1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "PPC.h"
16 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCTargetMachine.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/CodeGen/FunctionLoweringInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalAlias.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 using namespace llvm;
40
41 #define DEBUG_TYPE "ppc-codegen"
42
43 // FIXME: Remove this once the bug has been fixed!
44 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
45 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
46
47 static cl::opt<bool>
48 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
49 cl::desc("use aggressive ppc isel for bit permutations"),
50 cl::Hidden);
51 static cl::opt<bool> BPermRewriterNoMasking(
52 "ppc-bit-perm-rewriter-stress-rotates",
53 cl::desc("stress rotate selection in aggressive ppc isel for "
54 "bit permutations"),
55 cl::Hidden);
56
57 static cl::opt<bool> EnableBranchHint(
58 "ppc-use-branch-hint", cl::init(true),
59 cl::desc("Enable static hinting of branches on ppc"),
60 cl::Hidden);
61
62 namespace llvm {
63 void initializePPCDAGToDAGISelPass(PassRegistry&);
64 }
65
66 namespace {
67 //===--------------------------------------------------------------------===//
68 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
69 /// instructions for SelectionDAG operations.
70 ///
71 class PPCDAGToDAGISel : public SelectionDAGISel {
72 const PPCTargetMachine &TM;
73 const PPCSubtarget *PPCSubTarget;
74 const PPCTargetLowering *PPCLowering;
75 unsigned GlobalBaseReg;
76 public:
PPCDAGToDAGISel(PPCTargetMachine & tm)77 explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
78 : SelectionDAGISel(tm), TM(tm) {
79 initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
80 }
81
runOnMachineFunction(MachineFunction & MF)82 bool runOnMachineFunction(MachineFunction &MF) override {
83 // Make sure we re-emit a set of the global base reg if necessary
84 GlobalBaseReg = 0;
85 PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
86 PPCLowering = PPCSubTarget->getTargetLowering();
87 SelectionDAGISel::runOnMachineFunction(MF);
88
89 if (!PPCSubTarget->isSVR4ABI())
90 InsertVRSaveCode(MF);
91
92 return true;
93 }
94
95 void PreprocessISelDAG() override;
96 void PostprocessISelDAG() override;
97
98 /// getI32Imm - Return a target constant with the specified value, of type
99 /// i32.
getI32Imm(unsigned Imm,SDLoc dl)100 inline SDValue getI32Imm(unsigned Imm, SDLoc dl) {
101 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
102 }
103
104 /// getI64Imm - Return a target constant with the specified value, of type
105 /// i64.
getI64Imm(uint64_t Imm,SDLoc dl)106 inline SDValue getI64Imm(uint64_t Imm, SDLoc dl) {
107 return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
108 }
109
110 /// getSmallIPtrImm - Return a target constant of pointer type.
getSmallIPtrImm(unsigned Imm,SDLoc dl)111 inline SDValue getSmallIPtrImm(unsigned Imm, SDLoc dl) {
112 return CurDAG->getTargetConstant(
113 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
114 }
115
116 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
117 /// rotate and mask opcode and mask operation.
118 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
119 unsigned &SH, unsigned &MB, unsigned &ME);
120
121 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
122 /// base register. Return the virtual register that holds this value.
123 SDNode *getGlobalBaseReg();
124
125 SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
126
127 // Select - Convert the specified operand from a target-independent to a
128 // target-specific node if it hasn't already been changed.
129 SDNode *Select(SDNode *N) override;
130
131 SDNode *SelectBitfieldInsert(SDNode *N);
132 SDNode *SelectBitPermutation(SDNode *N);
133
134 /// SelectCC - Select a comparison of the specified values with the
135 /// specified condition code, returning the CR# of the expression.
136 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
137
138 /// SelectAddrImm - Returns true if the address N can be represented by
139 /// a base register plus a signed 16-bit displacement [r+imm].
SelectAddrImm(SDValue N,SDValue & Disp,SDValue & Base)140 bool SelectAddrImm(SDValue N, SDValue &Disp,
141 SDValue &Base) {
142 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
143 }
144
145 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
146 /// immediate field. Note that the operand at this point is already the
147 /// result of a prior SelectAddressRegImm call.
SelectAddrImmOffs(SDValue N,SDValue & Out) const148 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
149 if (N.getOpcode() == ISD::TargetConstant ||
150 N.getOpcode() == ISD::TargetGlobalAddress) {
151 Out = N;
152 return true;
153 }
154
155 return false;
156 }
157
158 /// SelectAddrIdx - Given the specified addressed, check to see if it can be
159 /// represented as an indexed [r+r] operation. Returns false if it can
160 /// be represented by [r+imm], which are preferred.
