1 //===-- StackColoring.cpp -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the stack-coloring optimization that looks for
11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12 // which represent the possible lifetime of stack slots. It attempts to
13 // merge disjoint stack slots and reduce the used stack space.
14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 //
16 // TODO: In the future we plan to improve stack coloring in the following ways:
17 // 1. Allow merging multiple small slots into a single larger slot at different
18 //    offsets.
19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20 //    spill slots.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SparseSet.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/LiveInterval.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineModuleInfo.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/PseudoSourceValue.h"
44 #include "llvm/CodeGen/SlotIndexes.h"
45 #include "llvm/CodeGen/StackProtector.h"
46 #include "llvm/IR/DebugInfo.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetInstrInfo.h"
55 #include "llvm/Target/TargetRegisterInfo.h"
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "stackcoloring"
60 
61 static cl::opt<bool>
62 DisableColoring("no-stack-coloring",
63         cl::init(false), cl::Hidden,
64         cl::desc("Disable stack coloring"));
65 
66 /// The user may write code that uses allocas outside of the declared lifetime
67 /// zone. This can happen when the user returns a reference to a local
68 /// data-structure. We can detect these cases and decide not to optimize the
69 /// code. If this flag is enabled, we try to save the user.
70 static cl::opt<bool>
71 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
72                           cl::init(false), cl::Hidden,
73                           cl::desc("Do not optimize lifetime zones that "
74                                    "are broken"));
75 
76 STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
77 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
78 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
79 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
80 
81 //===----------------------------------------------------------------------===//
82 //                           StackColoring Pass
83 //===----------------------------------------------------------------------===//
84 
85 namespace {
86 /// StackColoring - A machine pass for merging disjoint stack allocations,
87 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
88 class StackColoring : public MachineFunctionPass {
89   MachineFrameInfo *MFI;
90   MachineFunction *MF;
91 
92   /// A class representing liveness information for a single basic block.
93   /// Each bit in the BitVector represents the liveness property
94   /// for a different stack slot.
95   struct BlockLifetimeInfo {
96     /// Which slots BEGINs in each basic block.
97     BitVector Begin;
98     /// Which slots ENDs in each basic block.
99     BitVector End;
100     /// Which slots are marked as LIVE_IN, coming into each basic block.
101     BitVector LiveIn;
102     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
103     BitVector LiveOut;
104   };
105 
106   /// Maps active slots (per bit) for each basic block.
107   typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
108   LivenessMap BlockLiveness;
109 
110   /// Maps serial numbers to basic blocks.
111   DenseMap<const MachineBasicBlock*, int> BasicBlocks;
112   /// Maps basic blocks to a serial number.
113   SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
114 
115   /// Maps liveness intervals for each slot.
116   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
117   /// VNInfo is used for the construction of LiveIntervals.
118   VNInfo::Allocator VNInfoAllocator;
119   /// SlotIndex analysis object.
120   SlotIndexes *Indexes;
121   /// The stack protector object.
122   StackProtector *SP;
123 
124   /// The list of lifetime markers found. These markers are to be removed
125   /// once the coloring is done.
126   SmallVector<MachineInstr*, 8> Markers;
127 
128 public:
129   static char ID;
StackColoring()130   StackColoring() : MachineFunctionPass(ID) {
131     initializeStackColoringPass(*PassRegistry::getPassRegistry());
132   }
133   void getAnalysisUsage(AnalysisUsage &AU) const override;
134   bool runOnMachineFunction(MachineFunction &MF) override;
135 
136 private:
137   /// Debug.
138   void dump() const;
139 
140   /// Removes all of the lifetime marker instructions from the function.
141   /// \returns true if any markers were removed.
142   bool removeAllMarkers();
143 
144   /// Scan the machine function and find all of the lifetime markers.
145   /// Record the findings in the BEGIN and END vectors.
146   /// \returns the number of markers found.
147   unsigned collectMarkers(unsigned NumSlot);
148 
149   /// Perform the dataflow calculation and calculate the lifetime for each of
150   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
151   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
152   /// in and out blocks.
153   void calculateLocalLiveness();
154 
155   /// Construct the LiveIntervals for the slots.
156   void calculateLiveIntervals(unsigned NumSlots);
157 
158   /// Go over the machine function and change instructions which use stack
159   /// slots to use the joint slots.
