1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The inline spiller modifies the machine function directly instead of
11 // inserting spills and restores in VirtRegMap.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "Spiller.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/TinyPtrVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/LiveRangeEdit.h"
22 #include "llvm/CodeGen/LiveStackAnalysis.h"
23 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/VirtRegMap.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "regalloc"
41 
42 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
43 STATISTIC(NumSnippets,        "Number of spilled snippets");
44 STATISTIC(NumSpills,          "Number of spills inserted");
45 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
46 STATISTIC(NumReloads,         "Number of reloads inserted");
47 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
48 STATISTIC(NumFolded,          "Number of folded stack accesses");
49 STATISTIC(NumFoldedLoads,     "Number of folded loads");
50 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
51 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
52 STATISTIC(NumHoists,          "Number of hoisted spills");
53 
54 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
55                                      cl::desc("Disable inline spill hoisting"));
56 
57 namespace {
58 class InlineSpiller : public Spiller {
59   MachineFunction &MF;
60   LiveIntervals &LIS;
61   LiveStacks &LSS;
62   AliasAnalysis *AA;
63   MachineDominatorTree &MDT;
64   MachineLoopInfo &Loops;
65   VirtRegMap &VRM;
66   MachineFrameInfo &MFI;
67   MachineRegisterInfo &MRI;
68   const TargetInstrInfo &TII;
69   const TargetRegisterInfo &TRI;
70   const MachineBlockFrequencyInfo &MBFI;
71 
72   // Variables that are valid during spill(), but used by multiple methods.
73   LiveRangeEdit *Edit;
74   LiveInterval *StackInt;
75   int StackSlot;
76   unsigned Original;
77 
78   // All registers to spill to StackSlot, including the main register.
79   SmallVector<unsigned, 8> RegsToSpill;
80 
81   // All COPY instructions to/from snippets.
82   // They are ignored since both operands refer to the same stack slot.
83   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
84 
85   // Values that failed to remat at some point.
86   SmallPtrSet<VNInfo*, 8> UsedValues;
87 
88 public:
89   // Information about a value that was defined by a copy from a sibling
90   // register.
91   struct SibValueInfo {
92     // True when all reaching defs were reloads: No spill is necessary.
93     bool AllDefsAreReloads;
94 
95     // True when value is defined by an original PHI not from splitting.
96     bool DefByOrigPHI;
97 
98     // True when the COPY defining this value killed its source.
99     bool KillsSource;
100 
101     // The preferred register to spill.
102     unsigned SpillReg;
103 
104     // The value of SpillReg that should be spilled.
105     VNInfo *SpillVNI;
106 
107     // The block where SpillVNI should be spilled. Currently, this must be the
108     // block containing SpillVNI->def.
109     MachineBasicBlock *SpillMBB;
110 
111     // A defining instruction that is not a sibling copy or a reload, or NULL.
112     // This can be used as a template for rematerialization.
113     MachineInstr *DefMI;
114 
115     // List of values that depend on this one.  These values are actually the
116     // same, but live range splitting has placed them in different registers,
117     // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
118     // copies of the current value and phi-kills.  Usually only phi-kills cause
119     // more than one dependent value.
120     TinyPtrVector<VNInfo*> Deps;
121 
SibValueInfo__anonf7bb34900111::InlineSpiller::SibValueInfo122     SibValueInfo(unsigned Reg, VNInfo *VNI)
123       : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
124         SpillReg(Reg), SpillVNI(VNI), SpillMBB(nullptr), DefMI(nullptr) {}
125 
126     // Returns true when a def has been found.
hasDef__anonf7bb34900111::InlineSpiller::SibValueInfo127     bool hasDef() const { return DefByOrigPHI || DefMI; }
128   };
129 
130 private:
131   // Values in RegsToSpill defined by sibling copies.
132   typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
133   SibValueMap SibValues;
134 
135   // Dead defs generated during spilling.
136   SmallVector<MachineInstr*, 8> DeadDefs;
137 
~InlineSpiller()138   ~InlineSpiller() override {}
139 
140 public:
InlineSpiller(MachineFunctionPass & pass,MachineFunction & mf,VirtRegMap & vrm)141   InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
142       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
143         LSS(pass.getAnalysis<LiveStacks>()),
144         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
145         MDT(pass.getAnalysis<MachineDominatorTree>()),
146         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
147         MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()),
148         TII(*mf.getSubtarget().getInstrInfo()),
149         TRI(*mf.getSubtarget().getRegisterInfo()),
150         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
151 
152   void spill(LiveRangeEdit &) override;
153 
154 private:
155   bool isSnippet(const LiveInterval &SnipLI);
156   void collectRegsToSpill();
157 
isRegToSpill(unsigned Reg)158   bool isRegToSpill(unsigned Reg) {
159     return std::find(RegsToSpill.begin(),
160                      RegsToSpill.end(), Reg) != RegsToSpill.end();
161   }
162 
163   bool isSibling(unsigned Reg);
164   MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
165   void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = nullptr);
166   void analyzeSiblingValues();
167 
168   bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
169   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
170 
171   void markValueUsed(LiveInterval*, VNInfo*);
172   bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
173   void reMaterializeAll();
174 
175   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
176   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
177                          MachineInstr *LoadMI = nullptr);
178   void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
179   void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
180 
181   void spillAroundUses(unsigned Reg);
182   void spillAll();
183 };
184 }
185 
186 namespace llvm {
187 
~Spiller()188 Spiller::~Spiller() { }
anchor()189 void Spiller::anchor() { }
190 
createInlineSpiller(MachineFunctionPass & pass,MachineFunction & mf,VirtRegMap & vrm)191 Spiller *createInlineSpiller(MachineFunctionPass &pass,
192                              MachineFunction &mf,
193                              VirtRegMap &vrm) {
194   return new InlineSpiller(pass, mf, vrm);
195 }
196 
197 }
198 
199 //===----------------------------------------------------------------------===//
200 //                                Snippets
201 //===----------------------------------------------------------------------===//
202 
203 // When spilling a virtual register, we also spill any snippets it is connected
204 // to. The snippets are small live ranges that only have a single real use,
205 // leftovers from live range splitting. Spilling them enables memory operand
206 // folding or tightens the live range around the single use.