SelectAddrIdx(SDValue N,SDValue & Base,SDValue & Index)161 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
162 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
163 }
164
165 /// SelectAddrIdxOnly - Given the specified addressed, force it to be
166 /// represented as an indexed [r+r] operation.
SelectAddrIdxOnly(SDValue N,SDValue & Base,SDValue & Index)167 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
168 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
169 }
170
171 /// SelectAddrImmX4 - Returns true if the address N can be represented by
172 /// a base register plus a signed 16-bit displacement that is a multiple of 4.
173 /// Suitable for use by STD and friends.
SelectAddrImmX4(SDValue N,SDValue & Disp,SDValue & Base)174 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
175 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
176 }
177
178 // Select an address into a single register.
SelectAddr(SDValue N,SDValue & Base)179 bool SelectAddr(SDValue N, SDValue &Base) {
180 Base = N;
181 return true;
182 }
183
184 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
185 /// inline asm expressions. It is always correct to compute the value into
186 /// a register. The case of adding a (possibly relocatable) constant to a
187 /// register can be improved, but it is wrong to substitute Reg+Reg for
188 /// Reg in an asm, because the load or store opcode would have to change.
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)189 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
190 unsigned ConstraintID,
191 std::vector<SDValue> &OutOps) override {
192
193 switch(ConstraintID) {
194 default:
195 errs() << "ConstraintID: " << ConstraintID << "\n";
196 llvm_unreachable("Unexpected asm memory constraint");
197 case InlineAsm::Constraint_es:
198 case InlineAsm::Constraint_i:
199 case InlineAsm::Constraint_m:
200 case InlineAsm::Constraint_o:
201 case InlineAsm::Constraint_Q:
202 case InlineAsm::Constraint_Z:
203 case InlineAsm::Constraint_Zy:
204 // We need to make sure that this one operand does not end up in r0
205 // (because we might end up lowering this as 0(%op)).
206 const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
207 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
208 SDLoc dl(Op);
209 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
210 SDValue NewOp =
211 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
212 dl, Op.getValueType(),
213 Op, RC), 0);
214
215 OutOps.push_back(NewOp);
216 return false;
217 }
218 return true;
219 }
220
221 void InsertVRSaveCode(MachineFunction &MF);
222
getPassName() const223 const char *getPassName() const override {
224 return "PowerPC DAG->DAG Pattern Instruction Selection";
225 }
226
227 // Include the pieces autogenerated from the target description.
228 #include "PPCGenDAGISel.inc"
229
230 private:
231 SDNode *SelectSETCC(SDNode *N);
232
233 void PeepholePPC64();
234 void PeepholePPC64ZExt();
235 void PeepholeCROps();
236
237 SDValue combineToCMPB(SDNode *N);
238 void foldBoolExts(SDValue &Res, SDNode *&N);
239
240 bool AllUsersSelectZero(SDNode *N);
241 void SwapAllSelectUsers(SDNode *N);
242
243 SDNode *transferMemOperands(SDNode *N, SDNode *Result);
244 };
245 }
246
247 /// InsertVRSaveCode - Once the entire function has been instruction selected,
248 /// all virtual registers are created and all machine instructions are built,
249 /// check to see if we need to save/restore VRSAVE. If so, do it.
InsertVRSaveCode(MachineFunction & Fn)250 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
251 // Check to see if this function uses vector registers, which means we have to
252 // save and restore the VRSAVE register and update it with the regs we use.
253 //
254 // In this case, there will be virtual registers of vector type created
255 // by the scheduler. Detect them now.
256 bool HasVectorVReg = false;
257 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
258 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
259 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
260 HasVectorVReg = true;
261 break;
262 }
263 }
264 if (!HasVectorVReg) return; // nothing to do.
265
266 // If we have a vector register, we want to emit code into the entry and exit
267 // blocks to save and restore the VRSAVE register. We do this here (instead
268 // of marking all vector instructions as clobbering VRSAVE) for two reasons:
269 //
270 // 1. This (trivially) reduces the load on the register allocator, by not
271 // having to represent the live range of the VRSAVE register.
272 // 2. This (more significantly) allows us to create a temporary virtual
273 // register to hold the saved VRSAVE value, allowing this temporary to be
274 // register allocated, instead of forcing it to be spilled to the stack.
275
276 // Create two vregs - one to hold the VRSAVE register that is live-in to the
277 // function and one for the value after having bits or'd into it.