160   void remapInstructions(DenseMap<int, int> &SlotRemap);
161 
162   /// The input program may contain instructions which are not inside lifetime
163   /// markers. This can happen due to a bug in the compiler or due to a bug in
164   /// user code (for example, returning a reference to a local variable).
165   /// This procedure checks all of the instructions in the function and
166   /// invalidates lifetime ranges which do not contain all of the instructions
167   /// which access that frame slot.
168   void removeInvalidSlotRanges();
169 
170   /// Map entries which point to other entries to their destination.
171   ///   A->B->C becomes A->C.
172    void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
173 };
174 } // end anonymous namespace
175 
176 char StackColoring::ID = 0;
177 char &llvm::StackColoringID = StackColoring::ID;
178 
179 INITIALIZE_PASS_BEGIN(StackColoring,
180                    "stack-coloring", "Merge disjoint stack slots", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)181 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
182 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
183 INITIALIZE_PASS_DEPENDENCY(StackProtector)
184 INITIALIZE_PASS_END(StackColoring,
185                    "stack-coloring", "Merge disjoint stack slots", false, false)
186 
187 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
188   AU.addRequired<MachineDominatorTree>();
189   AU.addPreserved<MachineDominatorTree>();
190   AU.addRequired<SlotIndexes>();
191   AU.addRequired<StackProtector>();
192   MachineFunctionPass::getAnalysisUsage(AU);
193 }
194 
dump() const195 void StackColoring::dump() const {
196   for (MachineBasicBlock *MBB : depth_first(MF)) {
197     DEBUG(dbgs() << "Inspecting block #" << BasicBlocks.lookup(MBB) << " ["
198                  << MBB->getName() << "]\n");
199 
200     LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
201     assert(BI != BlockLiveness.end() && "Block not found");
202     const BlockLifetimeInfo &BlockInfo = BI->second;
203 
204     DEBUG(dbgs()<<"BEGIN  : {");
205     for (unsigned i=0; i < BlockInfo.Begin.size(); ++i)
206       DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" ");
207     DEBUG(dbgs()<<"}\n");
208 
209     DEBUG(dbgs()<<"END    : {");
210     for (unsigned i=0; i < BlockInfo.End.size(); ++i)
211       DEBUG(dbgs()<<BlockInfo.End.test(i)<<" ");
212 
213     DEBUG(dbgs()<<"}\n");
214 
215     DEBUG(dbgs()<<"LIVE_IN: {");
216     for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i)
217       DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" ");
218 
219     DEBUG(dbgs()<<"}\n");
220     DEBUG(dbgs()<<"LIVEOUT: {");
221     for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i)
222       DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" ");
223     DEBUG(dbgs()<<"}\n");
224   }
225 }
226 
collectMarkers(unsigned NumSlot)227 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
228   unsigned MarkersFound = 0;
229   // Scan the function to find all lifetime markers.
230   // NOTE: We use a reverse-post-order iteration to ensure that we obtain a
231   // deterministic numbering, and because we'll need a post-order iteration
232   // later for solving the liveness dataflow problem.
233   for (MachineBasicBlock *MBB : depth_first(MF)) {
234 
235     // Assign a serial number to this basic block.
236     BasicBlocks[MBB] = BasicBlockNumbering.size();
237     BasicBlockNumbering.push_back(MBB);
238 
239     // Keep a reference to avoid repeated lookups.
240     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
241 
242     BlockInfo.Begin.resize(NumSlot);
243     BlockInfo.End.resize(NumSlot);
244 
245     for (MachineInstr &MI : *MBB) {
246       if (MI.getOpcode() != TargetOpcode::LIFETIME_START &&
247           MI.getOpcode() != TargetOpcode::LIFETIME_END)
248         continue;
249 
250       Markers.push_back(&MI);
251 
252       bool IsStart = MI.getOpcode() == TargetOpcode::LIFETIME_START;
253       const MachineOperand &MO = MI.getOperand(0);
254       unsigned Slot = MO.getIndex();
255 
256       MarkersFound++;
257 
258       const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
259       if (Allocation) {
260         DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
261               " with allocation: "<< Allocation->getName()<<"\n");
262       }
263 
264       if (IsStart) {
265         BlockInfo.Begin.set(Slot);
266       } else {
267         if (BlockInfo.Begin.test(Slot)) {
268           // Allocas that start and end within a single block are handled
269           // specially when computing the LiveIntervals to avoid pessimizing
270           // the liveness propagation.