207 //
208 // This minimizes register pressure and maximizes the store-to-load distance for
209 // spill slots which can be important in tight loops.
210 
211 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
212 /// otherwise return 0.
isFullCopyOf(const MachineInstr * MI,unsigned Reg)213 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
214   if (!MI->isFullCopy())
215     return 0;
216   if (MI->getOperand(0).getReg() == Reg)
217       return MI->getOperand(1).getReg();
218   if (MI->getOperand(1).getReg() == Reg)
219       return MI->getOperand(0).getReg();
220   return 0;
221 }
222 
223 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
224 /// It is assumed that SnipLI is a virtual register with the same original as
225 /// Edit->getReg().
isSnippet(const LiveInterval & SnipLI)226 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
227   unsigned Reg = Edit->getReg();
228 
229   // A snippet is a tiny live range with only a single instruction using it
230   // besides copies to/from Reg or spills/fills. We accept:
231   //
232   //   %snip = COPY %Reg / FILL fi#
233   //   %snip = USE %snip
234   //   %Reg = COPY %snip / SPILL %snip, fi#
235   //
236   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
237     return false;
238 
239   MachineInstr *UseMI = nullptr;
240 
241   // Check that all uses satisfy our criteria.
242   for (MachineRegisterInfo::reg_instr_nodbg_iterator
243        RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
244        E = MRI.reg_instr_nodbg_end(); RI != E; ) {
245     MachineInstr *MI = &*(RI++);
246 
247     // Allow copies to/from Reg.
248     if (isFullCopyOf(MI, Reg))
249       continue;
250 
251     // Allow stack slot loads.
252     int FI;
253     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
254       continue;
255 
256     // Allow stack slot stores.
257     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
258       continue;
259 
260     // Allow a single additional instruction.
261     if (UseMI && MI != UseMI)
262       return false;
263     UseMI = MI;
264   }
265   return true;
266 }
267 
268 /// collectRegsToSpill - Collect live range snippets that only have a single
269 /// real use.
collectRegsToSpill()270 void InlineSpiller::collectRegsToSpill() {
271   unsigned Reg = Edit->getReg();
272 
273   // Main register always spills.
274   RegsToSpill.assign(1, Reg);
275   SnippetCopies.clear();
276 
277   // Snippets all have the same original, so there can't be any for an original
278   // register.
279   if (Original == Reg)
280     return;
281 
282   for (MachineRegisterInfo::reg_instr_iterator
283        RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
284     MachineInstr *MI = &*(RI++);
285     unsigned SnipReg = isFullCopyOf(MI, Reg);
286     if (!isSibling(SnipReg))
287       continue;
288     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
289     if (!isSnippet(SnipLI))
290       continue;
291     SnippetCopies.insert(MI);
292     if (isRegToSpill(SnipReg))
293       continue;
294     RegsToSpill.push_back(SnipReg);
295     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
296     ++NumSnippets;
297   }
298 }
299 
300 
301 //===----------------------------------------------------------------------===//
302 //                            Sibling Values
303 //===----------------------------------------------------------------------===//
304 
305 // After live range splitting, some values to be spilled may be defined by
306 // copies from sibling registers. We trace the sibling copies back to the
307 // original value if it still exists. We need it for rematerialization.
308 //
309 // Even when the value can't be rematerialized, we still want to determine if
310 // the value has already been spilled, or we may want to hoist the spill from a
311 // loop.
312 
isSibling(unsigned Reg)313 bool InlineSpiller::isSibling(unsigned Reg) {
314   return TargetRegisterInfo::isVirtualRegister(Reg) &&
315            VRM.getOriginal(Reg) == Original;
316 }
317 
318 #ifndef NDEBUG
operator <<(raw_ostream & OS,const InlineSpiller::SibValueInfo & SVI)319 static raw_ostream &operator<<(raw_ostream &OS,
320                                const InlineSpiller::SibValueInfo &SVI) {
321   OS << "spill " << PrintReg(SVI.SpillReg) << ':'
322      << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
323   if (SVI.SpillMBB)
324     OS << " in BB#" << SVI.SpillMBB->getNumber();
325   if (SVI.AllDefsAreReloads)
326     OS << " all-reloads";
327   if (SVI.DefByOrigPHI)
328     OS << " orig-phi";
329   if (SVI.KillsSource)
330     OS << " kill";
331   OS << " deps[";
332   for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
333     OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
334   OS << " ]";
335   if (SVI.DefMI)
336     OS << " def: " << *SVI.DefMI;
337   else
338     OS << '\n';
339   return OS;
340 }
341 #endif
342 
343 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is
344 /// known.  Otherwise remember the dependency for later.
345 ///
346 /// @param SVIIter SibValues entry to propagate.
347 /// @param VNI Dependent value, or NULL to propagate to all saved dependents.
propagateSiblingValue(SibValueMap::iterator SVIIter,VNInfo * VNI)348 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter,
349                                           VNInfo *VNI) {
350   SibValueMap::value_type *SVI = &*SVIIter;
351 
352   // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
353   TinyPtrVector<VNInfo*> FirstDeps;
354   if (VNI) {
355     FirstDeps.push_back(VNI);
356     SVI->second.Deps.push_back(VNI);
357   }
358 
359   // Has the value been completely determined yet?  If not, defer propagation.
360   if (!SVI->second.hasDef())
361     return;
362 
363   // Work list of values to propagate.