278 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
279 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
280
281 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
282 MachineBasicBlock &EntryBB = *Fn.begin();
283 DebugLoc dl;
284 // Emit the following code into the entry block:
285 // InVRSAVE = MFVRSAVE
286 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
287 // MTVRSAVE UpdatedVRSAVE
288 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
289 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
290 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
291 UpdatedVRSAVE).addReg(InVRSAVE);
292 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
293
294 // Find all return blocks, outputting a restore in each epilog.
295 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
296 if (BB->isReturnBlock()) {
297 IP = BB->end(); --IP;
298
299 // Skip over all terminator instructions, which are part of the return
300 // sequence.
301 MachineBasicBlock::iterator I2 = IP;
302 while (I2 != BB->begin() && (--I2)->isTerminator())
303 IP = I2;
304
305 // Emit: MTVRSAVE InVRSave
306 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
307 }
308 }
309 }
310
311
312 /// getGlobalBaseReg - Output the instructions required to put the
313 /// base address to use for accessing globals into a register.
314 ///
getGlobalBaseReg()315 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
316 if (!GlobalBaseReg) {
317 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
318 // Insert the set of GlobalBaseReg into the first MBB of the function
319 MachineBasicBlock &FirstMBB = MF->front();
320 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
321 const Module *M = MF->getFunction()->getParent();
322 DebugLoc dl;
323
324 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
325 if (PPCSubTarget->isTargetELF()) {
326 GlobalBaseReg = PPC::R30;
327 if (M->getPICLevel() == PICLevel::Small) {
328 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
329 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
330 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
331 } else {
332 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
333 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
334 unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
335 BuildMI(FirstMBB, MBBI, dl,
336 TII.get(PPC::UpdateGBR), GlobalBaseReg)
337 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
338 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
339 }
340 } else {
341 GlobalBaseReg =
342 RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
343 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
344 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
345 }
346 } else {
347 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
348 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
349 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
350 }
351 }
352 return CurDAG->getRegister(GlobalBaseReg,
353 PPCLowering->getPointerTy(CurDAG->getDataLayout()))
354 .getNode();
355 }
356
357 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
358 /// or 64-bit immediate, and if the value can be accurately represented as a
359 /// sign extension from a 16-bit value. If so, this returns true and the
360 /// immediate.
isIntS16Immediate(SDNode * N,short & Imm)361 static bool isIntS16Immediate(SDNode *N, short &Imm) {
362 if (N->getOpcode() != ISD::Constant)
363 return false;
364
365 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
366 if (N->getValueType(0) == MVT::i32)
367 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
368 else
369 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
370 }
371
isIntS16Immediate(SDValue Op,short & Imm)372 static bool isIntS16Immediate(SDValue Op, short &Imm) {
373 return isIntS16Immediate(Op.getNode(), Imm);
374 }
375
376
377 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
378 /// operand. If so Imm will receive the 32-bit value.
isInt32Immediate(SDNode * N,unsigned & Imm)379 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
380 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
381 Imm = cast<ConstantSDNode>(N)->getZExtValue();
382 return true;
383 }
384 return false;
385 }
386
387 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
388 /// operand. If so Imm will receive the 64-bit value.
isInt64Immediate(SDNode * N,uint64_t & Imm)389 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
390 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
391 Imm = cast<ConstantSDNode>(N)->getZExtValue();
392 return true;
393 }
394 return false;
395 }
396
397 // isInt32Immediate - This method tests to see if a constant operand.
398 // If so Imm will receive the 32 bit value.
isInt32Immediate(SDValue N,unsigned & Imm)399 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
400 return isInt32Immediate(N.getNode(), Imm);
401 }
402
getBranchHint(unsigned PCC,FunctionLoweringInfo * FuncInfo,const SDValue & DestMBB)403 static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
404 const SDValue &DestMBB) {
405 assert(isa<BasicBlockSDNode>(DestMBB));
406
407 if (!FuncInfo->BPI) return PPC::BR_NO_HINT;
408
409 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
410 const TerminatorInst *BBTerm = BB->getTerminator();
411
412 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
413
414 const BasicBlock *TBB = BBTerm->getSuccessor(0);
415 const BasicBlock *FBB = BBTerm->getSuccessor(1);
416
417 uint32_t TWeight = FuncInfo->BPI->getEdgeWeight(BB, TBB);
418 uint32_t FWeight = FuncInfo->BPI->getEdgeWeight(BB, FBB);
419
420 // We only want to handle cases which are easy to predict at static time, e.g.
421 // C++ throw statement, that is very likely not taken, or calling never
422 // returned function, e.g. stdlib exit(). So we set Threshold to filter
423 // unwanted cases.
