1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Metadata classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Metadata.h"
15 #include "LLVMContextImpl.h"
16 #include "MetadataImpl.h"
17 #include "SymbolTableListTraitsImpl.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/DebugInfoMetadata.h"
25 #include "llvm/IR/Instruction.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ValueHandle.h"
29
30 using namespace llvm;
31
MetadataAsValue(Type * Ty,Metadata * MD)32 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
33 : Value(Ty, MetadataAsValueVal), MD(MD) {
34 track();
35 }
36
~MetadataAsValue()37 MetadataAsValue::~MetadataAsValue() {
38 getType()->getContext().pImpl->MetadataAsValues.erase(MD);
39 untrack();
40 }
41
42 /// \brief Canonicalize metadata arguments to intrinsics.
43 ///
44 /// To support bitcode upgrades (and assembly semantic sugar) for \a
45 /// MetadataAsValue, we need to canonicalize certain metadata.
46 ///
47 /// - nullptr is replaced by an empty MDNode.
48 /// - An MDNode with a single null operand is replaced by an empty MDNode.
49 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
50 ///
51 /// This maintains readability of bitcode from when metadata was a type of
52 /// value, and these bridges were unnecessary.
canonicalizeMetadataForValue(LLVMContext & Context,Metadata * MD)53 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
54 Metadata *MD) {
55 if (!MD)
56 // !{}
57 return MDNode::get(Context, None);
58
59 // Return early if this isn't a single-operand MDNode.
60 auto *N = dyn_cast<MDNode>(MD);
61 if (!N || N->getNumOperands() != 1)
62 return MD;
63
64 if (!N->getOperand(0))
65 // !{}
66 return MDNode::get(Context, None);
67
68 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
69 // Look through the MDNode.
70 return C;
71
72 return MD;
73 }
74
get(LLVMContext & Context,Metadata * MD)75 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
76 MD = canonicalizeMetadataForValue(Context, MD);
77 auto *&Entry = Context.pImpl->MetadataAsValues[MD];
78 if (!Entry)
79 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
80 return Entry;
81 }
82
getIfExists(LLVMContext & Context,Metadata * MD)83 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
84 Metadata *MD) {
85 MD = canonicalizeMetadataForValue(Context, MD);
86 auto &Store = Context.pImpl->MetadataAsValues;
87 return Store.lookup(MD);
88 }
89
handleChangedMetadata(Metadata * MD)90 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
91 LLVMContext &Context = getContext();
92 MD = canonicalizeMetadataForValue(Context, MD);
93 auto &Store = Context.pImpl->MetadataAsValues;
94
95 // Stop tracking the old metadata.
96 Store.erase(this->MD);
97 untrack();
98 this->MD = nullptr;
99
100 // Start tracking MD, or RAUW if necessary.
101 auto *&Entry = Store[MD];
102 if (Entry) {
103 replaceAllUsesWith(Entry);
104 delete this;
105 return;
106 }
107
108 this->MD = MD;
109 track();
110 Entry = this;
111 }
112
track()113 void MetadataAsValue::track() {
114 if (MD)
115 MetadataTracking::track(&MD, *MD, *this);
116 }
117
untrack()118 void MetadataAsValue::untrack() {
119 if (MD)
120 MetadataTracking::untrack(MD);
121 }
122
addRef(void * Ref,OwnerTy Owner)123 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
124 bool WasInserted =
125 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
126 .second;
127 (void)WasInserted;
128 assert(WasInserted && "Expected to add a reference");
129
130 ++NextIndex;
131 assert(NextIndex != 0 && "Unexpected overflow");
132 }
133
dropRef(void * Ref)134 void ReplaceableMetadataImpl::dropRef(void *Ref) {
135 bool WasErased = UseMap.erase(Ref);
136 (void)WasErased;
137 assert(WasErased && "Expected to drop a reference");
138 }
139
moveRef(void * Ref,void * New,const Metadata & MD)140 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
141 const Metadata &MD) {
142 auto I = UseMap.find(Ref);
143 assert(I != UseMap.end() && "Expected to move a reference");
144 auto OwnerAndIndex = I->second;
145 UseMap.erase(I);
146 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
147 (void)WasInserted;
148 assert(WasInserted && "Expected to add a reference");
149
150 // Check that the references are direct if there's no owner.
151 (void)MD;
152 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
153 "Reference without owner must be direct");
154 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
155 "Reference without owner must be direct");
156 }
157
replaceAllUsesWith(Metadata * MD)158 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
159 assert(!(MD && isa<MDNode>(MD) && cast<MDNode>(MD)->isTemporary()) &&
160 "Expected non-temp node");
161
162 if (UseMap.empty())
163 return;
164
165 // Copy out uses since UseMap will get touched below.
166 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
167 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
168 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
169 return L.second.second < R.second.second;
170 });
171 for (const auto &Pair : Uses) {
172 // Check that this Ref hasn't disappeared after RAUW (when updating a
173 // previous Ref).
174 if (!UseMap.count(Pair.first))
175 continue;
176
177 OwnerTy Owner = Pair.second.first;
178 if (!Owner) {
179 // Update unowned tracking references directly.