364   SmallSetVector<SibValueMap::value_type *, 8> WorkList;
365   WorkList.insert(SVI);
366 
367   do {
368     SVI = WorkList.pop_back_val();
369     TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
370     VNI = nullptr;
371 
372     SibValueInfo &SV = SVI->second;
373     if (!SV.SpillMBB)
374       SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
375 
376     DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
377                  << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
378 
379     assert(SV.hasDef() && "Propagating undefined value");
380 
381     // Should this value be propagated as a preferred spill candidate?  We don't
382     // propagate values of registers that are about to spill.
383     bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
384     unsigned SpillDepth = ~0u;
385 
386     for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
387          DepE = Deps->end(); DepI != DepE; ++DepI) {
388       SibValueMap::iterator DepSVI = SibValues.find(*DepI);
389       assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
390       SibValueInfo &DepSV = DepSVI->second;
391       if (!DepSV.SpillMBB)
392         DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
393 
394       bool Changed = false;
395 
396       // Propagate defining instruction.
397       if (!DepSV.hasDef()) {
398         Changed = true;
399         DepSV.DefMI = SV.DefMI;
400         DepSV.DefByOrigPHI = SV.DefByOrigPHI;
401       }
402 
403       // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
404       // all predecessors.
405       if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
406         Changed = true;
407         DepSV.AllDefsAreReloads = false;
408       }
409 
410       // Propagate best spill value.
411       if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
412         if (SV.SpillMBB == DepSV.SpillMBB) {
413           // DepSV is in the same block.  Hoist when dominated.
414           if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
415             // This is an alternative def earlier in the same MBB.
416             // Hoist the spill as far as possible in SpillMBB. This can ease
417             // register pressure:
418             //
419             //   x = def
420             //   y = use x
421             //   s = copy x
422             //
423             // Hoisting the spill of s to immediately after the def removes the
424             // interference between x and y:
425             //
426             //   x = def
427             //   spill x
428             //   y = use x<kill>
429             //
430             // This hoist only helps when the DepSV copy kills its source.
431             Changed = true;
432             DepSV.SpillReg = SV.SpillReg;
433             DepSV.SpillVNI = SV.SpillVNI;
434             DepSV.SpillMBB = SV.SpillMBB;
435           }
436         } else {
437           // DepSV is in a different block.
438           if (SpillDepth == ~0u)
439             SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
440 
441           // Also hoist spills to blocks with smaller loop depth, but make sure
442           // that the new value dominates.  Non-phi dependents are always
443           // dominated, phis need checking.
444 
445           const BranchProbability MarginProb(4, 5); // 80%
446           // Hoist a spill to outer loop if there are multiple dependents (it
447           // can be beneficial if more than one dependents are hoisted) or
448           // if DepSV (the hoisting source) is hotter than SV (the hoisting
449           // destination) (we add a 80% margin to bias a little towards
450           // loop depth).
451           bool HoistCondition =
452             (MBFI.getBlockFreq(DepSV.SpillMBB) >=
453              (MBFI.getBlockFreq(SV.SpillMBB) * MarginProb)) ||
454             Deps->size() > 1;
455 
456           if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
457               HoistCondition &&
458               (!DepSVI->first->isPHIDef() ||
459                MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
460             Changed = true;
461             DepSV.SpillReg = SV.SpillReg;
462             DepSV.SpillVNI = SV.SpillVNI;
463             DepSV.SpillMBB = SV.SpillMBB;
464           }
465         }
466       }
467 
468       if (!Changed)
469         continue;
470 
471       // Something changed in DepSVI. Propagate to dependents.
472       WorkList.insert(&*DepSVI);
473 
474       DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
475             << DepSVI->first->def << " to:\t" << DepSV);
476     }
477   } while (!WorkList.empty());
478 }
479 
480 /// traceSiblingValue - Trace a value that is about to be spilled back to the
481 /// real defining instructions by looking through sibling copies. Always stay
482 /// within the range of OrigVNI so the registers are known to carry the same
483 /// value.
484 ///
485 /// Determine if the value is defined by all reloads, so spilling isn't
486 /// necessary - the value is already in the stack slot.
487 ///
488 /// Return a defining instruction that may be a candidate for rematerialization.
489 ///
traceSiblingValue(unsigned UseReg,VNInfo * UseVNI,VNInfo * OrigVNI)490 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
491                                                VNInfo *OrigVNI) {
492   // Check if a cached value already exists.
493   SibValueMap::iterator SVI;
494   bool Inserted;
495   std::tie(SVI, Inserted) =
496     SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
497   if (!Inserted) {
498     DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
499                  << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
500     return SVI->second.DefMI;
501   }
502 
503   DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
504                << UseVNI->id << '@' << UseVNI->def << '\n');
505 
506   // List of (Reg, VNI) that have been inserted into SibValues, but need to be
507   // processed.
508   SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
509   WorkList.push_back(std::make_pair(UseReg, UseVNI));
510 
511   LiveInterval &OrigLI = LIS.getInterval(Original);
512   do {
513     unsigned Reg;
514     VNInfo *VNI;
515     std::tie(Reg, VNI) = WorkList.pop_back_val();
516     DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
517                  << ":\t");
518 
519     // First check if this value has already been computed.
520     SVI = SibValues.find(VNI);
521     assert(SVI != SibValues.end() && "Missing SibValues entry");
522 
523     // Trace through PHI-defs created by live range splitting.
524     if (VNI->isPHIDef()) {
525       // Stop at original PHIs.  We don't know the value at the
526       // predecessors. Look up the VNInfo for the current definition
527       // in OrigLI, to properly determine whether or not this phi was
528       // added by splitting.