424 //
425 // Below is LLVM branch weight table, we only want to handle case 1, 2
426 //
427 // Case Taken:Nontaken Example
428 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(),
429 // 2. Invoke-terminating 1:1048575
430 // 3. Coldblock 4:64 __builtin_expect
431 // 4. Loop Branch 124:4 For loop
432 // 5. PH/ZH/FPH 20:12
433 const uint32_t Threshold = 10000;
434
435 // Minimal weight should be at least 1
436 if (std::max(TWeight, FWeight) /
437 std::max(1u, std::min(TWeight, FWeight)) < Threshold)
438 return PPC::BR_NO_HINT;
439
440 DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() << "::"
441 << BB->getName() << "'\n"
442 << " -> " << TBB->getName() << ": " << TWeight << "\n"
443 << " -> " << FBB->getName() << ": " << FWeight << "\n");
444
445 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
446
447 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch weight,
448 // because we want 'TWeight' stands for 'branch weight' to Dest BasicBlock
449 if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
450 std::swap(TWeight, FWeight);
451
452 return (TWeight > FWeight) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
453 }
454
455 // isOpcWithIntImmediate - This method tests to see if the node is a specific
456 // opcode and that it has a immediate integer right operand.
457 // If so Imm will receive the 32 bit value.
isOpcWithIntImmediate(SDNode * N,unsigned Opc,unsigned & Imm)458 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
459 return N->getOpcode() == Opc
460 && isInt32Immediate(N->getOperand(1).getNode(), Imm);
461 }
462
getFrameIndex(SDNode * SN,SDNode * N,unsigned Offset)463 SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
464 SDLoc dl(SN);
465 int FI = cast<FrameIndexSDNode>(N)->getIndex();
466 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
467 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
468 if (SN->hasOneUse())
469 return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
470 getSmallIPtrImm(Offset, dl));
471 return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
472 getSmallIPtrImm(Offset, dl));
473 }
474
isRotateAndMask(SDNode * N,unsigned Mask,bool isShiftMask,unsigned & SH,unsigned & MB,unsigned & ME)475 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
476 bool isShiftMask, unsigned &SH,
477 unsigned &MB, unsigned &ME) {
478 // Don't even go down this path for i64, since different logic will be
479 // necessary for rldicl/rldicr/rldimi.
480 if (N->getValueType(0) != MVT::i32)
481 return false;
482
483 unsigned Shift = 32;
484 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
485 unsigned Opcode = N->getOpcode();
486 if (N->getNumOperands() != 2 ||
487 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
488 return false;
489
490 if (Opcode == ISD::SHL) {
491 // apply shift left to mask if it comes first
492 if (isShiftMask) Mask = Mask << Shift;
493 // determine which bits are made indeterminant by shift
494 Indeterminant = ~(0xFFFFFFFFu << Shift);
495 } else if (Opcode == ISD::SRL) {
496 // apply shift right to mask if it comes first
497 if (isShiftMask) Mask = Mask >> Shift;
498 // determine which bits are made indeterminant by shift
499 Indeterminant = ~(0xFFFFFFFFu >> Shift);
500 // adjust for the left rotate
501 Shift = 32 - Shift;
502 } else if (Opcode == ISD::ROTL) {
503 Indeterminant = 0;
504 } else {
505 return false;
506 }
507
508 // if the mask doesn't intersect any Indeterminant bits
509 if (Mask && !(Mask & Indeterminant)) {
510 SH = Shift & 31;
511 // make sure the mask is still a mask (wrap arounds may not be)
512 return isRunOfOnes(Mask, MB, ME);
513 }
514 return false;
515 }
516
517 /// SelectBitfieldInsert - turn an or of two masked values into
518 /// the rotate left word immediate then mask insert (rlwimi) instruction.
SelectBitfieldInsert(SDNode * N)519 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
520 SDValue Op0 = N->getOperand(0);
521 SDValue Op1 = N->getOperand(1);
522 SDLoc dl(N);
523
524 APInt LKZ, LKO, RKZ, RKO;
525 CurDAG->computeKnownBits(Op0, LKZ, LKO);
526 CurDAG->computeKnownBits(Op1, RKZ, RKO);
527
528 unsigned TargetMask = LKZ.getZExtValue();
529 unsigned InsertMask = RKZ.getZExtValue();
530
531 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
532 unsigned Op0Opc = Op0.getOpcode();
533 unsigned Op1Opc = Op1.getOpcode();
534 unsigned Value, SH = 0;
535 TargetMask = ~TargetMask;
536 InsertMask = ~InsertMask;
537
538 // If the LHS has a foldable shift and the RHS does not, then swap it to the
539 // RHS so that we can fold the shift into the insert.