180 Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
181 Ref = MD;
182 if (MD)
183 MetadataTracking::track(Ref);
184 UseMap.erase(Pair.first);
185 continue;
186 }
187
188 // Check for MetadataAsValue.
189 if (Owner.is<MetadataAsValue *>()) {
190 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
191 continue;
192 }
193
194 // There's a Metadata owner -- dispatch.
195 Metadata *OwnerMD = Owner.get<Metadata *>();
196 switch (OwnerMD->getMetadataID()) {
197 #define HANDLE_METADATA_LEAF(CLASS) \
198 case Metadata::CLASS##Kind: \
199 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
200 continue;
201 #include "llvm/IR/Metadata.def"
202 default:
203 llvm_unreachable("Invalid metadata subclass");
204 }
205 }
206 assert(UseMap.empty() && "Expected all uses to be replaced");
207 }
208
resolveAllUses(bool ResolveUsers)209 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
210 if (UseMap.empty())
211 return;
212
213 if (!ResolveUsers) {
214 UseMap.clear();
215 return;
216 }
217
218 // Copy out uses since UseMap could get touched below.
219 typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
220 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
221 std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
222 return L.second.second < R.second.second;
223 });
224 UseMap.clear();
225 for (const auto &Pair : Uses) {
226 auto Owner = Pair.second.first;
227 if (!Owner)
228 continue;
229 if (Owner.is<MetadataAsValue *>())
230 continue;
231
232 // Resolve MDNodes that point at this.
233 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
234 if (!OwnerMD)
235 continue;
236 if (OwnerMD->isResolved())
237 continue;
238 OwnerMD->decrementUnresolvedOperandCount();
239 }
240 }
241
getLocalFunction(Value * V)242 static Function *getLocalFunction(Value *V) {
243 assert(V && "Expected value");
244 if (auto *A = dyn_cast<Argument>(V))
245 return A->getParent();
246 if (BasicBlock *BB = cast<Instruction>(V)->getParent())
247 return BB->getParent();
248 return nullptr;
249 }
250
get(Value * V)251 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
252 assert(V && "Unexpected null Value");
253
254 auto &Context = V->getContext();
255 auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
256 if (!Entry) {
257 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
258 "Expected constant or function-local value");
259 assert(!V->IsUsedByMD &&
260 "Expected this to be the only metadata use");
261 V->IsUsedByMD = true;
262 if (auto *C = dyn_cast<Constant>(V))
263 Entry = new ConstantAsMetadata(C);
264 else
265 Entry = new LocalAsMetadata(V);
266 }
267
268 return Entry;
269 }
270
getIfExists(Value * V)271 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
272 assert(V && "Unexpected null Value");
273 return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
274 }
275
handleDeletion(Value * V)276 void ValueAsMetadata::handleDeletion(Value *V) {
277 assert(V && "Expected valid value");
278
279 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
280 auto I = Store.find(V);
281 if (I == Store.end())
282 return;
283
284 // Remove old entry from the map.
285 ValueAsMetadata *MD = I->second;
286 assert(MD && "Expected valid metadata");
287 assert(MD->getValue() == V && "Expected valid mapping");
288 Store.erase(I);
289
290 // Delete the metadata.
291 MD->replaceAllUsesWith(nullptr);
292 delete MD;
293 }
294
handleRAUW(Value * From,Value * To)295 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
296 assert(From && "Expected valid value");
297 assert(To && "Expected valid value");
298 assert(From != To && "Expected changed value");
299 assert(From->getType() == To->getType() && "Unexpected type change");
300
301 LLVMContext &Context = From->getType()->getContext();
302 auto &Store = Context.pImpl->ValuesAsMetadata;
303 auto I = Store.find(From);
304 if (I == Store.end()) {
305 assert(!From->IsUsedByMD &&
306 "Expected From not to be used by metadata");
307 return;
308 }
309
310 // Remove old entry from the map.
311 assert(From->IsUsedByMD &&
312 "Expected From to be used by metadata");
313 From->IsUsedByMD = false;
314 ValueAsMetadata *MD = I->second;
315 assert(MD && "Expected valid metadata");
316 assert(MD->getValue() == From && "Expected valid mapping");
317 Store.erase(I);
318
319 if (isa<LocalAsMetadata>(MD)) {
320 if (auto *C = dyn_cast<Constant>(To)) {
321 // Local became a constant.
322 MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
323 delete MD;
324 return;
325 }
326 if (getLocalFunction(From) && getLocalFunction(To) &&
327 getLocalFunction(From) != getLocalFunction(To)) {
328 // Function changed.
329 MD->replaceAllUsesWith(nullptr);
330 delete MD;
331 return;
332 }
333 } else if (!isa<Constant>(To)) {
334 // Changed to function-local value.
335 MD->replaceAllUsesWith(nullptr);
336 delete MD;
337 return;
338 }
339
340 auto *&Entry = Store[To];
341 if (Entry) {
342 // The target already exists.
343 MD->replaceAllUsesWith(Entry);
344 delete MD;
345 return;
346 }
347
348 // Update MD in place (and update the map entry).