271           BlockInfo.Begin.reset(Slot);
272         } else {
273           BlockInfo.End.set(Slot);
274         }
275       }
276     }
277   }
278 
279   // Update statistics.
280   NumMarkerSeen += MarkersFound;
281   return MarkersFound;
282 }
283 
calculateLocalLiveness()284 void StackColoring::calculateLocalLiveness() {
285   // Perform a standard reverse dataflow computation to solve for
286   // global liveness.  The BEGIN set here is equivalent to KILL in the standard
287   // formulation, and END is equivalent to GEN.  The result of this computation
288   // is a map from blocks to bitvectors where the bitvectors represent which
289   // allocas are live in/out of that block.
290   SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
291                                                  BasicBlockNumbering.end());
292   unsigned NumSSMIters = 0;
293   bool changed = true;
294   while (changed) {
295     changed = false;
296     ++NumSSMIters;
297 
298     SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet;
299 
300     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
301       if (!BBSet.count(BB)) continue;
302 
303       // Use an iterator to avoid repeated lookups.
304       LivenessMap::iterator BI = BlockLiveness.find(BB);
305       assert(BI != BlockLiveness.end() && "Block not found");
306       BlockLifetimeInfo &BlockInfo = BI->second;
307 
308       BitVector LocalLiveIn;
309       BitVector LocalLiveOut;
310 
311       // Forward propagation from begins to ends.
312       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
313            PE = BB->pred_end(); PI != PE; ++PI) {
314         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
315         assert(I != BlockLiveness.end() && "Predecessor not found");
316         LocalLiveIn |= I->second.LiveOut;
317       }
318       LocalLiveIn |= BlockInfo.End;
319       LocalLiveIn.reset(BlockInfo.Begin);
320 
321       // Reverse propagation from ends to begins.
322       for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
323            SE = BB->succ_end(); SI != SE; ++SI) {
324         LivenessMap::const_iterator I = BlockLiveness.find(*SI);
325         assert(I != BlockLiveness.end() && "Successor not found");
326         LocalLiveOut |= I->second.LiveIn;
327       }
328       LocalLiveOut |= BlockInfo.Begin;
329       LocalLiveOut.reset(BlockInfo.End);
330 
331       LocalLiveIn |= LocalLiveOut;
332       LocalLiveOut |= LocalLiveIn;
333 
334       // After adopting the live bits, we need to turn-off the bits which
335       // are de-activated in this block.
336       LocalLiveOut.reset(BlockInfo.End);
337       LocalLiveIn.reset(BlockInfo.Begin);
338 
339       // If we have both BEGIN and END markers in the same basic block then
340       // we know that the BEGIN marker comes after the END, because we already
341       // handle the case where the BEGIN comes before the END when collecting
342       // the markers (and building the BEGIN/END vectore).
343       // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
344       // BEGIN and END because it means that the value lives before and after
345       // this basic block.
346       BitVector LocalEndBegin = BlockInfo.End;
347       LocalEndBegin &= BlockInfo.Begin;
348       LocalLiveIn |= LocalEndBegin;
349       LocalLiveOut |= LocalEndBegin;
350 
351       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
352         changed = true;
353         BlockInfo.LiveIn |= LocalLiveIn;
354 
355         NextBBSet.insert(BB->pred_begin(), BB->pred_end());
356       }
357 
358       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
359         changed = true;
360         BlockInfo.LiveOut |= LocalLiveOut;
361 
362         NextBBSet.insert(BB->succ_begin(), BB->succ_end());
363       }
364     }
365 
366     BBSet = std::move(NextBBSet);
367   }// while changed.
368 }
369 
calculateLiveIntervals(unsigned NumSlots)370 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
371   SmallVector<SlotIndex, 16> Starts;
372   SmallVector<SlotIndex, 16> Finishes;
373 
374   // For each block, find which slots are active within this block
375   // and update the live intervals.
376   for (const MachineBasicBlock &MBB : *MF) {
377     Starts.clear();
378     Starts.resize(NumSlots);
379     Finishes.clear();
380     Finishes.resize(NumSlots);
381 
382     // Create the interval for the basic blocks with lifetime markers in them.