529       if (VNI->def == OrigLI.getVNInfoAt(VNI->def)->def) {
530         DEBUG(dbgs() << "orig phi value\n");
531         SVI->second.DefByOrigPHI = true;
532         SVI->second.AllDefsAreReloads = false;
533         propagateSiblingValue(SVI);
534         continue;
535       }
536 
537       // This is a PHI inserted by live range splitting.  We could trace the
538       // live-out value from predecessor blocks, but that search can be very
539       // expensive if there are many predecessors and many more PHIs as
540       // generated by tail-dup when it sees an indirectbr.  Instead, look at
541       // all the non-PHI defs that have the same value as OrigVNI.  They must
542       // jointly dominate VNI->def.  This is not optimal since VNI may actually
543       // be jointly dominated by a smaller subset of defs, so there is a change
544       // we will miss a AllDefsAreReloads optimization.
545 
546       // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
547       SmallVector<VNInfo*, 8> PHIs, NonPHIs;
548       LiveInterval &LI = LIS.getInterval(Reg);
549 
550       for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
551            VI != VE; ++VI) {
552         VNInfo *VNI2 = *VI;
553         if (VNI2->isUnused())
554           continue;
555         if (!OrigLI.containsOneValue() &&
556             OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
557           continue;
558         if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
559           PHIs.push_back(VNI2);
560         else
561           NonPHIs.push_back(VNI2);
562       }
563       DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
564                    << " phi-defs, and " << NonPHIs.size()
565                    << " non-phi/orig defs\n");
566 
567       // Create entries for all the PHIs.  Don't add them to the worklist, we
568       // are processing all of them in one go here.
569       for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
570         SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
571 
572       // Add every PHI as a dependent of all the non-PHIs.
573       for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
574         VNInfo *NonPHI = NonPHIs[i];
575         // Known value? Try an insertion.
576         std::tie(SVI, Inserted) =
577           SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
578         // Add all the PHIs as dependents of NonPHI.
579         SVI->second.Deps.insert(SVI->second.Deps.end(), PHIs.begin(),
580                                 PHIs.end());
581         // This is the first time we see NonPHI, add it to the worklist.
582         if (Inserted)
583           WorkList.push_back(std::make_pair(Reg, NonPHI));
584         else
585           // Propagate to all inserted PHIs, not just VNI.
586           propagateSiblingValue(SVI);
587       }
588 
589       // Next work list item.
590       continue;
591     }
592 
593     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
594     assert(MI && "Missing def");
595 
596     // Trace through sibling copies.
597     if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
598       if (isSibling(SrcReg)) {
599         LiveInterval &SrcLI = LIS.getInterval(SrcReg);
600         LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
601         assert(SrcQ.valueIn() && "Copy from non-existing value");
602         // Check if this COPY kills its source.
603         SVI->second.KillsSource = SrcQ.isKill();
604         VNInfo *SrcVNI = SrcQ.valueIn();
605         DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
606                      << SrcVNI->id << '@' << SrcVNI->def
607                      << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
608         // Known sibling source value? Try an insertion.
609         std::tie(SVI, Inserted) = SibValues.insert(
610             std::make_pair(SrcVNI, SibValueInfo(SrcReg, SrcVNI)));
611         // This is the first time we see Src, add it to the worklist.
612         if (Inserted)
613           WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
614         propagateSiblingValue(SVI, VNI);
615         // Next work list item.
616         continue;
617       }
618     }
619 
620     // Track reachable reloads.
621     SVI->second.DefMI = MI;
622     SVI->second.SpillMBB = MI->getParent();
623     int FI;
624     if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
625       DEBUG(dbgs() << "reload\n");
626       propagateSiblingValue(SVI);
627       // Next work list item.
628       continue;
629     }
630 
631     // Potential remat candidate.
632     DEBUG(dbgs() << "def " << *MI);
633     SVI->second.AllDefsAreReloads = false;
634     propagateSiblingValue(SVI);
635   } while (!WorkList.empty());
636 
637   // Look up the value we were looking for.  We already did this lookup at the
638   // top of the function, but SibValues may have been invalidated.
639   SVI = SibValues.find(UseVNI);
640   assert(SVI != SibValues.end() && "Didn't compute requested info");
641   DEBUG(dbgs() << "  traced to:\t" << SVI->second);
642   return SVI->second.DefMI;
643 }
644 
645 /// analyzeSiblingValues - Trace values defined by sibling copies back to
646 /// something that isn't a sibling copy.
647 ///
648 /// Keep track of values that may be rematerializable.
analyzeSiblingValues()649 void InlineSpiller::analyzeSiblingValues() {
650   SibValues.clear();
651 
652   // No siblings at all?
653   if (Edit->getReg() == Original)
654     return;
655 
656   LiveInterval &OrigLI = LIS.getInterval(Original);
657   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
658     unsigned Reg = RegsToSpill[i];
659     LiveInterval &LI = LIS.getInterval(Reg);
660     for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
661          VE = LI.vni_end(); VI != VE; ++VI) {
662       VNInfo *VNI = *VI;
663       if (VNI->isUnused())
664         continue;
665       MachineInstr *DefMI = nullptr;
666       if (!VNI->isPHIDef()) {
667        DefMI = LIS.getInstructionFromIndex(VNI->def);
668        assert(DefMI && "No defining instruction");
669       }
670       // Check possible sibling copies.
671       if (VNI->isPHIDef() || DefMI->isCopy()) {
672         VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
673         assert(OrigVNI && "Def outside original live range");
674         if (OrigVNI->def != VNI->def)
675           DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
676       }
677       if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
678         DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
679                      << VNI->def << " may remat from " << *DefMI);
680       }
681     }
682   }
683 }
684 
685 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
686 /// a spill at a better location.
hoistSpill(LiveInterval & SpillLI,MachineInstr * CopyMI)687 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
688   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
689   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
690   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
691   SibValueMap::iterator I = SibValues.find(VNI);
692   if (I == SibValues.end())
693     return false;
694 
695   const SibValueInfo &SVI = I->second;
696 
697   // Let the normal folding code deal with the boring case.