349 assert(!To->IsUsedByMD &&
350 "Expected this to be the only metadata use");
351 To->IsUsedByMD = true;
352 MD->V = To;
353 Entry = MD;
354 }
355
356 //===----------------------------------------------------------------------===//
357 // MDString implementation.
358 //
359
get(LLVMContext & Context,StringRef Str)360 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
361 auto &Store = Context.pImpl->MDStringCache;
362 auto I = Store.find(Str);
363 if (I != Store.end())
364 return &I->second;
365
366 auto *Entry =
367 StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString());
368 bool WasInserted = Store.insert(Entry);
369 (void)WasInserted;
370 assert(WasInserted && "Expected entry to be inserted");
371 Entry->second.Entry = Entry;
372 return &Entry->second;
373 }
374
getString() const375 StringRef MDString::getString() const {
376 assert(Entry && "Expected to find string map entry");
377 return Entry->first();
378 }
379
380 //===----------------------------------------------------------------------===//
381 // MDNode implementation.
382 //
383
384 // Assert that the MDNode types will not be unaligned by the objects
385 // prepended to them.
386 #define HANDLE_MDNODE_LEAF(CLASS) \
387 static_assert( \
388 llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment, \
389 "Alignment is insufficient after objects prepended to " #CLASS);
390 #include "llvm/IR/Metadata.def"
391
operator new(size_t Size,unsigned NumOps)392 void *MDNode::operator new(size_t Size, unsigned NumOps) {
393 size_t OpSize = NumOps * sizeof(MDOperand);
394 // uint64_t is the most aligned type we need support (ensured by static_assert
395 // above)
396 OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>());
397 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize;
398 MDOperand *O = static_cast<MDOperand *>(Ptr);
399 for (MDOperand *E = O - NumOps; O != E; --O)
400 (void)new (O - 1) MDOperand;
401 return Ptr;
402 }
403
operator delete(void * Mem)404 void MDNode::operator delete(void *Mem) {
405 MDNode *N = static_cast<MDNode *>(Mem);
406 size_t OpSize = N->NumOperands * sizeof(MDOperand);
407 OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>());
408
409 MDOperand *O = static_cast<MDOperand *>(Mem);
410 for (MDOperand *E = O - N->NumOperands; O != E; --O)
411 (O - 1)->~MDOperand();
412 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize);
413 }
414
MDNode(LLVMContext & Context,unsigned ID,StorageType Storage,ArrayRef<Metadata * > Ops1,ArrayRef<Metadata * > Ops2)415 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
416 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
417 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
418 NumUnresolved(0), Context(Context) {
419 unsigned Op = 0;
420 for (Metadata *MD : Ops1)
421 setOperand(Op++, MD);
422 for (Metadata *MD : Ops2)
423 setOperand(Op++, MD);
424
425 if (isDistinct())
426 return;
427
428 if (isUniqued())
429 // Check whether any operands are unresolved, requiring re-uniquing. If
430 // not, don't support RAUW.
431 if (!countUnresolvedOperands())
432 return;
433
434 this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context));
435 }
436
clone() const437 TempMDNode MDNode::clone() const {
438 switch (getMetadataID()) {
439 default:
440 llvm_unreachable("Invalid MDNode subclass");
441 #define HANDLE_MDNODE_LEAF(CLASS) \
442 case CLASS##Kind: \
443 return cast<CLASS>(this)->cloneImpl();
444 #include "llvm/IR/Metadata.def"
445 }
446 }
447
isOperandUnresolved(Metadata * Op)448 static bool isOperandUnresolved(Metadata *Op) {
449 if (auto *N = dyn_cast_or_null<MDNode>(Op))
450 return !N->isResolved();
451 return false;
452 }
453
countUnresolvedOperands()454 unsigned MDNode::countUnresolvedOperands() {
455 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
456 NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved);
457 return NumUnresolved;
458 }
459
makeUniqued()460 void MDNode::makeUniqued() {
461 assert(isTemporary() && "Expected this to be temporary");
462 assert(!isResolved() && "Expected this to be unresolved");
463
464 // Enable uniquing callbacks.
465 for (auto &Op : mutable_operands())
466 Op.reset(Op.get(), this);
467
468 // Make this 'uniqued'.
469 Storage = Uniqued;
470 if (!countUnresolvedOperands())
471 resolve();
472
473 assert(isUniqued() && "Expected this to be uniqued");
474 }
475
makeDistinct()476 void MDNode::makeDistinct() {
477 assert(isTemporary() && "Expected this to be temporary");
478 assert(!isResolved() && "Expected this to be unresolved");
479
480 // Pretend to be uniqued, resolve the node, and then store in distinct table.
481 Storage = Uniqued;
482 resolve();
483 storeDistinctInContext();
484
485 assert(isDistinct() && "Expected this to be distinct");
486 assert(isResolved() && "Expected this to be resolved");
487 }
488
resolve()489 void MDNode::resolve() {
490 assert(isUniqued() && "Expected this to be uniqued");
491 assert(!isResolved() && "Expected this to be unresolved");
492
493 // Move the map, so that this immediately looks resolved.
494 auto Uses = Context.takeReplaceableUses();
495 NumUnresolved = 0;
496 assert(isResolved() && "Expected this to be resolved");
497
498 // Drop RAUW support.
