // LiveRegs manipulations.
189 void setLiveReg(int rx, DomainValue *DV);
190 void kill(int rx);
191 void force(int rx, unsigned domain);
192 void collapse(DomainValue *dv, unsigned domain);
193 bool merge(DomainValue *A, DomainValue *B);
194
195 void enterBasicBlock(MachineBasicBlock*);
196 void leaveBasicBlock(MachineBasicBlock*);
197 void visitInstr(MachineInstr*);
198 void processDefs(MachineInstr*, bool Kill);
199 void visitSoftInstr(MachineInstr*, unsigned mask);
200 void visitHardInstr(MachineInstr*, unsigned domain);
201 bool shouldBreakDependence(MachineInstr*, unsigned OpIdx, unsigned Pref);
202 void processUndefReads(MachineBasicBlock*);
203 };
204 }
205
206 char ExeDepsFix::ID = 0;
207
208 /// Translate TRI register number to a list of indices into our smaller tables
209 /// of interesting registers.
210 iterator_range<SmallVectorImpl<int>::const_iterator>
regIndices(unsigned Reg) const211 ExeDepsFix::regIndices(unsigned Reg) const {
212 assert(Reg < AliasMap.size() && "Invalid register");
213 const auto &Entry = AliasMap[Reg];
214 return make_range(Entry.begin(), Entry.end());
215 }
216
alloc(int domain)217 DomainValue *ExeDepsFix::alloc(int domain) {
218 DomainValue *dv = Avail.empty() ?
219 new(Allocator.Allocate()) DomainValue :
220 Avail.pop_back_val();
221 if (domain >= 0)
222 dv->addDomain(domain);
223 assert(dv->Refs == 0 && "Reference count wasn't cleared");
224 assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
225 return dv;
226 }
227
228 /// Release a reference to DV. When the last reference is released,
229 /// collapse if needed.
release(DomainValue * DV)230 void ExeDepsFix::release(DomainValue *DV) {
231 while (DV) {
232 assert(DV->Refs && "Bad DomainValue");
233 if (--DV->Refs)
234 return;
235
236 // There are no more DV references. Collapse any contained instructions.
237 if (DV->AvailableDomains && !DV->isCollapsed())
238 collapse(DV, DV->getFirstDomain());
239
240 DomainValue *Next = DV->Next;
241 DV->clear();
242 Avail.push_back(DV);
243 // Also release the next DomainValue in the chain.
244 DV = Next;
245 }
246 }
247
248 /// Follow the chain of dead DomainValues until a live DomainValue is reached.
249 /// Update the referenced pointer when necessary.
resolve(DomainValue * & DVRef)250 DomainValue *ExeDepsFix::resolve(DomainValue *&DVRef) {
251 DomainValue *DV = DVRef;
252 if (!DV || !DV->Next)
253 return DV;
254
255 // DV has a chain. Find the end.
256 do DV = DV->Next;
257 while (DV->Next);
258
259 // Update DVRef to point to DV.
260 retain(DV);
261 release(DVRef);
262 DVRef = DV;
263 return DV;
264 }
265
266 /// Set LiveRegs[rx] = dv, updating reference counts.
setLiveReg(int rx,DomainValue * dv)267 void ExeDepsFix::setLiveReg(int rx, DomainValue *dv) {
268 assert(unsigned(rx) < NumRegs && "Invalid index");
269 assert(LiveRegs && "Must enter basic block first.");
270
271 if (LiveRegs[rx].Value == dv)
272 return;
273 if (LiveRegs[rx].Value)
274 release(LiveRegs[rx].Value);
275 LiveRegs[rx].Value = retain(dv);
276 }
277
278 // Kill register rx, recycle or collapse any DomainValue.
kill(int rx)279 void ExeDepsFix::kill(int rx) {
280 assert(unsigned(rx) < NumRegs && "Invalid index");
281 assert(LiveRegs && "Must enter basic block first.");
282 if (!LiveRegs[rx].Value)
283 return;
284
285 release(LiveRegs[rx].Value);
286 LiveRegs[rx].Value = nullptr;
287 }
288
289 /// Force register rx into domain.
force(int rx,unsigned domain)290 void ExeDepsFix::force(int rx, unsigned domain) {
291 assert(unsigned(rx) < NumRegs && "Invalid index");
292 assert(LiveRegs && "Must enter basic block first.");
293 if (DomainValue *dv = LiveRegs[rx].Value) {
294 if (dv->isCollapsed())
295 dv->addDomain(domain);
296 else if (dv->hasDomain(domain))
297 collapse(dv, domain);
298 else {
299 // This is an incompatible open DomainValue. Collapse it to whatever and
300 // force the new value into domain. This costs a domain crossing.