698   if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
699     return false;
700 
701   // SpillReg may have been deleted by remat and DCE.
702   if (!LIS.hasInterval(SVI.SpillReg)) {
703     DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
704     SibValues.erase(I);
705     return false;
706   }
707 
708   LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
709   if (!SibLI.containsValue(SVI.SpillVNI)) {
710     DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
711     SibValues.erase(I);
712     return false;
713   }
714 
715   // Conservatively extend the stack slot range to the range of the original
716   // value. We may be able to do better with stack slot coloring by being more
717   // careful here.
718   assert(StackInt && "No stack slot assigned yet.");
719   LiveInterval &OrigLI = LIS.getInterval(Original);
720   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
721   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
722   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
723                << *StackInt << '\n');
724 
725   // Already spilled everywhere.
726   if (SVI.AllDefsAreReloads) {
727     DEBUG(dbgs() << "\tno spill needed: " << SVI);
728     ++NumOmitReloadSpill;
729     return true;
730   }
731   // We are going to spill SVI.SpillVNI immediately after its def, so clear out
732   // any later spills of the same value.
733   eliminateRedundantSpills(SibLI, SVI.SpillVNI);
734 
735   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
736   MachineBasicBlock::iterator MII;
737   if (SVI.SpillVNI->isPHIDef())
738     MII = MBB->SkipPHIsAndLabels(MBB->begin());
739   else {
740     MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
741     assert(DefMI && "Defining instruction disappeared");
742     MII = DefMI;
743     ++MII;
744   }
745   // Insert spill without kill flag immediately after def.
746   TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
747                           MRI.getRegClass(SVI.SpillReg), &TRI);
748   --MII; // Point to store instruction.
749   LIS.InsertMachineInstrInMaps(MII);
750   DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
751 
752   ++NumSpills;
753   ++NumHoists;
754   return true;
755 }
756 
757 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
758 /// redundant spills of this value in SLI.reg and sibling copies.
eliminateRedundantSpills(LiveInterval & SLI,VNInfo * VNI)759 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
760   assert(VNI && "Missing value");
761   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
762   WorkList.push_back(std::make_pair(&SLI, VNI));
763   assert(StackInt && "No stack slot assigned yet.");
764 
765   do {
766     LiveInterval *LI;
767     std::tie(LI, VNI) = WorkList.pop_back_val();
768     unsigned Reg = LI->reg;
769     DEBUG(dbgs() << "Checking redundant spills for "
770                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
771 
772     // Regs to spill are taken care of.
773     if (isRegToSpill(Reg))
774       continue;
775 
776     // Add all of VNI's live range to StackInt.
777     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
778     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
779 
780     // Find all spills and copies of VNI.
781     for (MachineRegisterInfo::use_instr_nodbg_iterator
782          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
783          UI != E; ) {
784       MachineInstr *MI = &*(UI++);
785       if (!MI->isCopy() && !MI->mayStore())
786         continue;
787       SlotIndex Idx = LIS.getInstructionIndex(MI);
788       if (LI->getVNInfoAt(Idx) != VNI)
789         continue;
790 
791       // Follow sibling copies down the dominator tree.
792       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
793         if (isSibling(DstReg)) {
794            LiveInterval &DstLI = LIS.getInterval(DstReg);
795            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
796            assert(DstVNI && "Missing defined value");
797            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
798            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
799         }
800         continue;
801       }
802 
803       // Erase spills.
804       int FI;
805       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
806         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
807         // eliminateDeadDefs won't normally remove stores, so switch opcode.
808         MI->setDesc(TII.get(TargetOpcode::KILL));
809         DeadDefs.push_back(MI);
810         ++NumSpillsRemoved;
811         --NumSpills;
812       }
813     }
814   } while (!WorkList.empty());
815 }
816 
817 
818 //===----------------------------------------------------------------------===//
819 //                            Rematerialization
820 //===----------------------------------------------------------------------===//
821 
822 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
823 /// instruction cannot be eliminated. See through snippet copies
markValueUsed(LiveInterval * LI,VNInfo * VNI)824 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
825   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
826   WorkList.push_back(std::make_pair(LI, VNI));
827   do {
828     std::tie(LI, VNI) = WorkList.pop_back_val();
829     if (!UsedValues.insert(VNI).second)
830       continue;
831 
832     if (VNI->isPHIDef()) {
833       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
834       for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
835              PE = MBB->pred_end(); PI != PE; ++PI) {
836         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
837         if (PVNI)
838           WorkList.push_back(std::make_pair(LI, PVNI));
839       }
840       continue;
841     }
842 
843     // Follow snippet copies.
844     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
845     if (!SnippetCopies.count(MI))
846       continue;
847     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
848     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
849     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
850     assert(SnipVNI && "Snippet undefined before copy");
851     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
852   } while (!WorkList.empty());
853 }
854 
855 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
reMaterializeFor(LiveInterval & VirtReg,MachineBasicBlock::iterator MI)856 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
857                                      MachineBasicBlock::iterator MI) {
858 
859   // Analyze instruction
860   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
861   MIBundleOperands::VirtRegInfo RI =
862     MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
863 
864   if (!RI.Reads)
865     return false;
866 
867   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
868   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
869 
870   if (!ParentVNI) {
871     DEBUG(dbgs() << "\tadding <undef> flags: ");
872     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
873       MachineOperand &MO = MI->getOperand(i);
874       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
875         MO.setIsUndef();
876     }
877     DEBUG(dbgs() << UseIdx << '\t' << *MI);
878     return true;
879   }
880 
881   if (SnippetCopies.count(MI))
882     return false;
883 
884   // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
885   LiveRangeEdit::Remat RM(ParentVNI);
886   SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
887   if (SibI != SibValues.end())
888     RM.OrigMI = SibI->second.DefMI;
889   if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
890     markValueUsed(&VirtReg, ParentVNI);
891     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
892     return false;
893   }
894 
895   // If the instruction also writes VirtReg.reg, it had better not require the
896   // same register for uses and defs.