499 Uses->resolveAllUses();
500 }
501
resolveAfterOperandChange(Metadata * Old,Metadata * New)502 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
503 assert(NumUnresolved != 0 && "Expected unresolved operands");
504
505 // Check if an operand was resolved.
506 if (!isOperandUnresolved(Old)) {
507 if (isOperandUnresolved(New))
508 // An operand was un-resolved!
509 ++NumUnresolved;
510 } else if (!isOperandUnresolved(New))
511 decrementUnresolvedOperandCount();
512 }
513
decrementUnresolvedOperandCount()514 void MDNode::decrementUnresolvedOperandCount() {
515 if (!--NumUnresolved)
516 // Last unresolved operand has just been resolved.
517 resolve();
518 }
519
resolveCycles(bool MDMaterialized)520 void MDNode::resolveCycles(bool MDMaterialized) {
521 if (isResolved())
522 return;
523
524 // Resolve this node immediately.
525 resolve();
526
527 // Resolve all operands.
528 for (const auto &Op : operands()) {
529 auto *N = dyn_cast_or_null<MDNode>(Op);
530 if (!N)
531 continue;
532
533 if (N->isTemporary() && !MDMaterialized)
534 continue;
535 assert(!N->isTemporary() &&
536 "Expected all forward declarations to be resolved");
537 if (!N->isResolved())
538 N->resolveCycles();
539 }
540 }
541
hasSelfReference(MDNode * N)542 static bool hasSelfReference(MDNode *N) {
543 for (Metadata *MD : N->operands())
544 if (MD == N)
545 return true;
546 return false;
547 }
548
replaceWithPermanentImpl()549 MDNode *MDNode::replaceWithPermanentImpl() {
550 switch (getMetadataID()) {
551 default:
552 // If this type isn't uniquable, replace with a distinct node.
553 return replaceWithDistinctImpl();
554
555 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
556 case CLASS##Kind: \
557 break;
558 #include "llvm/IR/Metadata.def"
559 }
560
561 // Even if this type is uniquable, self-references have to be distinct.
562 if (hasSelfReference(this))
563 return replaceWithDistinctImpl();
564 return replaceWithUniquedImpl();
565 }
566
replaceWithUniquedImpl()567 MDNode *MDNode::replaceWithUniquedImpl() {
568 // Try to uniquify in place.
569 MDNode *UniquedNode = uniquify();
570
571 if (UniquedNode == this) {
572 makeUniqued();
573 return this;
574 }
575
576 // Collision, so RAUW instead.
577 replaceAllUsesWith(UniquedNode);
578 deleteAsSubclass();
579 return UniquedNode;
580 }
581
replaceWithDistinctImpl()582 MDNode *MDNode::replaceWithDistinctImpl() {
583 makeDistinct();
584 return this;
585 }
586
recalculateHash()587 void MDTuple::recalculateHash() {
588 setHash(MDTupleInfo::KeyTy::calculateHash(this));
589 }
590
dropAllReferences()591 void MDNode::dropAllReferences() {
592 for (unsigned I = 0, E = NumOperands; I != E; ++I)
593 setOperand(I, nullptr);
594 if (!isResolved()) {
595 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
596 (void)Context.takeReplaceableUses();
597 }
598 }
599
handleChangedOperand(void * Ref,Metadata * New)600 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
601 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
602 assert(Op < getNumOperands() && "Expected valid operand");
603
604 if (!isUniqued()) {
605 // This node is not uniqued. Just set the operand and be done with it.
606 setOperand(Op, New);
607 return;
608 }
609
610 // This node is uniqued.
611 eraseFromStore();
612
613 Metadata *Old = getOperand(Op);
614 setOperand(Op, New);
615
616 // Drop uniquing for self-reference cycles.
617 if (New == this) {
618 if (!isResolved())
619 resolve();
620 storeDistinctInContext();
621 return;
622 }
623
624 // Re-unique the node.
625 auto *Uniqued = uniquify();
626 if (Uniqued == this) {
627 if (!isResolved())
628 resolveAfterOperandChange(Old, New);
629 return;
630 }
631
632 // Collision.
633 if (!isResolved()) {
634 // Still unresolved, so RAUW.
635 //
636 // First, clear out all operands to prevent any recursion (similar to
637 // dropAllReferences(), but we still need the use-list).
638 for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
639 setOperand(O, nullptr);
640 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
641 deleteAsSubclass();
642 return;
643 }
644
645 // Store in non-uniqued form if RAUW isn't possible.
646 storeDistinctInContext();
647 }
648
deleteAsSubclass()649 void MDNode::deleteAsSubclass() {
650 switch (getMetadataID()) {
651 default:
652 llvm_unreachable("Invalid subclass of MDNode");
653 #define HANDLE_MDNODE_LEAF(CLASS) \
654 case CLASS##Kind: \
655 delete cast<CLASS>(this); \
656 break;
657 #include "llvm/IR/Metadata.def"
658 }
659 }
660
661 template <class T, class InfoT>
uniquifyImpl(T * N,DenseSet<T *,InfoT> & Store)662 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
663 if (T *U = getUniqued(Store, N))
664 return U;
665
666 Store.insert(N);
667 return N;
668 }
669
670 template <class NodeTy> struct MDNode::HasCachedHash {
671 typedef char Yes[1];
672 typedef char No[2];
673 template <class U, U Val> struct SFINAE {};
674
675 template <class U>
676 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
677 template <class U> static No &check(...);
678
679 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
680 };
681
uniquify()682 MDNode *MDNode::uniquify() {
683 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
684
685 // Try to insert into uniquing store.
