1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators.  Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed.  Forward dominators are
13 // needed to support the Verifier pass.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/GenericDomTreeConstruction.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 using namespace llvm;
31 
32 // Always verify dominfo if expensive checking is enabled.
33 #ifdef XDEBUG
34 static bool VerifyDomInfo = true;
35 #else
36 static bool VerifyDomInfo = false;
37 #endif
38 static cl::opt<bool,true>
39 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
40                cl::desc("Verify dominator info (time consuming)"));
41 
isSingleEdge() const42 bool BasicBlockEdge::isSingleEdge() const {
43   const TerminatorInst *TI = Start->getTerminator();
44   unsigned NumEdgesToEnd = 0;
45   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
46     if (TI->getSuccessor(i) == End)
47       ++NumEdgesToEnd;
48     if (NumEdgesToEnd >= 2)
49       return false;
50   }
51   assert(NumEdgesToEnd == 1);
52   return true;
53 }
54 
55 //===----------------------------------------------------------------------===//
56 //  DominatorTree Implementation
57 //===----------------------------------------------------------------------===//
58 //
59 // Provide public access to DominatorTree information.  Implementation details
60 // can be found in Dominators.h, GenericDomTree.h, and
61 // GenericDomTreeConstruction.h.
62 //
63 //===----------------------------------------------------------------------===//
64 
65 template class llvm::DomTreeNodeBase<BasicBlock>;
66 template class llvm::DominatorTreeBase<BasicBlock>;
67 
68 template void llvm::Calculate<Function, BasicBlock *>(
69     DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
70 template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
71     DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
72     Function &F);
73 
74 // dominates - Return true if Def dominates a use in User. This performs
75 // the special checks necessary if Def and User are in the same basic block.
76 // Note that Def doesn't dominate a use in Def itself!
dominates(const Instruction * Def,const Instruction * User) const77 bool DominatorTree::dominates(const Instruction *Def,
78                               const Instruction *User) const {
79   const BasicBlock *UseBB = User->getParent();
80   const BasicBlock *DefBB = Def->getParent();
81 
82   // Any unreachable use is dominated, even if Def == User.
83   if (!isReachableFromEntry(UseBB))
84     return true;
85 
86   // Unreachable definitions don't dominate anything.
87   if (!isReachableFromEntry(DefBB))
88     return false;
89 
90   // An instruction doesn't dominate a use in itself.
91   if (Def == User)
92     return false;
93 
94   // The value defined by an invoke dominates an instruction only if it
95   // dominates every instruction in UseBB.
96   // A PHI is dominated only if the instruction dominates every possible use in
97   // the UseBB.
98   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
99     return dominates(Def, UseBB);
100 
101   if (DefBB != UseBB)
102     return dominates(DefBB, UseBB);
103 
104   // Loop through the basic block until we find Def or User.
105   BasicBlock::const_iterator I = DefBB->begin();
106   for (; &*I != Def && &*I != User; ++I)
107     /*empty*/;
108 
109   return &*I == Def;
110 }
111 
112 // true if Def would dominate a use in any instruction in UseBB.
113 // note that dominates(Def, Def->getParent()) is false.
dominates(const Instruction * Def,const BasicBlock * UseBB) const114 bool DominatorTree::dominates(const Instruction *Def,
115                               const BasicBlock *UseBB) const {
116   const BasicBlock *DefBB = Def->getParent();
117 
118   // Any unreachable use is dominated, even if DefBB == UseBB.
119   if (!isReachableFromEntry(UseBB))
120     return true;
121 
122   // Unreachable definitions don't dominate anything.
123   if (!isReachableFromEntry(DefBB))
124     return false;
125 
126   if (DefBB == UseBB)
127     return false;
128 
129   // Invoke results are only usable in the normal destination, not in the
130   // exceptional destination.