897   if (RI.Tied) {
898     markValueUsed(&VirtReg, ParentVNI);
899     DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
900     return false;
901   }
902 
903   // Before rematerializing into a register for a single instruction, try to
904   // fold a load into the instruction. That avoids allocating a new register.
905   if (RM.OrigMI->canFoldAsLoad() &&
906       foldMemoryOperand(Ops, RM.OrigMI)) {
907     Edit->markRematerialized(RM.ParentVNI);
908     ++NumFoldedLoads;
909     return true;
910   }
911 
912   // Alocate a new register for the remat.
913   unsigned NewVReg = Edit->createFrom(Original);
914 
915   // Finally we can rematerialize OrigMI before MI.
916   SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewVReg, RM,
917                                            TRI);
918   (void)DefIdx;
919   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
920                << *LIS.getInstructionFromIndex(DefIdx));
921 
922   // Replace operands
923   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
924     MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
925     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
926       MO.setReg(NewVReg);
927       MO.setIsKill();
928     }
929   }
930   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI << '\n');
931 
932   ++NumRemats;
933   return true;
934 }
935 
936 /// reMaterializeAll - Try to rematerialize as many uses as possible,
937 /// and trim the live ranges after.
reMaterializeAll()938 void InlineSpiller::reMaterializeAll() {
939   // analyzeSiblingValues has already tested all relevant defining instructions.
940   if (!Edit->anyRematerializable(AA))
941     return;
942 
943   UsedValues.clear();
944 
945   // Try to remat before all uses of snippets.
946   bool anyRemat = false;
947   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
948     unsigned Reg = RegsToSpill[i];
949     LiveInterval &LI = LIS.getInterval(Reg);
950     for (MachineRegisterInfo::reg_bundle_iterator
951            RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
952          RegI != E; ) {
953       MachineInstr *MI = &*(RegI++);
954 
955       // Debug values are not allowed to affect codegen.
956       if (MI->isDebugValue())
957         continue;
958 
959       anyRemat |= reMaterializeFor(LI, MI);
960     }
961   }
962   if (!anyRemat)
963     return;
964 
965   // Remove any values that were completely rematted.
966   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
967     unsigned Reg = RegsToSpill[i];
968     LiveInterval &LI = LIS.getInterval(Reg);
969     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
970          I != E; ++I) {
971       VNInfo *VNI = *I;
972       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
973         continue;
974       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
975       MI->addRegisterDead(Reg, &TRI);
976       if (!MI->allDefsAreDead())
977         continue;
978       DEBUG(dbgs() << "All defs dead: " << *MI);
979       DeadDefs.push_back(MI);
980     }
981   }
982 
983   // Eliminate dead code after remat. Note that some snippet copies may be
984   // deleted here.
985   if (DeadDefs.empty())
986     return;
987   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
988   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
989 
990   // Get rid of deleted and empty intervals.
991   unsigned ResultPos = 0;
992   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
993     unsigned Reg = RegsToSpill[i];
994     if (!LIS.hasInterval(Reg))
995       continue;
996 
997     LiveInterval &LI = LIS.getInterval(Reg);
998     if (LI.empty()) {
999       Edit->eraseVirtReg(Reg);
1000       continue;
1001     }
1002 
1003     RegsToSpill[ResultPos++] = Reg;
1004   }
1005   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
1006   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
1007 }
1008 
1009 
1010 //===----------------------------------------------------------------------===//
1011 //                                 Spilling
1012 //===----------------------------------------------------------------------===//
1013 
1014 /// If MI is a load or store of StackSlot, it can be removed.
coalesceStackAccess(MachineInstr * MI,unsigned Reg)1015 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
1016   int FI = 0;
1017   unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
1018   bool IsLoad = InstrReg;
1019   if (!IsLoad)
1020     InstrReg = TII.isStoreToStackSlot(MI, FI);
1021 
1022   // We have a stack access. Is it the right register and slot?
1023   if (InstrReg != Reg || FI != StackSlot)
1024     return false;
1025 
1026   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
1027   LIS.RemoveMachineInstrFromMaps(MI);
1028   MI->eraseFromParent();
1029 
1030   if (IsLoad) {
1031     ++NumReloadsRemoved;
1032     --NumReloads;
1033   } else {
1034     ++NumSpillsRemoved;
1035     --NumSpills;
1036   }
1037 
1038   return true;
1039 }
1040 
1041 #if !defined(NDEBUG)
1042 // Dump the range of instructions from B to E with their slot indexes.
dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,MachineBasicBlock::iterator E,LiveIntervals const & LIS,const char * const header,unsigned VReg=0)1043 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
1044                                                MachineBasicBlock::iterator E,
1045                                                LiveIntervals const &LIS,
1046                                                const char *const header,
1047                                                unsigned VReg =0) {
1048   char NextLine = '\n';
1049   char SlotIndent = '\t';
1050 
1051   if (std::next(B) == E) {
1052     NextLine = ' ';
1053     SlotIndent = ' ';
1054   }
1055 
1056   dbgs() << '\t' << header << ": " << NextLine;
1057 
1058   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
1059     SlotIndex Idx = LIS.getInstructionIndex(I).getRegSlot();
1060 
1061     // If a register was passed in and this instruction has it as a
1062     // destination that is marked as an early clobber, print the
1063     // early-clobber slot index.
1064     if (VReg) {
1065       MachineOperand *MO = I->findRegisterDefOperand(VReg);
1066       if (MO && MO->isEarlyClobber())
1067         Idx = Idx.getRegSlot(true);
1068     }
1069 
1070     dbgs() << SlotIndent << Idx << '\t' << *I;
1071   }
1072 }
1073 #endif
1074 
1075 /// foldMemoryOperand - Try folding stack slot references in Ops into their
1076 /// instructions.