686 switch (getMetadataID()) {
687 default:
688 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
689 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
690 case CLASS##Kind: { \
691 CLASS *SubclassThis = cast<CLASS>(this); \
692 std::integral_constant<bool, HasCachedHash<CLASS>::value> \
693 ShouldRecalculateHash; \
694 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \
695 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \
696 }
697 #include "llvm/IR/Metadata.def"
698 }
699 }
700
eraseFromStore()701 void MDNode::eraseFromStore() {
702 switch (getMetadataID()) {
703 default:
704 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
705 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
706 case CLASS##Kind: \
707 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \
708 break;
709 #include "llvm/IR/Metadata.def"
710 }
711 }
712
getImpl(LLVMContext & Context,ArrayRef<Metadata * > MDs,StorageType Storage,bool ShouldCreate)713 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
714 StorageType Storage, bool ShouldCreate) {
715 unsigned Hash = 0;
716 if (Storage == Uniqued) {
717 MDTupleInfo::KeyTy Key(MDs);
718 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
719 return N;
720 if (!ShouldCreate)
721 return nullptr;
722 Hash = Key.getHash();
723 } else {
724 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
725 }
726
727 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
728 Storage, Context.pImpl->MDTuples);
729 }
730
deleteTemporary(MDNode * N)731 void MDNode::deleteTemporary(MDNode *N) {
732 assert(N->isTemporary() && "Expected temporary node");
733 N->replaceAllUsesWith(nullptr);
734 N->deleteAsSubclass();
735 }
736
storeDistinctInContext()737 void MDNode::storeDistinctInContext() {
738 assert(isResolved() && "Expected resolved nodes");
739 Storage = Distinct;
740
741 // Reset the hash.
742 switch (getMetadataID()) {
743 default:
744 llvm_unreachable("Invalid subclass of MDNode");
745 #define HANDLE_MDNODE_LEAF(CLASS) \
746 case CLASS##Kind: { \
747 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
748 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \
749 break; \
750 }
751 #include "llvm/IR/Metadata.def"
752 }
753
754 getContext().pImpl->DistinctMDNodes.insert(this);
755 }
756
replaceOperandWith(unsigned I,Metadata * New)757 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
758 if (getOperand(I) == New)
759 return;
760
761 if (!isUniqued()) {
762 setOperand(I, New);
763 return;
764 }
765
766 handleChangedOperand(mutable_begin() + I, New);
767 }
768
setOperand(unsigned I,Metadata * New)769 void MDNode::setOperand(unsigned I, Metadata *New) {
770 assert(I < NumOperands);
771 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
772 }
773
774 /// \brief Get a node, or a self-reference that looks like it.
775 ///
776 /// Special handling for finding self-references, for use by \a
777 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
778 /// when self-referencing nodes were still uniqued. If the first operand has
779 /// the same operands as \c Ops, return the first operand instead.
getOrSelfReference(LLVMContext & Context,ArrayRef<Metadata * > Ops)780 static MDNode *getOrSelfReference(LLVMContext &Context,
781 ArrayRef<Metadata *> Ops) {
782 if (!Ops.empty())
783 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
784 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
785 for (unsigned I = 1, E = Ops.size(); I != E; ++I)
786 if (Ops[I] != N->getOperand(I))
787 return MDNode::get(Context, Ops);
788 return N;
789 }
790
791 return MDNode::get(Context, Ops);
792 }
793
concatenate(MDNode * A,MDNode * B)794 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
795 if (!A)
796 return B;
797 if (!B)
798 return A;
799
800 SmallVector<Metadata *, 4> MDs;
801 MDs.reserve(A->getNumOperands() + B->getNumOperands());
802 MDs.append(A->op_begin(), A->op_end());
803 MDs.append(B->op_begin(), B->op_end());
804
805 // FIXME: This preserves long-standing behaviour, but is it really the right
806 // behaviour? Or was that an unintended side-effect of node uniquing?
807 return getOrSelfReference(A->getContext(), MDs);
808 }
809
intersect(MDNode * A,MDNode * B)810 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
811 if (!A || !B)
812 return nullptr;
813
814 SmallVector<Metadata *, 4> MDs;
815 for (Metadata *MD : A->operands())
816 if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end())
817 MDs.push_back(MD);
818
819 // FIXME: This preserves long-standing behaviour, but is it really the right
820 // behaviour? Or was that an unintended side-effect of node uniquing?
821 return getOrSelfReference(A->getContext(), MDs);
822 }
823
getMostGenericAliasScope(MDNode * A,MDNode * B)824 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
825 if (!A || !B)
826 return nullptr;
827
828 SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end());
829 for (Metadata *MD : A->operands())
830 if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end())
831 MDs.push_back(MD);
832
833 // FIXME: This preserves long-standing behaviour, but is it really the right
834 // behaviour? Or was that an unintended side-effect of node uniquing?