131   if (const auto *II = dyn_cast<InvokeInst>(Def)) {
132     BasicBlock *NormalDest = II->getNormalDest();
133     BasicBlockEdge E(DefBB, NormalDest);
134     return dominates(E, UseBB);
135   }
136 
137   return dominates(DefBB, UseBB);
138 }
139 
dominates(const BasicBlockEdge & BBE,const BasicBlock * UseBB) const140 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
141                               const BasicBlock *UseBB) const {
142   // Assert that we have a single edge. We could handle them by simply
143   // returning false, but since isSingleEdge is linear on the number of
144   // edges, the callers can normally handle them more efficiently.
145   assert(BBE.isSingleEdge() &&
146          "This function is not efficient in handling multiple edges");
147 
148   // If the BB the edge ends in doesn't dominate the use BB, then the
149   // edge also doesn't.
150   const BasicBlock *Start = BBE.getStart();
151   const BasicBlock *End = BBE.getEnd();
152   if (!dominates(End, UseBB))
153     return false;
154 
155   // Simple case: if the end BB has a single predecessor, the fact that it
156   // dominates the use block implies that the edge also does.
157   if (End->getSinglePredecessor())
158     return true;
159 
160   // The normal edge from the invoke is critical. Conceptually, what we would
161   // like to do is split it and check if the new block dominates the use.
162   // With X being the new block, the graph would look like:
163   //
164   //        DefBB
165   //          /\      .  .
166   //         /  \     .  .
167   //        /    \    .  .
168   //       /      \   |  |
169   //      A        X  B  C
170   //      |         \ | /
171   //      .          \|/
172   //      .      NormalDest
173   //      .
174   //
175   // Given the definition of dominance, NormalDest is dominated by X iff X
176   // dominates all of NormalDest's predecessors (X, B, C in the example). X
177   // trivially dominates itself, so we only have to find if it dominates the
178   // other predecessors. Since the only way out of X is via NormalDest, X can
179   // only properly dominate a node if NormalDest dominates that node too.
180   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
181        PI != E; ++PI) {
182     const BasicBlock *BB = *PI;
183     if (BB == Start)
184       continue;
185 
186     if (!dominates(End, BB))
187       return false;
188   }
189   return true;
190 }
191 
dominates(const BasicBlockEdge & BBE,const Use & U) const192 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
193   // Assert that we have a single edge. We could handle them by simply
194   // returning false, but since isSingleEdge is linear on the number of
195   // edges, the callers can normally handle them more efficiently.
196   assert(BBE.isSingleEdge() &&
197          "This function is not efficient in handling multiple edges");
198 
199   Instruction *UserInst = cast<Instruction>(U.getUser());
200   // A PHI in the end of the edge is dominated by it.
201   PHINode *PN = dyn_cast<PHINode>(UserInst);
202   if (PN && PN->getParent() == BBE.getEnd() &&
203       PN->getIncomingBlock(U) == BBE.getStart())
204     return true;
205 
206   // Otherwise use the edge-dominates-block query, which
207   // handles the crazy critical edge cases properly.
208   const BasicBlock *UseBB;
209   if (PN)
210     UseBB = PN->getIncomingBlock(U);
211   else
212     UseBB = UserInst->getParent();
213   return dominates(BBE, UseBB);
214 }
215 
dominates(const Instruction * Def,const Use & U) const216 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
217   Instruction *UserInst = cast<Instruction>(U.getUser());
218   const BasicBlock *DefBB = Def->getParent();
219 
220   // Determine the block in which the use happens. PHI nodes use
221   // their operands on edges; simulate this by thinking of the use
222   // happening at the end of the predecessor block.
223   const BasicBlock *UseBB;
224   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
225     UseBB = PN->getIncomingBlock(U);
226   else
227     UseBB = UserInst->getParent();
228 
229   // Any unreachable use is dominated, even if Def == User.
230   if (!isReachableFromEntry(UseBB))
231     return true;
232 
233   // Unreachable definitions don't dominate anything.
234   if (!isReachableFromEntry(DefBB))
235     return false;
236 
237   // Invoke instructions define their return values on the edges to their normal
238   // successors, so we have to handle them specially.
239   // Among other things, this means they don't dominate anything in
240   // their own block, except possibly a phi, so we don't need to
241   // walk the block in any case.