1077 ///
1078 /// @param Ops    Operand indices from analyzeVirtReg().
1079 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
1080 /// @return       True on success.
1081 bool InlineSpiller::
foldMemoryOperand(ArrayRef<std::pair<MachineInstr *,unsigned>> Ops,MachineInstr * LoadMI)1082 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
1083                   MachineInstr *LoadMI) {
1084   if (Ops.empty())
1085     return false;
1086   // Don't attempt folding in bundles.
1087   MachineInstr *MI = Ops.front().first;
1088   if (Ops.back().first != MI || MI->isBundled())
1089     return false;
1090 
1091   bool WasCopy = MI->isCopy();
1092   unsigned ImpReg = 0;
1093 
1094   bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::STATEPOINT ||
1095                        MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1096                        MI->getOpcode() == TargetOpcode::STACKMAP);
1097 
1098   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
1099   // operands.
1100   SmallVector<unsigned, 8> FoldOps;
1101   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1102     unsigned Idx = Ops[i].second;
1103     assert(MI == Ops[i].first && "Instruction conflict during operand folding");
1104     MachineOperand &MO = MI->getOperand(Idx);
1105     if (MO.isImplicit()) {
1106       ImpReg = MO.getReg();
1107       continue;
1108     }
1109     // FIXME: Teach targets to deal with subregs.
1110     if (!SpillSubRegs && MO.getSubReg())
1111       return false;
1112     // We cannot fold a load instruction into a def.
1113     if (LoadMI && MO.isDef())
1114       return false;
1115     // Tied use operands should not be passed to foldMemoryOperand.
1116     if (!MI->isRegTiedToDefOperand(Idx))
1117       FoldOps.push_back(Idx);
1118   }
1119 
1120   MachineInstrSpan MIS(MI);
1121 
1122   MachineInstr *FoldMI =
1123                 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
1124                        : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
1125   if (!FoldMI)
1126     return false;
1127 
1128   // Remove LIS for any dead defs in the original MI not in FoldMI.
1129   for (MIBundleOperands MO(MI); MO.isValid(); ++MO) {
1130     if (!MO->isReg())
1131       continue;
1132     unsigned Reg = MO->getReg();
1133     if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
1134         MRI.isReserved(Reg)) {
1135       continue;
1136     }
1137     // Skip non-Defs, including undef uses and internal reads.
1138     if (MO->isUse())
1139       continue;
1140     MIBundleOperands::PhysRegInfo RI =
1141       MIBundleOperands(FoldMI).analyzePhysReg(Reg, &TRI);
1142     if (RI.FullyDefined)
1143       continue;
1144     // FoldMI does not define this physreg. Remove the LI segment.
1145     assert(MO->isDead() && "Cannot fold physreg def");
1146     SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1147     LIS.removePhysRegDefAt(Reg, Idx);
1148   }
1149 
1150   LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
1151   MI->eraseFromParent();
1152 
1153   // Insert any new instructions other than FoldMI into the LIS maps.
1154   assert(!MIS.empty() && "Unexpected empty span of instructions!");
1155   for (MachineBasicBlock::iterator MII = MIS.begin(), End = MIS.end();
1156        MII != End; ++MII)
1157     if (&*MII != FoldMI)
1158       LIS.InsertMachineInstrInMaps(&*MII);
1159 
1160   // TII.foldMemoryOperand may have left some implicit operands on the
1161   // instruction.  Strip them.
1162   if (ImpReg)
1163     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1164       MachineOperand &MO = FoldMI->getOperand(i - 1);
1165       if (!MO.isReg() || !MO.isImplicit())
1166         break;
1167       if (MO.getReg() == ImpReg)
1168         FoldMI->RemoveOperand(i - 1);
1169     }
1170 
1171   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
1172                                            "folded"));
1173 
1174   if (!WasCopy)
1175     ++NumFolded;
1176   else if (Ops.front().second == 0)
1177     ++NumSpills;
1178   else
1179     ++NumReloads;
1180   return true;
1181 }
1182 
insertReload(unsigned NewVReg,SlotIndex Idx,MachineBasicBlock::iterator MI)1183 void InlineSpiller::insertReload(unsigned NewVReg,
1184                                  SlotIndex Idx,
1185                                  MachineBasicBlock::iterator MI) {
1186   MachineBasicBlock &MBB = *MI->getParent();
1187 
1188   MachineInstrSpan MIS(MI);
1189   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1190                            MRI.getRegClass(NewVReg), &TRI);
1191 
1192   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1193 
1194   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
1195                                            NewVReg));
1196   ++NumReloads;
1197 }
1198 
1199 /// insertSpill - Insert a spill of NewVReg after MI.
insertSpill(unsigned NewVReg,bool isKill,MachineBasicBlock::iterator MI)1200 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
1201                                  MachineBasicBlock::iterator MI) {
1202   MachineBasicBlock &MBB = *MI->getParent();
1203 
1204   MachineInstrSpan MIS(MI);
1205   TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
1206                           MRI.getRegClass(NewVReg), &TRI);
1207 
1208   LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
1209 
1210   DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
1211                                            "spill"));
1212   ++NumSpills;
1213 }
1214 
1215 /// spillAroundUses - insert spill code around each use of Reg.
spillAroundUses(unsigned Reg)1216 void InlineSpiller::spillAroundUses(unsigned Reg) {
1217   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
1218   LiveInterval &OldLI = LIS.getInterval(Reg);
1219 
1220   // Iterate over instructions using Reg.
1221   for (MachineRegisterInfo::reg_bundle_iterator
1222        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
1223        RegI != E; ) {
1224     MachineInstr *MI = &*(RegI++);
1225 
1226     // Debug values are not allowed to affect codegen.
1227     if (MI->isDebugValue()) {
1228       // Modify DBG_VALUE now that the value is in a spill slot.