835 return getOrSelfReference(A->getContext(), MDs);
836 }
837
getMostGenericFPMath(MDNode * A,MDNode * B)838 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
839 if (!A || !B)
840 return nullptr;
841
842 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
843 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
844 if (AVal.compare(BVal) == APFloat::cmpLessThan)
845 return A;
846 return B;
847 }
848
isContiguous(const ConstantRange & A,const ConstantRange & B)849 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
850 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
851 }
852
canBeMerged(const ConstantRange & A,const ConstantRange & B)853 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
854 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
855 }
856
tryMergeRange(SmallVectorImpl<ConstantInt * > & EndPoints,ConstantInt * Low,ConstantInt * High)857 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
858 ConstantInt *Low, ConstantInt *High) {
859 ConstantRange NewRange(Low->getValue(), High->getValue());
860 unsigned Size = EndPoints.size();
861 APInt LB = EndPoints[Size - 2]->getValue();
862 APInt LE = EndPoints[Size - 1]->getValue();
863 ConstantRange LastRange(LB, LE);
864 if (canBeMerged(NewRange, LastRange)) {
865 ConstantRange Union = LastRange.unionWith(NewRange);
866 Type *Ty = High->getType();
867 EndPoints[Size - 2] =
868 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
869 EndPoints[Size - 1] =
870 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
871 return true;
872 }
873 return false;
874 }
875
addRange(SmallVectorImpl<ConstantInt * > & EndPoints,ConstantInt * Low,ConstantInt * High)876 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
877 ConstantInt *Low, ConstantInt *High) {
878 if (!EndPoints.empty())
879 if (tryMergeRange(EndPoints, Low, High))
880 return;
881
882 EndPoints.push_back(Low);
883 EndPoints.push_back(High);
884 }
885
getMostGenericRange(MDNode * A,MDNode * B)886 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
887 // Given two ranges, we want to compute the union of the ranges. This
888 // is slightly complitade by having to combine the intervals and merge
889 // the ones that overlap.
890
891 if (!A || !B)
892 return nullptr;
893
894 if (A == B)
895 return A;
896
897 // First, walk both lists in older of the lower boundary of each interval.
898 // At each step, try to merge the new interval to the last one we adedd.
899 SmallVector<ConstantInt *, 4> EndPoints;
900 int AI = 0;
901 int BI = 0;
902 int AN = A->getNumOperands() / 2;
903 int BN = B->getNumOperands() / 2;
904 while (AI < AN && BI < BN) {
905 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
906 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
907
908 if (ALow->getValue().slt(BLow->getValue())) {
909 addRange(EndPoints, ALow,
910 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
911 ++AI;
912 } else {
913 addRange(EndPoints, BLow,
914 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
915 ++BI;
916 }
917 }
918 while (AI < AN) {
919 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
920 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
921 ++AI;
922 }
923 while (BI < BN) {
924 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
925 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
926 ++BI;
927 }
928
929 // If we have more than 2 ranges (4 endpoints) we have to try to merge
930 // the last and first ones.
931 unsigned Size = EndPoints.size();
932 if (Size > 4) {
933 ConstantInt *FB = EndPoints[0];
934 ConstantInt *FE = EndPoints[1];
935 if (tryMergeRange(EndPoints, FB, FE)) {
936 for (unsigned i = 0; i < Size - 2; ++i) {
937 EndPoints[i] = EndPoints[i + 2];
938 }
939 EndPoints.resize(Size - 2);
940 }
941 }
942
943 // If in the end we have a single range, it is possible that it is now the
944 // full range. Just drop the metadata in that case.
945 if (EndPoints.size() == 2) {
946 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
947 if (Range.isFullSet())
948 return nullptr;
949 }
950
951 SmallVector<Metadata *, 4> MDs;
952 MDs.reserve(EndPoints.size());
953 for (auto *I : EndPoints)
954 MDs.push_back(ConstantAsMetadata::get(I));
955 return MDNode::get(A->getContext(), MDs);
956 }
957
getMostGenericAlignmentOrDereferenceable(MDNode * A,MDNode * B)958 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
959 if (!A || !B)
960 return nullptr;
961
962 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
963 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
964 if (AVal->getZExtValue() < BVal->getZExtValue())
965 return A;
966 return B;
967 }
968
969 //===----------------------------------------------------------------------===//
970 // NamedMDNode implementation.