301 collapse(dv, dv->getFirstDomain());
302 assert(LiveRegs[rx].Value && "Not live after collapse?");
303 LiveRegs[rx].Value->addDomain(domain);
304 }
305 } else {
306 // Set up basic collapsed DomainValue.
307 setLiveReg(rx, alloc(domain));
308 }
309 }
310
311 /// Collapse open DomainValue into given domain. If there are multiple
312 /// registers using dv, they each get a unique collapsed DomainValue.
collapse(DomainValue * dv,unsigned domain)313 void ExeDepsFix::collapse(DomainValue *dv, unsigned domain) {
314 assert(dv->hasDomain(domain) && "Cannot collapse");
315
316 // Collapse all the instructions.
317 while (!dv->Instrs.empty())
318 TII->setExecutionDomain(dv->Instrs.pop_back_val(), domain);
319 dv->setSingleDomain(domain);
320
321 // If there are multiple users, give them new, unique DomainValues.
322 if (LiveRegs && dv->Refs > 1)
323 for (unsigned rx = 0; rx != NumRegs; ++rx)
324 if (LiveRegs[rx].Value == dv)
325 setLiveReg(rx, alloc(domain));
326 }
327
328 /// All instructions and registers in B are moved to A, and B is released.
merge(DomainValue * A,DomainValue * B)329 bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) {
330 assert(!A->isCollapsed() && "Cannot merge into collapsed");
331 assert(!B->isCollapsed() && "Cannot merge from collapsed");
332 if (A == B)
333 return true;
334 // Restrict to the domains that A and B have in common.
335 unsigned common = A->getCommonDomains(B->AvailableDomains);
336 if (!common)
337 return false;
338 A->AvailableDomains = common;
339 A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
340
341 // Clear the old DomainValue so we won't try to swizzle instructions twice.
342 B->clear();
343 // All uses of B are referred to A.
344 B->Next = retain(A);
345
346 for (unsigned rx = 0; rx != NumRegs; ++rx) {
347 assert(LiveRegs && "no space allocated for live registers");
348 if (LiveRegs[rx].Value == B)
349 setLiveReg(rx, A);
350 }
351 return true;
352 }
353
354 /// Set up LiveRegs by merging predecessor live-out values.
enterBasicBlock(MachineBasicBlock * MBB)355 void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
356 // Detect back-edges from predecessors we haven't processed yet.
357 SeenUnknownBackEdge = false;
358
359 // Reset instruction counter in each basic block.
360 CurInstr = 0;
361
362 // Set up UndefReads to track undefined register reads.
363 UndefReads.clear();
364 LiveRegSet.clear();
365
366 // Set up LiveRegs to represent registers entering MBB.
367 if (!LiveRegs)
368 LiveRegs = new LiveReg[NumRegs];
369
370 // Default values are 'nothing happened a long time ago'.
371 for (unsigned rx = 0; rx != NumRegs; ++rx) {
372 LiveRegs[rx].Value = nullptr;
373 LiveRegs[rx].Def = -(1 << 20);
374 }
375
376 // This is the entry block.
377 if (MBB->pred_empty()) {
378 for (const auto &LI : MBB->liveins()) {
379 for (int rx : regIndices(LI.PhysReg)) {
380 // Treat function live-ins as if they were defined just before the first
381 // instruction. Usually, function arguments are set up immediately
382 // before the call.
383 LiveRegs[rx].Def = -1;
384 }
385 }
386 DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
387 return;
388 }
389
390 // Try to coalesce live-out registers from predecessors.
391 for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
392 pe = MBB->pred_end(); pi != pe; ++pi) {
393 LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
394 if (fi == LiveOuts.end()) {
395 SeenUnknownBackEdge = true;
396 continue;
397 }
398 assert(fi->second && "Can't have NULL entries");
399
400 for (unsigned rx = 0; rx != NumRegs; ++rx) {
401 // Use the most recent predecessor def for each register.
402 LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, fi->second[rx].Def);
403
404 DomainValue *pdv = resolve(fi->second[rx].Value);
405 if (!pdv)
406 continue;
407 if (!LiveRegs[rx].Value) {
408 setLiveReg(rx, pdv);
409 continue;
410 }
411
412 // We have a live DomainValue from more than one predecessor.
413 if (LiveRegs[rx].Value->isCollapsed()) {
414 // We are already collapsed, but predecessor is not. Force it.
415 unsigned Domain = LiveRegs[rx].Value->getFirstDomain();
416 if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
417 collapse(pdv, Domain);
418 continue;
419 }
420
421 // Currently open, merge in predecessor.