540 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
541 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
542 Op0.getOperand(0).getOpcode() == ISD::SRL) {
543 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
544 Op1.getOperand(0).getOpcode() != ISD::SRL) {
545 std::swap(Op0, Op1);
546 std::swap(Op0Opc, Op1Opc);
547 std::swap(TargetMask, InsertMask);
548 }
549 }
550 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
551 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
552 Op1.getOperand(0).getOpcode() != ISD::SRL) {
553 std::swap(Op0, Op1);
554 std::swap(Op0Opc, Op1Opc);
555 std::swap(TargetMask, InsertMask);
556 }
557 }
558
559 unsigned MB, ME;
560 if (isRunOfOnes(InsertMask, MB, ME)) {
561 SDValue Tmp1, Tmp2;
562
563 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
564 isInt32Immediate(Op1.getOperand(1), Value)) {
565 Op1 = Op1.getOperand(0);
566 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
567 }
568 if (Op1Opc == ISD::AND) {
569 // The AND mask might not be a constant, and we need to make sure that
570 // if we're going to fold the masking with the insert, all bits not
571 // know to be zero in the mask are known to be one.
572 APInt MKZ, MKO;
573 CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
574 bool CanFoldMask = InsertMask == MKO.getZExtValue();
575
576 unsigned SHOpc = Op1.getOperand(0).getOpcode();
577 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
578 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
579 // Note that Value must be in range here (less than 32) because
580 // otherwise there would not be any bits set in InsertMask.
581 Op1 = Op1.getOperand(0).getOperand(0);
582 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
583 }
584 }
585
586 SH &= 31;
587 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
588 getI32Imm(ME, dl) };
589 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
590 }
591 }
592 return nullptr;
593 }
594
595 // Predict the number of instructions that would be generated by calling
596 // SelectInt64(N).
SelectInt64CountDirect(int64_t Imm)597 static unsigned SelectInt64CountDirect(int64_t Imm) {
598 // Assume no remaining bits.
599 unsigned Remainder = 0;
600 // Assume no shift required.
601 unsigned Shift = 0;
602
603 // If it can't be represented as a 32 bit value.
604 if (!isInt<32>(Imm)) {
605 Shift = countTrailingZeros<uint64_t>(Imm);
606 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
607
608 // If the shifted value fits 32 bits.
609 if (isInt<32>(ImmSh)) {
610 // Go with the shifted value.
611 Imm = ImmSh;
612 } else {
613 // Still stuck with a 64 bit value.
614 Remainder = Imm;
615 Shift = 32;
616 Imm >>= 32;
617 }
618 }
619
620 // Intermediate operand.
621 unsigned Result = 0;
622
623 // Handle first 32 bits.
624 unsigned Lo = Imm & 0xFFFF;
625
626 // Simple value.
627 if (isInt<16>(Imm)) {
628 // Just the Lo bits.
629 ++Result;
630 } else if (Lo) {
631 // Handle the Hi bits and Lo bits.
632 Result += 2;
633 } else {
634 // Just the Hi bits.
635 ++Result;
636 }
637
638 // If no shift, we're done.
639 if (!Shift) return Result;
640
641 // Shift for next step if the upper 32-bits were not zero.
642 if (Imm)
643 ++Result;
644
645 // Add in the last bits as required.
646 if ((Remainder >> 16) & 0xFFFF)
647 ++Result;
648 if (Remainder & 0xFFFF)
649 ++Result;
650
651 return Result;
652 }
653
Rot64(uint64_t Imm,unsigned R)654 static uint64_t Rot64(uint64_t Imm, unsigned R) {
655 return (Imm << R) | (Imm >> (64 - R));
656 }
657
SelectInt64Count(int64_t Imm)658 static unsigned SelectInt64Count(int64_t Imm) {
659 unsigned Count = SelectInt64CountDirect(Imm);
660 if (Count == 1)
661 return Count;
662
663 for (unsigned r = 1; r < 63; ++r) {
664 uint64_t RImm = Rot64(Imm, r);
665 unsigned RCount = SelectInt64CountDirect(RImm) + 1;
666 Count = std::min(Count, RCount);
667
668 // See comments in SelectInt64 for an explanation of the logic below.
669 unsigned LS = findLastSet(RImm);
670 if (LS != r-1)
671 continue;
672
673 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
674 uint64_t RImmWithOnes = RImm | OnesMask;
675
676 RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
677 Count = std::min(Count, RCount);
678 }
679
680 return Count;
681 }
682
683 // Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
684 // (above) needs to be kept in sync with this function.