971 //
972
getNMDOps(void * Operands)973 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
974 return *(SmallVector<TrackingMDRef, 4> *)Operands;
975 }
976
NamedMDNode(const Twine & N)977 NamedMDNode::NamedMDNode(const Twine &N)
978 : Name(N.str()), Parent(nullptr),
979 Operands(new SmallVector<TrackingMDRef, 4>()) {}
980
~NamedMDNode()981 NamedMDNode::~NamedMDNode() {
982 dropAllReferences();
983 delete &getNMDOps(Operands);
984 }
985
getNumOperands() const986 unsigned NamedMDNode::getNumOperands() const {
987 return (unsigned)getNMDOps(Operands).size();
988 }
989
getOperand(unsigned i) const990 MDNode *NamedMDNode::getOperand(unsigned i) const {
991 assert(i < getNumOperands() && "Invalid Operand number!");
992 auto *N = getNMDOps(Operands)[i].get();
993 return cast_or_null<MDNode>(N);
994 }
995
addOperand(MDNode * M)996 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
997
setOperand(unsigned I,MDNode * New)998 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
999 assert(I < getNumOperands() && "Invalid operand number");
1000 getNMDOps(Operands)[I].reset(New);
1001 }
1002
eraseFromParent()1003 void NamedMDNode::eraseFromParent() {
1004 getParent()->eraseNamedMetadata(this);
1005 }
1006
dropAllReferences()1007 void NamedMDNode::dropAllReferences() {
1008 getNMDOps(Operands).clear();
1009 }
1010
getName() const1011 StringRef NamedMDNode::getName() const {
1012 return StringRef(Name);
1013 }
1014
1015 //===----------------------------------------------------------------------===//
1016 // Instruction Metadata method implementations.
1017 //
set(unsigned ID,MDNode & MD)1018 void MDAttachmentMap::set(unsigned ID, MDNode &MD) {
1019 for (auto &I : Attachments)
1020 if (I.first == ID) {
1021 I.second.reset(&MD);
1022 return;
1023 }
1024 Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID),
1025 std::make_tuple(&MD));
1026 }
1027
erase(unsigned ID)1028 void MDAttachmentMap::erase(unsigned ID) {
1029 if (empty())
1030 return;
1031
1032 // Common case is one/last value.
1033 if (Attachments.back().first == ID) {
1034 Attachments.pop_back();
1035 return;
1036 }
1037
1038 for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E;
1039 ++I)
1040 if (I->first == ID) {
1041 *I = std::move(Attachments.back());
1042 Attachments.pop_back();
1043 return;
1044 }
1045 }
1046
lookup(unsigned ID) const1047 MDNode *MDAttachmentMap::lookup(unsigned ID) const {
1048 for (const auto &I : Attachments)
1049 if (I.first == ID)
1050 return I.second;
1051 return nullptr;
1052 }
1053
getAll(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1054 void MDAttachmentMap::getAll(
1055 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1056 Result.append(Attachments.begin(), Attachments.end());
1057
1058 // Sort the resulting array so it is stable.
1059 if (Result.size() > 1)
1060 array_pod_sort(Result.begin(), Result.end());
1061 }
1062
setMetadata(StringRef Kind,MDNode * Node)1063 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1064 if (!Node && !hasMetadata())
1065 return;
1066 setMetadata(getContext().getMDKindID(Kind), Node);
1067 }
1068
getMetadataImpl(StringRef Kind) const1069 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1070 return getMetadataImpl(getContext().getMDKindID(Kind));
1071 }
1072
dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs)1073 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1074 SmallSet<unsigned, 5> KnownSet;
1075 KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1076
1077 if (!hasMetadataHashEntry())
1078 return; // Nothing to remove!
1079
1080 auto &InstructionMetadata = getContext().pImpl->InstructionMetadata;
1081
1082 if (KnownSet.empty()) {
1083 // Just drop our entry at the store.
1084 InstructionMetadata.erase(this);
1085 setHasMetadataHashEntry(false);
1086 return;
1087 }
1088
1089 auto &Info = InstructionMetadata[this];
1090 Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
1091 return !KnownSet.count(I.first);
1092 });
1093
1094 if (Info.empty()) {
1095 // Drop our entry at the store.
1096 InstructionMetadata.erase(this);
1097 setHasMetadataHashEntry(false);
1098 }
1099 }
1100
1101 /// setMetadata - Set the metadata of the specified kind to the specified
1102 /// node. This updates/replaces metadata if already present, or removes it if
1103 /// Node is null.
setMetadata(unsigned KindID,MDNode * Node)1104 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1105 if (!Node && !hasMetadata())
1106 return;
1107
1108 // Handle 'dbg' as a special case since it is not stored in the hash table.
1109 if (KindID == LLVMContext::MD_dbg) {
1110 DbgLoc = DebugLoc(Node);
1111 return;
1112 }
1113
1114 // Handle the case when we're adding/updating metadata on an instruction.
1115 if (Node) {
1116 auto &Info = getContext().pImpl->InstructionMetadata[this];
1117 assert(!Info.empty() == hasMetadataHashEntry() &&
1118 "HasMetadata bit is wonked");
1119 if (Info.empty())
1120 setHasMetadataHashEntry(true);
1121 Info.set(KindID, *Node);
1122 return;
1123 }
1124
1125 // Otherwise, we're removing metadata from an instruction.
1126 assert((hasMetadataHashEntry() ==
1127 (getContext().pImpl->InstructionMetadata.count(this) > 0)) &&
1128 "HasMetadata bit out of date!");
1129 if (!hasMetadataHashEntry())
1130 return; // Nothing to remove!
1131 auto &Info = getContext().pImpl->InstructionMetadata[this];
1132
1133 // Handle removal of an existing value.