1229       bool IsIndirect = MI->isIndirectDebugValue();
1230       uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
1231       const MDNode *Var = MI->getDebugVariable();
1232       const MDNode *Expr = MI->getDebugExpression();
1233       DebugLoc DL = MI->getDebugLoc();
1234       DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
1235       MachineBasicBlock *MBB = MI->getParent();
1236       assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
1237              "Expected inlined-at fields to agree");
1238       BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
1239           .addFrameIndex(StackSlot)
1240           .addImm(Offset)
1241           .addMetadata(Var)
1242           .addMetadata(Expr);
1243       continue;
1244     }
1245 
1246     // Ignore copies to/from snippets. We'll delete them.
1247     if (SnippetCopies.count(MI))
1248       continue;
1249 
1250     // Stack slot accesses may coalesce away.
1251     if (coalesceStackAccess(MI, Reg))
1252       continue;
1253 
1254     // Analyze instruction.
1255     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1256     MIBundleOperands::VirtRegInfo RI =
1257       MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
1258 
1259     // Find the slot index where this instruction reads and writes OldLI.
1260     // This is usually the def slot, except for tied early clobbers.
1261     SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1262     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1263       if (SlotIndex::isSameInstr(Idx, VNI->def))
1264         Idx = VNI->def;
1265 
1266     // Check for a sibling copy.
1267     unsigned SibReg = isFullCopyOf(MI, Reg);
1268     if (SibReg && isSibling(SibReg)) {
1269       // This may actually be a copy between snippets.
1270       if (isRegToSpill(SibReg)) {
1271         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1272         SnippetCopies.insert(MI);
1273         continue;
1274       }
1275       if (RI.Writes) {
1276         // Hoist the spill of a sib-reg copy.
1277         if (hoistSpill(OldLI, MI)) {
1278           // This COPY is now dead, the value is already in the stack slot.
1279           MI->getOperand(0).setIsDead();
1280           DeadDefs.push_back(MI);
1281           continue;
1282         }
1283       } else {
1284         // This is a reload for a sib-reg copy. Drop spills downstream.
1285         LiveInterval &SibLI = LIS.getInterval(SibReg);
1286         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1287         // The COPY will fold to a reload below.
1288       }
1289     }
1290 
1291     // Attempt to fold memory ops.
1292     if (foldMemoryOperand(Ops))
1293       continue;
1294 
1295     // Create a new virtual register for spill/fill.
1296     // FIXME: Infer regclass from instruction alone.
1297     unsigned NewVReg = Edit->createFrom(Reg);
1298 
1299     if (RI.Reads)
1300       insertReload(NewVReg, Idx, MI);
1301 
1302     // Rewrite instruction operands.
1303     bool hasLiveDef = false;
1304     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1305       MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
1306       MO.setReg(NewVReg);
1307       if (MO.isUse()) {
1308         if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
1309           MO.setIsKill();
1310       } else {
1311         if (!MO.isDead())
1312           hasLiveDef = true;
1313       }
1314     }
1315     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1316 
1317     // FIXME: Use a second vreg if instruction has no tied ops.
1318     if (RI.Writes)
1319       if (hasLiveDef)
1320         insertSpill(NewVReg, true, MI);
1321   }
1322 }
1323 
1324 /// spillAll - Spill all registers remaining after rematerialization.
spillAll()1325 void InlineSpiller::spillAll() {
1326   // Update LiveStacks now that we are committed to spilling.
1327   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1328     StackSlot = VRM.assignVirt2StackSlot(Original);
1329     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1330     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1331   } else
1332     StackInt = &LSS.getInterval(StackSlot);
1333 
1334   if (Original != Edit->getReg())
1335     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1336 
1337   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1338   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1339     StackInt->MergeSegmentsInAsValue(LIS.getInterval(RegsToSpill[i]),
1340                                      StackInt->getValNumInfo(0));
1341   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1342 
1343   // Spill around uses of all RegsToSpill.
1344   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1345     spillAroundUses(RegsToSpill[i]);
1346 
1347   // Hoisted spills may cause dead code.
1348   if (!DeadDefs.empty()) {
1349     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1350     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1351   }
1352 
1353   // Finally delete the SnippetCopies.
1354   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
1355     for (MachineRegisterInfo::reg_instr_iterator
1356          RI = MRI.reg_instr_begin(RegsToSpill[i]), E = MRI.reg_instr_end();
1357          RI != E; ) {
1358       MachineInstr *MI = &*(RI++);
1359       assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
1360       // FIXME: Do this with a LiveRangeEdit callback.
1361       LIS.RemoveMachineInstrFromMaps(MI);
1362       MI->eraseFromParent();
1363     }
1364   }
1365 
1366   // Delete all spilled registers.
1367   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1368     Edit->eraseVirtReg(RegsToSpill[i]);
1369 }
1370 
spill(LiveRangeEdit & edit)1371 void InlineSpiller::spill(LiveRangeEdit &edit) {
1372   ++NumSpilledRanges;
1373   Edit = &edit;
1374   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1375          && "Trying to spill a stack slot.");
1376   // Share a stack slot among all descendants of Original.
1377   Original = VRM.getOriginal(edit.getReg());
1378   StackSlot = VRM.getStackSlot(Original);
1379   StackInt = nullptr;
1380 
1381   DEBUG(dbgs() << "Inline spilling "
1382                << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1383                << ':' << edit.getParent()
1384                << "\nFrom original " << PrintReg(Original) << '\n');
1385   assert(edit.getParent().isSpillable() &&
1386          "Attempting to spill already spilled value.");
1387   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1388 
1389   collectRegsToSpill();
1390   analyzeSiblingValues();
1391   reMaterializeAll();
1392 
1393   // Remat may handle everything.
1394   if (!RegsToSpill.empty())
1395     spillAll();
1396 
1397   Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1398 }
1399