SelectInt64Direct(SelectionDAG * CurDAG,SDLoc dl,int64_t Imm)685 static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
686 // Assume no remaining bits.
687 unsigned Remainder = 0;
688 // Assume no shift required.
689 unsigned Shift = 0;
690
691 // If it can't be represented as a 32 bit value.
692 if (!isInt<32>(Imm)) {
693 Shift = countTrailingZeros<uint64_t>(Imm);
694 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
695
696 // If the shifted value fits 32 bits.
697 if (isInt<32>(ImmSh)) {
698 // Go with the shifted value.
699 Imm = ImmSh;
700 } else {
701 // Still stuck with a 64 bit value.
702 Remainder = Imm;
703 Shift = 32;
704 Imm >>= 32;
705 }
706 }
707
708 // Intermediate operand.
709 SDNode *Result;
710
711 // Handle first 32 bits.
712 unsigned Lo = Imm & 0xFFFF;
713 unsigned Hi = (Imm >> 16) & 0xFFFF;
714
715 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
716 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
717 };
718
719 // Simple value.
720 if (isInt<16>(Imm)) {
721 // Just the Lo bits.
722 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
723 } else if (Lo) {
724 // Handle the Hi bits.
725 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
726 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
727 // And Lo bits.
728 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
729 SDValue(Result, 0), getI32Imm(Lo));
730 } else {
731 // Just the Hi bits.
732 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
733 }
734
735 // If no shift, we're done.
736 if (!Shift) return Result;
737
738 // Shift for next step if the upper 32-bits were not zero.
739 if (Imm) {
740 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
741 SDValue(Result, 0),
742 getI32Imm(Shift),
743 getI32Imm(63 - Shift));
744 }
745
746 // Add in the last bits as required.
747 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
748 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
749 SDValue(Result, 0), getI32Imm(Hi));
750 }
751 if ((Lo = Remainder & 0xFFFF)) {
752 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
753 SDValue(Result, 0), getI32Imm(Lo));
754 }
755
756 return Result;
757 }
758
SelectInt64(SelectionDAG * CurDAG,SDLoc dl,int64_t Imm)759 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
760 unsigned Count = SelectInt64CountDirect(Imm);
761 if (Count == 1)
762 return SelectInt64Direct(CurDAG, dl, Imm);
763
764 unsigned RMin = 0;
765
766 int64_t MatImm;
767 unsigned MaskEnd;
768
769 for (unsigned r = 1; r < 63; ++r) {
770 uint64_t RImm = Rot64(Imm, r);
771 unsigned RCount = SelectInt64CountDirect(RImm) + 1;
772 if (RCount < Count) {
773 Count = RCount;
774 RMin = r;
775 MatImm = RImm;
776 MaskEnd = 63;
777 }
778
779 // If the immediate to generate has many trailing zeros, it might be
780 // worthwhile to generate a rotated value with too many leading ones
781 // (because that's free with li/lis's sign-extension semantics), and then
782 // mask them off after rotation.
783
784 unsigned LS = findLastSet(RImm);
785 // We're adding (63-LS) higher-order ones, and we expect to mask them off
786 // after performing the inverse rotation by (64-r). So we need that:
787 // 63-LS == 64-r => LS == r-1
788 if (LS != r-1)
789 continue;
790
791 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
792 uint64_t RImmWithOnes = RImm | OnesMask;
793
794 RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
795 if (RCount < Count) {
796 Count = RCount;
797 RMin = r;
798 MatImm = RImmWithOnes;
799 MaskEnd = LS;
800 }
801 }
802
803 if (!RMin)
804 return SelectInt64Direct(CurDAG, dl, Imm);
805
806 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
807 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
808 };
809
810 SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
811 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
812 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
813 }
814
815 // Select a 64-bit constant.
SelectInt64(SelectionDAG * CurDAG,SDNode * N)816 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
817 SDLoc dl(N);
818
819 // Get 64 bit value.
820 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
821 return SelectInt64(CurDAG, dl, Imm);
822 }
823
824 namespace {
825 class BitPermutationSelector {
826 struct ValueBit {
827 SDValue V;
828
829 // The bit number in the value, using a convention where bit 0 is the
830 // lowest-order bit.