1134 Info.erase(KindID);
1135
1136 if (!Info.empty())
1137 return;
1138
1139 getContext().pImpl->InstructionMetadata.erase(this);
1140 setHasMetadataHashEntry(false);
1141 }
1142
setAAMetadata(const AAMDNodes & N)1143 void Instruction::setAAMetadata(const AAMDNodes &N) {
1144 setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1145 setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1146 setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1147 }
1148
getMetadataImpl(unsigned KindID) const1149 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
1150 // Handle 'dbg' as a special case since it is not stored in the hash table.
1151 if (KindID == LLVMContext::MD_dbg)
1152 return DbgLoc.getAsMDNode();
1153
1154 if (!hasMetadataHashEntry())
1155 return nullptr;
1156 auto &Info = getContext().pImpl->InstructionMetadata[this];
1157 assert(!Info.empty() && "bit out of sync with hash table");
1158
1159 return Info.lookup(KindID);
1160 }
1161
getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1162 void Instruction::getAllMetadataImpl(
1163 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1164 Result.clear();
1165
1166 // Handle 'dbg' as a special case since it is not stored in the hash table.
1167 if (DbgLoc) {
1168 Result.push_back(
1169 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1170 if (!hasMetadataHashEntry()) return;
1171 }
1172
1173 assert(hasMetadataHashEntry() &&
1174 getContext().pImpl->InstructionMetadata.count(this) &&
1175 "Shouldn't have called this");
1176 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1177 assert(!Info.empty() && "Shouldn't have called this");
1178 Info.getAll(Result);
1179 }
1180
getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1181 void Instruction::getAllMetadataOtherThanDebugLocImpl(
1182 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1183 Result.clear();
1184 assert(hasMetadataHashEntry() &&
1185 getContext().pImpl->InstructionMetadata.count(this) &&
1186 "Shouldn't have called this");
1187 const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1188 assert(!Info.empty() && "Shouldn't have called this");
1189 Info.getAll(Result);
1190 }
1191
1192 /// clearMetadataHashEntries - Clear all hashtable-based metadata from
1193 /// this instruction.
clearMetadataHashEntries()1194 void Instruction::clearMetadataHashEntries() {
1195 assert(hasMetadataHashEntry() && "Caller should check");
1196 getContext().pImpl->InstructionMetadata.erase(this);
1197 setHasMetadataHashEntry(false);
1198 }
1199
getMetadata(unsigned KindID) const1200 MDNode *Function::getMetadata(unsigned KindID) const {
1201 if (!hasMetadata())
1202 return nullptr;
1203 return getContext().pImpl->FunctionMetadata[this].lookup(KindID);
1204 }
1205
getMetadata(StringRef Kind) const1206 MDNode *Function::getMetadata(StringRef Kind) const {
1207 if (!hasMetadata())
1208 return nullptr;
1209 return getMetadata(getContext().getMDKindID(Kind));
1210 }
1211
setMetadata(unsigned KindID,MDNode * MD)1212 void Function::setMetadata(unsigned KindID, MDNode *MD) {
1213 if (MD) {
1214 if (!hasMetadata())
1215 setHasMetadataHashEntry(true);
1216
1217 getContext().pImpl->FunctionMetadata[this].set(KindID, *MD);
1218 return;
1219 }
1220
1221 // Nothing to unset.
1222 if (!hasMetadata())
1223 return;
1224
1225 auto &Store = getContext().pImpl->FunctionMetadata[this];
1226 Store.erase(KindID);
1227 if (Store.empty())
1228 clearMetadata();
1229 }
1230
setMetadata(StringRef Kind,MDNode * MD)1231 void Function::setMetadata(StringRef Kind, MDNode *MD) {
1232 if (!MD && !hasMetadata())
1233 return;
1234 setMetadata(getContext().getMDKindID(Kind), MD);
1235 }
1236
getAllMetadata(SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs) const1237 void Function::getAllMetadata(
1238 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1239 MDs.clear();
1240
1241 if (!hasMetadata())
1242 return;
1243
1244 getContext().pImpl->FunctionMetadata[this].getAll(MDs);
1245 }
1246
dropUnknownMetadata(ArrayRef<unsigned> KnownIDs)1247 void Function::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
1248 if (!hasMetadata())
1249 return;
1250 if (KnownIDs.empty()) {
1251 clearMetadata();
1252 return;
1253 }
1254
1255 SmallSet<unsigned, 5> KnownSet;
1256 KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1257
1258 auto &Store = getContext().pImpl->FunctionMetadata[this];
1259 assert(!Store.empty());
1260
1261 Store.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
1262 return !KnownSet.count(I.first);
1263 });
1264
1265 if (Store.empty())
1266 clearMetadata();
1267 }
1268
clearMetadata()1269 void Function::clearMetadata() {
1270 if (!hasMetadata())
1271 return;
1272 getContext().pImpl->FunctionMetadata.erase(this);
1273 setHasMetadataHashEntry(false);
1274 }
1275
setSubprogram(DISubprogram * SP)1276 void Function::setSubprogram(DISubprogram *SP) {
1277 setMetadata(LLVMContext::MD_dbg, SP);
1278 }
1279
getSubprogram() const1280 DISubprogram *Function::getSubprogram() const {
1281 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1282 }
1283