422 if (!pdv->isCollapsed())
423 merge(LiveRegs[rx].Value, pdv);
424 else
425 force(rx, pdv->getFirstDomain());
426 }
427 }
428 DEBUG(dbgs() << "BB#" << MBB->getNumber()
429 << (SeenUnknownBackEdge ? ": incomplete\n" : ": all preds known\n"));
430 }
431
leaveBasicBlock(MachineBasicBlock * MBB)432 void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
433 assert(LiveRegs && "Must enter basic block first.");
434 // Save live registers at end of MBB - used by enterBasicBlock().
435 // Also use LiveOuts as a visited set to detect back-edges.
436 bool First = LiveOuts.insert(std::make_pair(MBB, LiveRegs)).second;
437
438 if (First) {
439 // LiveRegs was inserted in LiveOuts. Adjust all defs to be relative to
440 // the end of this block instead of the beginning.
441 for (unsigned i = 0, e = NumRegs; i != e; ++i)
442 LiveRegs[i].Def -= CurInstr;
443 } else {
444 // Insertion failed, this must be the second pass.
445 // Release all the DomainValues instead of keeping them.
446 for (unsigned i = 0, e = NumRegs; i != e; ++i)
447 release(LiveRegs[i].Value);
448 delete[] LiveRegs;
449 }
450 LiveRegs = nullptr;
451 }
452
visitInstr(MachineInstr * MI)453 void ExeDepsFix::visitInstr(MachineInstr *MI) {
454 if (MI->isDebugValue())
455 return;
456
457 // Update instructions with explicit execution domains.
458 std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(MI);
459 if (DomP.first) {
460 if (DomP.second)
461 visitSoftInstr(MI, DomP.second);
462 else
463 visitHardInstr(MI, DomP.first);
464 }
465
466 // Process defs to track register ages, and kill values clobbered by generic
467 // instructions.
468 processDefs(MI, !DomP.first);
469 }
470
471 /// \brief Return true to if it makes sense to break dependence on a partial def
472 /// or undef use.
shouldBreakDependence(MachineInstr * MI,unsigned OpIdx,unsigned Pref)473 bool ExeDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
474 unsigned Pref) {
475 unsigned reg = MI->getOperand(OpIdx).getReg();
476 for (int rx : regIndices(reg)) {
477 unsigned Clearance = CurInstr - LiveRegs[rx].Def;
478 DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
479
480 if (Pref > Clearance) {
481 DEBUG(dbgs() << ": Break dependency.\n");
482 continue;
483 }
484 // The current clearance seems OK, but we may be ignoring a def from a
485 // back-edge.
486 if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
487 DEBUG(dbgs() << ": OK .\n");
488 return false;
489 }
490 // A def from an unprocessed back-edge may make us break this dependency.
491 DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
492 return false;
493 }
494 return true;
495 }
496
497 // Update def-ages for registers defined by MI.
498 // If Kill is set, also kill off DomainValues clobbered by the defs.
499 //
500 // Also break dependencies on partial defs and undef uses.
processDefs(MachineInstr * MI,bool Kill)501 void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
502 assert(!MI->isDebugValue() && "Won't process debug values");
503
504 // Break dependence on undef uses. Do this before updating LiveRegs below.
505 unsigned OpNum;
506 unsigned Pref = TII->getUndefRegClearance(MI, OpNum, TRI);
507 if (Pref) {
508 if (shouldBreakDependence(MI, OpNum, Pref))
509 UndefReads.push_back(std::make_pair(MI, OpNum));
510 }
511 const MCInstrDesc &MCID = MI->getDesc();
512 for (unsigned i = 0,
513 e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
514 i != e; ++i) {
515 MachineOperand &MO = MI->getOperand(i);
516 if (!MO.isReg())
517 continue;
518 if (MO.isImplicit())
519 break;
520 if (MO.isUse())
521 continue;
522 for (int rx : regIndices(MO.getReg())) {
523 // This instruction explicitly defines rx.
524 DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
525 << '\t' << *MI);
526
527 // Check clearance before partial register updates.
528 // Call breakDependence before setting LiveRegs[rx].Def.
529 unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI);
530 if (Pref && shouldBreakDependence(MI, i, Pref))
531 TII->breakPartialRegDependency(MI, i, TRI);
532
533 // How many instructions since rx was last written?
534 LiveRegs[rx].Def = CurInstr;
535
536 // Kill off domains redefined by generic instructions.
537 if (Kill)
538 kill(rx);
539 }
540 }
541 ++CurInstr;
542 }
543
544 /// \break Break false dependencies on undefined register reads.
