1 //===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // \file
11 // This file implements a TargetTransformInfo analysis pass specific to the
12 // AMDGPU target machine. It uses the target's detailed information to provide
13 // more precise answers to certain TTI queries, while letting the target
14 // independent and default TTI implementations handle the rest.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "AMDGPUTargetTransformInfo.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/BasicTTIImpl.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Target/CostTable.h"
26 #include "llvm/Target/TargetLowering.h"
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "AMDGPUtti"
30 
getUnrollingPreferences(Loop * L,TTI::UnrollingPreferences & UP)31 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L,
32                                             TTI::UnrollingPreferences &UP) {
33   UP.Threshold = 300; // Twice the default.
34   UP.MaxCount = UINT_MAX;
35   UP.Partial = true;
36 
37   // TODO: Do we want runtime unrolling?
38 
39   for (const BasicBlock *BB : L->getBlocks()) {
40     const DataLayout &DL = BB->getModule()->getDataLayout();
41     for (const Instruction &I : *BB) {
42       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
43       if (!GEP || GEP->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
44         continue;
45 
46       const Value *Ptr = GEP->getPointerOperand();
47       const AllocaInst *Alloca =
48           dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
49       if (Alloca) {
50         // We want to do whatever we can to limit the number of alloca
51         // instructions that make it through to the code generator.  allocas
52         // require us to use indirect addressing, which is slow and prone to
53         // compiler bugs.  If this loop does an address calculation on an
54         // alloca ptr, then we want to use a higher than normal loop unroll
55         // threshold. This will give SROA a better chance to eliminate these
56         // allocas.
57         //
58         // Don't use the maximum allowed value here as it will make some
59         // programs way too big.
60         UP.Threshold = 800;
61       }
62     }
63   }
64 }
65 
getNumberOfRegisters(bool Vec)66 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) {
67   if (Vec)
68     return 0;
69 
70   // Number of VGPRs on SI.
71   if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)
72     return 256;
73 
74   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
75 }
76 
getRegisterBitWidth(bool)77 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool) { return 32; }
78 
getMaxInterleaveFactor(unsigned VF)79 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) {
80   // Semi-arbitrary large amount.
81   return 64;
82 }
83 
getCFInstrCost(unsigned Opcode)84 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) {
85   // XXX - For some reason this isn't called for switch.
86   switch (Opcode) {
87   case Instruction::Br:
88   case Instruction::Ret:
89     return 10;
90   default:
91     return BaseT::getCFInstrCost(Opcode);
92   }
93 }
94 
getVectorInstrCost(unsigned Opcode,Type * ValTy,unsigned Index)95 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
96                                       unsigned Index) {
97   switch (Opcode) {
98   case Instruction::ExtractElement:
99     // Dynamic indexing isn't free and is best avoided.
100     return Index == ~0u ? 2 : 0;
101   default:
102     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
103   }
104 }
105 
isIntrinsicSourceOfDivergence(const TargetIntrinsicInfo * TII,const IntrinsicInst * I)106 static bool isIntrinsicSourceOfDivergence(const TargetIntrinsicInfo *TII,
107                                           const IntrinsicInst *I) {
108   switch (I->getIntrinsicID()) {
109   default:
110     return false;
111   case Intrinsic::not_intrinsic:
112     // This means we have an intrinsic that isn't defined in
113     // IntrinsicsAMDGPU.td
114     break;
115 
116   case Intrinsic::amdgcn_interp_p1:
117   case Intrinsic::amdgcn_interp_p2:
118   case Intrinsic::amdgcn_mbcnt_hi:
119   case Intrinsic::amdgcn_mbcnt_lo:
120   case Intrinsic::r600_read_tidig_x:
121   case Intrinsic::r600_read_tidig_y:
122   case Intrinsic::r600_read_tidig_z:
123     return true;
124   }
125 
126   StringRef Name = I->getCalledFunction()->getName();
127   switch (TII->lookupName((const char *)Name.bytes_begin(), Name.size())) {
128   default:
129     return false;
130   case AMDGPUIntrinsic::SI_tid:
131   case AMDGPUIntrinsic::SI_fs_interp:
132     return true;
133   }
134 }
135 
isArgPassedInSGPR(const Argument * A)136 static bool isArgPassedInSGPR(const Argument *A) {
137   const Function *F = A->getParent();
138   unsigned ShaderType = AMDGPU::getShaderType(*F);
139 
140   // Arguments to compute shaders are never a source of divergence.
141   if (ShaderType == ShaderType::COMPUTE)
142     return true;
143 
144   // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
145   if (F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::InReg) ||
146       F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::ByVal))
147     return true;
148 
149   // Everything else is in VGPRs.
150   return false;
151 }
152 
153 ///
154 /// \returns true if the result of the value could potentially be
155 /// different across workitems in a wavefront.
isSourceOfDivergence(const Value * V) const156 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const {
157 
158   if (const Argument *A = dyn_cast<Argument>(V))
159     return !isArgPassedInSGPR(A);
160 
161   // Loads from the private address space are divergent, because threads
162   // can execute the load instruction with the same inputs and get different
163   // results.
164   //
165   // All other loads are not divergent, because if threads issue loads with the
166   // same arguments, they will always get the same result.
167   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
168     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS;
169 
170   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
171     const TargetMachine &TM = getTLI()->getTargetMachine();
172     return isIntrinsicSourceOfDivergence(TM.getIntrinsicInfo(), Intrinsic);
173   }
174 
175   // Assume all function calls are a source of divergence.
176   if (isa<CallInst>(V) || isa<InvokeInst>(V))
177     return true;
178 
179   return false;
180 }
181