242   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
243     BasicBlock *NormalDest = II->getNormalDest();
244     BasicBlockEdge E(DefBB, NormalDest);
245     return dominates(E, U);
246   }
247 
248   // If the def and use are in different blocks, do a simple CFG dominator
249   // tree query.
250   if (DefBB != UseBB)
251     return dominates(DefBB, UseBB);
252 
253   // Ok, def and use are in the same block. If the def is an invoke, it
254   // doesn't dominate anything in the block. If it's a PHI, it dominates
255   // everything in the block.
256   if (isa<PHINode>(UserInst))
257     return true;
258 
259   // Otherwise, just loop through the basic block until we find Def or User.
260   BasicBlock::const_iterator I = DefBB->begin();
261   for (; &*I != Def && &*I != UserInst; ++I)
262     /*empty*/;
263 
264   return &*I != UserInst;
265 }
266 
isReachableFromEntry(const Use & U) const267 bool DominatorTree::isReachableFromEntry(const Use &U) const {
268   Instruction *I = dyn_cast<Instruction>(U.getUser());
269 
270   // ConstantExprs aren't really reachable from the entry block, but they
271   // don't need to be treated like unreachable code either.
272   if (!I) return true;
273 
274   // PHI nodes use their operands on their incoming edges.
275   if (PHINode *PN = dyn_cast<PHINode>(I))
276     return isReachableFromEntry(PN->getIncomingBlock(U));
277 
278   // Everything else uses their operands in their own block.
279   return isReachableFromEntry(I->getParent());
280 }
281 
verifyDomTree() const282 void DominatorTree::verifyDomTree() const {
283   Function &F = *getRoot()->getParent();
284 
285   DominatorTree OtherDT;
286   OtherDT.recalculate(F);
287   if (compare(OtherDT)) {
288     errs() << "DominatorTree is not up to date!\nComputed:\n";
289     print(errs());
290     errs() << "\nActual:\n";
291     OtherDT.print(errs());
292     abort();
293   }
294 }
295 
296 //===----------------------------------------------------------------------===//
297 //  DominatorTreeAnalysis and related pass implementations
298 //===----------------------------------------------------------------------===//
299 //
300 // This implements the DominatorTreeAnalysis which is used with the new pass
301 // manager. It also implements some methods from utility passes.
302 //
303 //===----------------------------------------------------------------------===//
304 
run(Function & F)305 DominatorTree DominatorTreeAnalysis::run(Function &F) {
306   DominatorTree DT;
307   DT.recalculate(F);
308   return DT;
309 }
310 
311 char DominatorTreeAnalysis::PassID;
312 
DominatorTreePrinterPass(raw_ostream & OS)313 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
314 
run(Function & F,FunctionAnalysisManager * AM)315 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
316                                                 FunctionAnalysisManager *AM) {
317   OS << "DominatorTree for function: " << F.getName() << "\n";
318   AM->getResult<DominatorTreeAnalysis>(F).print(OS);
319 
320   return PreservedAnalyses::all();
321 }
322 
run(Function & F,FunctionAnalysisManager * AM)323 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
324                                                  FunctionAnalysisManager *AM) {
325   AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree();
326 
327   return PreservedAnalyses::all();
328 }
329 
330 //===----------------------------------------------------------------------===//
331 //  DominatorTreeWrapperPass Implementation
332 //===----------------------------------------------------------------------===//
333 //
334 // The implementation details of the wrapper pass that holds a DominatorTree
335 // suitable for use with the legacy pass manager.
336 //
337 //===----------------------------------------------------------------------===//
338 
339 char DominatorTreeWrapperPass::ID = 0;
340 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
341                 "Dominator Tree Construction", true, true)
342 
runOnFunction(Function & F)343 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
344   DT.recalculate(F);
345   return false;
346 }
347 
verifyAnalysis() const348 void DominatorTreeWrapperPass::verifyAnalysis() const {
349     if (VerifyDomInfo)
350       DT.verifyDomTree();
351 }
352 
print(raw_ostream & OS,const Module *) const353 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
354   DT.print(OS);
355 }
356 
357