831 unsigned Idx;
832
833 enum Kind {
834 ConstZero,
835 Variable
836 } K;
837
ValueBit__anon7bd595e20411::BitPermutationSelector::ValueBit838 ValueBit(SDValue V, unsigned I, Kind K = Variable)
839 : V(V), Idx(I), K(K) {}
ValueBit__anon7bd595e20411::BitPermutationSelector::ValueBit840 ValueBit(Kind K = Variable)
841 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
842
isZero__anon7bd595e20411::BitPermutationSelector::ValueBit843 bool isZero() const {
844 return K == ConstZero;
845 }
846
hasValue__anon7bd595e20411::BitPermutationSelector::ValueBit847 bool hasValue() const {
848 return K == Variable;
849 }
850
getValue__anon7bd595e20411::BitPermutationSelector::ValueBit851 SDValue getValue() const {
852 assert(hasValue() && "Cannot get the value of a constant bit");
853 return V;
854 }
855
getValueBitIndex__anon7bd595e20411::BitPermutationSelector::ValueBit856 unsigned getValueBitIndex() const {
857 assert(hasValue() && "Cannot get the value bit index of a constant bit");
858 return Idx;
859 }
860 };
861
862 // A bit group has the same underlying value and the same rotate factor.
863 struct BitGroup {
864 SDValue V;
865 unsigned RLAmt;
866 unsigned StartIdx, EndIdx;
867
868 // This rotation amount assumes that the lower 32 bits of the quantity are
869 // replicated in the high 32 bits by the rotation operator (which is done
870 // by rlwinm and friends in 64-bit mode).
871 bool Repl32;
872 // Did converting to Repl32 == true change the rotation factor? If it did,
873 // it decreased it by 32.
874 bool Repl32CR;
875 // Was this group coalesced after setting Repl32 to true?
876 bool Repl32Coalesced;
877
BitGroup__anon7bd595e20411::BitPermutationSelector::BitGroup878 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
879 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
880 Repl32Coalesced(false) {
881 DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
882 " [" << S << ", " << E << "]\n");
883 }
884 };
885
886 // Information on each (Value, RLAmt) pair (like the number of groups
887 // associated with each) used to choose the lowering method.
888 struct ValueRotInfo {
889 SDValue V;
890 unsigned RLAmt;
891 unsigned NumGroups;
892 unsigned FirstGroupStartIdx;
893 bool Repl32;
894
ValueRotInfo__anon7bd595e20411::BitPermutationSelector::ValueRotInfo895 ValueRotInfo()
896 : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
897 Repl32(false) {}
898
899 // For sorting (in reverse order) by NumGroups, and then by
900 // FirstGroupStartIdx.
operator <__anon7bd595e20411::BitPermutationSelector::ValueRotInfo901 bool operator < (const ValueRotInfo &Other) const {
902 // We need to sort so that the non-Repl32 come first because, when we're
903 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
904 // masking operation.
905 if (Repl32 < Other.Repl32)
906 return true;
907 else if (Repl32 > Other.Repl32)
908 return false;
909 else if (NumGroups > Other.NumGroups)
910 return true;
911 else if (NumGroups < Other.NumGroups)
912 return false;
913 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
914 return true;
915 return false;
916 }
917 };
918
919 // Return true if something interesting was deduced, return false if we're
920 // providing only a generic representation of V (or something else likewise
921 // uninteresting for instruction selection).
getValueBits(SDValue V,SmallVector<ValueBit,64> & Bits)922 bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
923 switch (V.getOpcode()) {
924 default: break;
925 case ISD::ROTL:
926 if (isa<ConstantSDNode>(V.getOperand(1))) {
927 unsigned RotAmt = V.getConstantOperandVal(1);
928
929 SmallVector<ValueBit, 64> LHSBits(Bits.size());
930 getValueBits(V.getOperand(0), LHSBits);
931
932 for (unsigned i = 0; i < Bits.size(); ++i)
933 Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
934
935 return true;
936 }
937 break;
938 case ISD::SHL:
939 if (isa<ConstantSDNode>(V.getOperand(1))) {
940 unsigned ShiftAmt = V.getConstantOperandVal(1);
941
942 SmallVector<ValueBit, 64> LHSBits(Bits.size());
943 getValueBits(V.getOperand(0), LHSBits);
944
945 for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
946 Bits[i] = LHSBits[i - ShiftAmt];
947
948 for (unsigned i = 0; i < ShiftAmt; ++i)
949 Bits[i] = ValueBit(ValueBit::ConstZero);
950
951 return true;
952 }
953 break;
954 case ISD::SRL:
955 if (isa<ConstantSDNode>(V.getOperand(1))) {
956 unsigned ShiftAmt = V.getConstantOperandVal(1);
957
958 SmallVector<ValueBit, 64> LHSBits(Bits.size());
959 getValueBits(V.getOperand(0), LHSBits);
960
961 for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
962 Bits[i] = LHSBits[i + ShiftAmt];
963
964 for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
965 Bits[i] = ValueBit(ValueBit::ConstZero);
966
967 return true;
968 }
969 break;
970 case ISD::AND:
971 if (isa<ConstantSDNode>(V.getOperand(1))) {
972 uint64_t Mask = V.getConstantOperandVal(1);
973
974 SmallVector<ValueBit, 64> LHSBits(Bits.size());
975 bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
976
977 for (unsigned i = 0; i < Bits.size(); ++i)
978 if (((Mask >> i) & 1) == 1)
979 Bits[i] = LHSBits[i];
980 else
981 Bits[i] = ValueBit(ValueBit::ConstZero);
982
983 // Mark this as interesting, only if the LHS was also interesting. This
984 // prevents the overall procedure from matching a single immediate 'and'
985 // (which is non-optimal because such an and might be folded with other
986 // things if we don't select it here).