383     for (const MachineInstr *MI : Markers) {
384       if (MI->getParent() != &MBB)
385         continue;
386 
387       assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
388               MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
389              "Invalid Lifetime marker");
390 
391       bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
392       const MachineOperand &Mo = MI->getOperand(0);
393       int Slot = Mo.getIndex();
394       assert(Slot >= 0 && "Invalid slot");
395 
396       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
397 
398       if (IsStart) {
399         if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
400           Starts[Slot] = ThisIndex;
401       } else {
402         if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
403           Finishes[Slot] = ThisIndex;
404       }
405     }
406 
407     // Create the interval of the blocks that we previously found to be 'alive'.
408     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
409     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
410          pos = MBBLiveness.LiveIn.find_next(pos)) {
411       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
412     }
413     for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
414          pos = MBBLiveness.LiveOut.find_next(pos)) {
415       Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
416     }
417 
418     for (unsigned i = 0; i < NumSlots; ++i) {
419       assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
420       if (!Starts[i].isValid())
421         continue;
422 
423       assert(Starts[i] && Finishes[i] && "Invalid interval");
424       VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
425       SlotIndex S = Starts[i];
426       SlotIndex F = Finishes[i];
427       if (S < F) {
428         // We have a single consecutive region.
429         Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
430       } else {
431         // We have two non-consecutive regions. This happens when
432         // LIFETIME_START appears after the LIFETIME_END marker.
433         SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
434         SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
435         Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
436         Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
437       }
438     }
439   }
440 }
441 
removeAllMarkers()442 bool StackColoring::removeAllMarkers() {
443   unsigned Count = 0;
444   for (MachineInstr *MI : Markers) {
445     MI->eraseFromParent();
446     Count++;
447   }
448   Markers.clear();
449 
450   DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
451   return Count;
452 }
453 
remapInstructions(DenseMap<int,int> & SlotRemap)454 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
455   unsigned FixedInstr = 0;
456   unsigned FixedMemOp = 0;
457   unsigned FixedDbg = 0;
458   MachineModuleInfo *MMI = &MF->getMMI();
459 
460   // Remap debug information that refers to stack slots.
461   for (auto &VI : MMI->getVariableDbgInfo()) {
462     if (!VI.Var)
463       continue;
464     if (SlotRemap.count(VI.Slot)) {
465       DEBUG(dbgs() << "Remapping debug info for ["
466                    << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
467       VI.Slot = SlotRemap[VI.Slot];
468       FixedDbg++;
469     }
470   }
471 
472   // Keep a list of *allocas* which need to be remapped.
473   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
474   for (const std::pair<int, int> &SI : SlotRemap) {
475     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
476     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
477     assert(To && From && "Invalid allocation object");
478     Allocas[From] = To;
479 
480     // AA might be used later for instruction scheduling, and we need it to be
481     // able to deduce the correct aliasing releationships between pointers
482     // derived from the alloca being remapped and the target of that remapping.
483     // The only safe way, without directly informing AA about the remapping
484     // somehow, is to directly update the IR to reflect the change being made
485     // here.
486     Instruction *Inst = const_cast<AllocaInst *>(To);
487     if (From->getType() != To->getType()) {
488       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
489       Cast->insertAfter(Inst);
490       Inst = Cast;
491     }
492 
493     // Allow the stack protector to adjust its value map to account for the
494     // upcoming replacement.
495     SP->adjustForColoring(From, To);
496 
497     // Note that this will not replace uses in MMOs (which we'll update below),
498     // or anywhere else (which is why we won't delete the original
499     // instruction).
500     const_cast<AllocaInst *>(From)->replaceAllUsesWith(Inst);
501   }
502 
503   // Remap all instructions to the new stack slots.
504   for (MachineBasicBlock &BB : *MF)
505     for (MachineInstr &I : BB) {
506       // Skip lifetime markers. We'll remove them soon.
507       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
508           I.getOpcode() == TargetOpcode::LIFETIME_END)
509         continue;
510 
511       // Update the MachineMemOperand to use the new alloca.
512       for (MachineMemOperand *MMO : I.memoperands()) {
513         // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
514         // we'll also need to update the TBAA nodes in MMOs with values
515         // derived from the merged allocas. When doing this, we'll need to use
516         // the same variant of GetUnderlyingObjects that is used by the
517         // instruction scheduler (that can look through ptrtoint/inttoptr
518         // pairs).
519 
520         // We've replaced IR-level uses of the remapped allocas, so we only
521         // need to replace direct uses here.
522         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
523         if (!AI)
524           continue;
525 
526         if (!Allocas.count(AI))
527           continue;
528 
529         MMO->setValue(Allocas[AI]);
530         FixedMemOp++;
531       }
532 
533       // Update all of the machine instruction operands.