545 ///
546 /// Walk the block backward computing precise liveness. This is expensive, so we
547 /// only do it on demand. Note that the occurrence of undefined register reads
548 /// that should be broken is very rare, but when they occur we may have many in
549 /// a single block.
processUndefReads(MachineBasicBlock * MBB)550 void ExeDepsFix::processUndefReads(MachineBasicBlock *MBB) {
551 if (UndefReads.empty())
552 return;
553
554 // Collect this block's live out register units.
555 LiveRegSet.init(TRI);
556 LiveRegSet.addLiveOuts(MBB);
557
558 MachineInstr *UndefMI = UndefReads.back().first;
559 unsigned OpIdx = UndefReads.back().second;
560
561 for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) {
562 // Update liveness, including the current instruction's defs.
563 LiveRegSet.stepBackward(I);
564
565 if (UndefMI == &I) {
566 if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg()))
567 TII->breakPartialRegDependency(UndefMI, OpIdx, TRI);
568
569 UndefReads.pop_back();
570 if (UndefReads.empty())
571 return;
572
573 UndefMI = UndefReads.back().first;
574 OpIdx = UndefReads.back().second;
575 }
576 }
577 }
578
579 // A hard instruction only works in one domain. All input registers will be
580 // forced into that domain.
visitHardInstr(MachineInstr * mi,unsigned domain)581 void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
582 // Collapse all uses.
583 for (unsigned i = mi->getDesc().getNumDefs(),
584 e = mi->getDesc().getNumOperands(); i != e; ++i) {
585 MachineOperand &mo = mi->getOperand(i);
586 if (!mo.isReg()) continue;
587 for (int rx : regIndices(mo.getReg())) {
588 force(rx, domain);
589 }
590 }
591
592 // Kill all defs and force them.
593 for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
594 MachineOperand &mo = mi->getOperand(i);
595 if (!mo.isReg()) continue;
596 for (int rx : regIndices(mo.getReg())) {
597 kill(rx);
598 force(rx, domain);
599 }
600 }
601 }
602
603 // A soft instruction can be changed to work in other domains given by mask.
visitSoftInstr(MachineInstr * mi,unsigned mask)604 void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
605 // Bitmask of available domains for this instruction after taking collapsed
606 // operands into account.
607 unsigned available = mask;
608
609 // Scan the explicit use operands for incoming domains.
610 SmallVector<int, 4> used;
611 if (LiveRegs)
612 for (unsigned i = mi->getDesc().getNumDefs(),
613 e = mi->getDesc().getNumOperands(); i != e; ++i) {
614 MachineOperand &mo = mi->getOperand(i);
615 if (!mo.isReg()) continue;
616 for (int rx : regIndices(mo.getReg())) {
617 DomainValue *dv = LiveRegs[rx].Value;
618 if (dv == nullptr)
619 continue;
620 // Bitmask of domains that dv and available have in common.
621 unsigned common = dv->getCommonDomains(available);
622 // Is it possible to use this collapsed register for free?
623 if (dv->isCollapsed()) {
624 // Restrict available domains to the ones in common with the operand.
625 // If there are no common domains, we must pay the cross-domain
626 // penalty for this operand.
627 if (common) available = common;
628 } else if (common)
629 // Open DomainValue is compatible, save it for merging.
630 used.push_back(rx);
631 else
632 // Open DomainValue is not compatible with instruction. It is useless
633 // now.
634 kill(rx);
635 }
636 }
637
638 // If the collapsed operands force a single domain, propagate the collapse.
639 if (isPowerOf2_32(available)) {
640 unsigned domain = countTrailingZeros(available);
641 TII->setExecutionDomain(mi, domain);
642 visitHardInstr(mi, domain);
643 return;
644 }
645
646 // Kill off any remaining uses that don't match available, and build a list of
647 // incoming DomainValues that we want to merge.
648 SmallVector<LiveReg, 4> Regs;
649 for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
650 int rx = *i;
651 assert(LiveRegs && "no space allocated for live registers");
652 const LiveReg &LR = LiveRegs[rx];
653 // This useless DomainValue could have been missed above.
654 if (!LR.Value->getCommonDomains(available)) {
655 kill(rx);
656 continue;
657 }
658 // Sorted insertion.
659 bool Inserted = false;
660 for (SmallVectorImpl<LiveReg>::iterator i = Regs.begin(), e = Regs.end();
661 i != e && !Inserted; ++i) {
662 if (LR.Def < i->Def) {
663 Inserted = true;
664 Regs.insert(i, LR);
665 }
666 }
667 if (!Inserted)
668 Regs.push_back(LR);
669 }
670
671 // doms are now sorted in order of appearance. Try to merge them all, giving
672 // priority to the latest ones.