534       for (MachineOperand &MO : I.operands()) {
535         if (!MO.isFI())
536           continue;
537         int FromSlot = MO.getIndex();
538 
539         // Don't touch arguments.
540         if (FromSlot<0)
541           continue;
542 
543         // Only look at mapped slots.
544         if (!SlotRemap.count(FromSlot))
545           continue;
546 
547         // In a debug build, check that the instruction that we are modifying is
548         // inside the expected live range. If the instruction is not inside
549         // the calculated range then it means that the alloca usage moved
550         // outside of the lifetime markers, or that the user has a bug.
551         // NOTE: Alloca address calculations which happen outside the lifetime
552         // zone are are okay, despite the fact that we don't have a good way
553         // for validating all of the usages of the calculation.
554 #ifndef NDEBUG
555         bool TouchesMemory = I.mayLoad() || I.mayStore();
556         // If we *don't* protect the user from escaped allocas, don't bother
557         // validating the instructions.
558         if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
559           SlotIndex Index = Indexes->getInstructionIndex(&I);
560           const LiveInterval *Interval = &*Intervals[FromSlot];
561           assert(Interval->find(Index) != Interval->end() &&
562                  "Found instruction usage outside of live range.");
563         }
564 #endif
565 
566         // Fix the machine instructions.
567         int ToSlot = SlotRemap[FromSlot];
568         MO.setIndex(ToSlot);
569         FixedInstr++;
570       }
571     }
572 
573   DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
574   DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
575   DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
576 }
577 
removeInvalidSlotRanges()578 void StackColoring::removeInvalidSlotRanges() {
579   for (MachineBasicBlock &BB : *MF)
580     for (MachineInstr &I : BB) {
581       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
582           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
583         continue;
584 
585       // Some intervals are suspicious! In some cases we find address
586       // calculations outside of the lifetime zone, but not actual memory
587       // read or write. Memory accesses outside of the lifetime zone are a clear
588       // violation, but address calculations are okay. This can happen when
589       // GEPs are hoisted outside of the lifetime zone.
590       // So, in here we only check instructions which can read or write memory.
591       if (!I.mayLoad() && !I.mayStore())
592         continue;
593 
594       // Check all of the machine operands.
595       for (const MachineOperand &MO : I.operands()) {
596         if (!MO.isFI())
597           continue;
598 
599         int Slot = MO.getIndex();
600 
601         if (Slot<0)
602           continue;
603 
604         if (Intervals[Slot]->empty())
605           continue;
606 
607         // Check that the used slot is inside the calculated lifetime range.
608         // If it is not, warn about it and invalidate the range.
609         LiveInterval *Interval = &*Intervals[Slot];
610         SlotIndex Index = Indexes->getInstructionIndex(&I);
611         if (Interval->find(Index) == Interval->end()) {
612           Interval->clear();
613           DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
614           EscapedAllocas++;
615         }
616       }
617     }
618 }
619 
expungeSlotMap(DenseMap<int,int> & SlotRemap,unsigned NumSlots)620 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
621                                    unsigned NumSlots) {
622   // Expunge slot remap map.
623   for (unsigned i=0; i < NumSlots; ++i) {
624     // If we are remapping i
625     if (SlotRemap.count(i)) {
626       int Target = SlotRemap[i];
627       // As long as our target is mapped to something else, follow it.
628       while (SlotRemap.count(Target)) {
629         Target = SlotRemap[Target];
630         SlotRemap[i] = Target;
631       }
632     }
633   }
634 }
635 
runOnMachineFunction(MachineFunction & Func)636 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
637   if (skipOptnoneFunction(*Func.getFunction()))
638     return false;
639 
640   DEBUG(dbgs() << "********** Stack Coloring **********\n"
641                << "********** Function: "
642                << ((const Value*)Func.getFunction())->getName() << '\n');
643   MF = &Func;
644   MFI = MF->getFrameInfo();
645   Indexes = &getAnalysis<SlotIndexes>();
646   SP = &getAnalysis<StackProtector>();
647   BlockLiveness.clear();
648   BasicBlocks.clear();
649   BasicBlockNumbering.clear();
650   Markers.clear();
651   Intervals.clear();
652   VNInfoAllocator.Reset();
653 
654   unsigned NumSlots = MFI->getObjectIndexEnd();
655 
656   // If there are no stack slots then there are no markers to remove.
657   if (!NumSlots)
658     return false;
659 
660   SmallVector<int, 8> SortedSlots;
661 
662   SortedSlots.reserve(NumSlots);
663   Intervals.reserve(NumSlots);
664 
665   unsigned NumMarkers = collectMarkers(NumSlots);
666 
667   unsigned TotalSize = 0;
668   DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
669   DEBUG(dbgs()<<"Slot structure:\n");
670 
671   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
672     DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
673     TotalSize += MFI->getObjectSize(i);
674   }
675 
676   DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
677 
678   // Don't continue because there are not enough lifetime markers, or the
679   // stack is too small, or we are told not to optimize the slots.
680   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
681     DEBUG(dbgs()<<"Will not try to merge slots.\n");
682     return removeAllMarkers();
683   }
684 
685   for (unsigned i=0; i < NumSlots; ++i) {
686     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
687     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
688     Intervals.push_back(std::move(LI));
689     SortedSlots.push_back(i);
690   }
691 
692   // Calculate the liveness of each block.
693   calculateLocalLiveness();
694 
695   // Propagate the liveness information.
696   calculateLiveIntervals(NumSlots);
697 
698   // Search for allocas which are used outside of the declared lifetime
699   // markers.
700   if (ProtectFromEscapedAllocas)
701     removeInvalidSlotRanges();
702 
703   // Maps old slots to new slots.
704   DenseMap<int, int> SlotRemap;
705   unsigned RemovedSlots = 0;
706   unsigned ReducedSize = 0;
707 
708   // Do not bother looking at empty intervals.
709   for (unsigned I = 0; I < NumSlots; ++I) {
710     if (Intervals[SortedSlots[I]]->empty())
711       SortedSlots[I] = -1;
712   }
713 
714   // This is a simple greedy algorithm for merging allocas. First, sort the
715   // slots, placing the largest slots first. Next, perform an n^2 scan and look
716   // for disjoint slots. When you find disjoint slots, merge the samller one
717   // into the bigger one and update the live interval. Remove the small alloca
718   // and continue.
719 
720   // Sort the slots according to their size. Place unused slots at the end.
721   // Use stable sort to guarantee deterministic code generation.
722   std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
723                    [this](int LHS, int RHS) {
724     // We use -1 to denote a uninteresting slot. Place these slots at the end.
725     if (LHS == -1) return false;
726     if (RHS == -1) return true;
727     // Sort according to size.
728     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
729   });
730 
731   bool Changed = true;
732   while (Changed) {
733     Changed = false;
734     for (unsigned I = 0; I < NumSlots; ++I) {
735       if (SortedSlots[I] == -1)
736         continue;
737 
738       for (unsigned J=I+1; J < NumSlots; ++J) {
739         if (SortedSlots[J] == -1)
740           continue;
741 
742         int FirstSlot = SortedSlots[I];
743         int SecondSlot = SortedSlots[J];
744         LiveInterval *First = &*Intervals[FirstSlot];
745         LiveInterval *Second = &*Intervals[SecondSlot];
746         assert (!First->empty() && !Second->empty() && "Found an empty range");
747 
748         // Merge disjoint slots.
749         if (!First->overlaps(*Second)) {
750           Changed = true;
751           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
752           SlotRemap[SecondSlot] = FirstSlot;
753           SortedSlots[J] = -1;
754           DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
755                 SecondSlot<<" together.\n");
756           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
757                                            MFI->getObjectAlignment(SecondSlot));
758 
759           assert(MFI->getObjectSize(FirstSlot) >=
760                  MFI->getObjectSize(SecondSlot) &&
761                  "Merging a small object into a larger one");
762 
763           RemovedSlots+=1;
764           ReducedSize += MFI->getObjectSize(SecondSlot);
765           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
766           MFI->RemoveStackObject(SecondSlot);
767         }
768       }
769     }
770   }// While changed.
771 
772   // Record statistics.
773   StackSpaceSaved += ReducedSize;
774   StackSlotMerged += RemovedSlots;
775   DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
776         ReducedSize<<" bytes\n");
777 
778   // Scan the entire function and update all machine operands that use frame
779   // indices to use the remapped frame index.
780   expungeSlotMap(SlotRemap, NumSlots);
781   remapInstructions(SlotRemap);
782 
783   return removeAllMarkers();
784 }
785