673 DomainValue *dv = nullptr;
674 while (!Regs.empty()) {
675 if (!dv) {
676 dv = Regs.pop_back_val().Value;
677 // Force the first dv to match the current instruction.
678 dv->AvailableDomains = dv->getCommonDomains(available);
679 assert(dv->AvailableDomains && "Domain should have been filtered");
680 continue;
681 }
682
683 DomainValue *Latest = Regs.pop_back_val().Value;
684 // Skip already merged values.
685 if (Latest == dv || Latest->Next)
686 continue;
687 if (merge(dv, Latest))
688 continue;
689
690 // If latest didn't merge, it is useless now. Kill all registers using it.
691 for (int i : used) {
692 assert(LiveRegs && "no space allocated for live registers");
693 if (LiveRegs[i].Value == Latest)
694 kill(i);
695 }
696 }
697
698 // dv is the DomainValue we are going to use for this instruction.
699 if (!dv) {
700 dv = alloc();
701 dv->AvailableDomains = available;
702 }
703 dv->Instrs.push_back(mi);
704
705 // Finally set all defs and non-collapsed uses to dv. We must iterate through
706 // all the operators, including imp-def ones.
707 for (MachineInstr::mop_iterator ii = mi->operands_begin(),
708 ee = mi->operands_end();
709 ii != ee; ++ii) {
710 MachineOperand &mo = *ii;
711 if (!mo.isReg()) continue;
712 for (int rx : regIndices(mo.getReg())) {
713 if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
714 kill(rx);
715 setLiveReg(rx, dv);
716 }
717 }
718 }
719 }
720
runOnMachineFunction(MachineFunction & mf)721 bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
722 MF = &mf;
723 TII = MF->getSubtarget().getInstrInfo();
724 TRI = MF->getSubtarget().getRegisterInfo();
725 LiveRegs = nullptr;
726 assert(NumRegs == RC->getNumRegs() && "Bad regclass");
727
728 DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
729 << TRI->getRegClassName(RC) << " **********\n");
730
731 // If no relevant registers are used in the function, we can skip it
732 // completely.
733 bool anyregs = false;
734 const MachineRegisterInfo &MRI = mf.getRegInfo();
735 for (unsigned Reg : *RC) {
736 if (MRI.isPhysRegUsed(Reg)) {
737 anyregs = true;
738 break;
739 }
740 }
741 if (!anyregs) return false;
742
743 // Initialize the AliasMap on the first use.
744 if (AliasMap.empty()) {
745 // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
746 // therefore the LiveRegs array.
747 AliasMap.resize(TRI->getNumRegs());
748 for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
749 for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true);
750 AI.isValid(); ++AI)
751 AliasMap[*AI].push_back(i);
752 }
753
754 MachineBasicBlock *Entry = &*MF->begin();
755 ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry);
756 SmallVector<MachineBasicBlock*, 16> Loops;
757 for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
758 MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
759 MachineBasicBlock *MBB = *MBBI;
760 enterBasicBlock(MBB);
761 if (SeenUnknownBackEdge)
762 Loops.push_back(MBB);
763 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
764 ++I)
765 visitInstr(I);
766 processUndefReads(MBB);
767 leaveBasicBlock(MBB);
768 }
769
770 // Visit all the loop blocks again in order to merge DomainValues from
771 // back-edges.
772 for (unsigned i = 0, e = Loops.size(); i != e; ++i) {
773 MachineBasicBlock *MBB = Loops[i];
774 enterBasicBlock(MBB);
775 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
776 ++I)
777 if (!I->isDebugValue())
778 processDefs(I, false);
779 processUndefReads(MBB);
780 leaveBasicBlock(MBB);
781 }
782
783 // Clear the LiveOuts vectors and collapse any remaining DomainValues.
784 for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
785 MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
786 LiveOutMap::const_iterator FI = LiveOuts.find(*MBBI);
787 if (FI == LiveOuts.end() || !FI->second)
788 continue;
789 for (unsigned i = 0, e = NumRegs; i != e; ++i)
790 if (FI->second[i].Value)
791 release(FI->second[i].Value);
792 delete[] FI->second;
793 }
794 LiveOuts.clear();
795 UndefReads.clear();
796 Avail.clear();
797 Allocator.DestroyAll();
798
799 return false;
800 }
801
802 FunctionPass *
createExecutionDependencyFixPass(const TargetRegisterClass * RC)803 llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) {
804 return new ExeDepsFix(RC);
805 }
806