987 return LHSTrivial;
988 }
989 break;
990 case ISD::OR: {
991 SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
992 getValueBits(V.getOperand(0), LHSBits);
993 getValueBits(V.getOperand(1), RHSBits);
994
995 bool AllDisjoint = true;
996 for (unsigned i = 0; i < Bits.size(); ++i)
997 if (LHSBits[i].isZero())
998 Bits[i] = RHSBits[i];
999 else if (RHSBits[i].isZero())
1000 Bits[i] = LHSBits[i];
1001 else {
1002 AllDisjoint = false;
1003 break;
1004 }
1005
1006 if (!AllDisjoint)
1007 break;
1008
1009 return true;
1010 }
1011 }
1012
1013 for (unsigned i = 0; i < Bits.size(); ++i)
1014 Bits[i] = ValueBit(V, i);
1015
1016 return false;
1017 }
1018
1019 // For each value (except the constant ones), compute the left-rotate amount
1020 // to get it from its original to final position.
computeRotationAmounts()1021 void computeRotationAmounts() {
1022 HasZeros = false;
1023 RLAmt.resize(Bits.size());
1024 for (unsigned i = 0; i < Bits.size(); ++i)
1025 if (Bits[i].hasValue()) {
1026 unsigned VBI = Bits[i].getValueBitIndex();
1027 if (i >= VBI)
1028 RLAmt[i] = i - VBI;
1029 else
1030 RLAmt[i] = Bits.size() - (VBI - i);
1031 } else if (Bits[i].isZero()) {
1032 HasZeros = true;
1033 RLAmt[i] = UINT32_MAX;
1034 } else {
1035 llvm_unreachable("Unknown value bit type");
1036 }
1037 }
1038
1039 // Collect groups of consecutive bits with the same underlying value and
1040 // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1041 // they break up groups.
collectBitGroups(bool LateMask)1042 void collectBitGroups(bool LateMask) {
1043 BitGroups.clear();
1044
1045 unsigned LastRLAmt = RLAmt[0];
1046 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1047 unsigned LastGroupStartIdx = 0;
1048 for (unsigned i = 1; i < Bits.size(); ++i) {
1049 unsigned ThisRLAmt = RLAmt[i];
1050 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1051 if (LateMask && !ThisValue) {
1052 ThisValue = LastValue;
1053 ThisRLAmt = LastRLAmt;
1054 // If we're doing late masking, then the first bit group always starts
1055 // at zero (even if the first bits were zero).
1056 if (BitGroups.empty())
1057 LastGroupStartIdx = 0;
1058 }
1059
1060 // If this bit has the same underlying value and the same rotate factor as
1061 // the last one, then they're part of the same group.
1062 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1063 continue;
1064
1065 if (LastValue.getNode())
1066 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1067 i-1));
1068 LastRLAmt = ThisRLAmt;
1069 LastValue = ThisValue;
1070 LastGroupStartIdx = i;
1071 }
1072 if (LastValue.getNode())
1073 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1074 Bits.size()-1));
1075
1076 if (BitGroups.empty())
1077 return;
1078
1079 // We might be able to combine the first and last groups.
1080 if (BitGroups.size() > 1) {
1081 // If the first and last groups are the same, then remove the first group
1082 // in favor of the last group, making the ending index of the last group
1083 // equal to the ending index of the to-be-removed first group.
1084 if (BitGroups[0].StartIdx == 0 &&
1085 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1086 BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1087 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1088 DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1089 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1090 BitGroups.erase(BitGroups.begin());
1091 }
1092 }
1093 }
1094
1095 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1096 // associated with each. If there is a degeneracy, pick the one that occurs
1097 // first (in the final value).
collectValueRotInfo()1098 void collectValueRotInfo() {
1099 ValueRots.clear();
1100
1101 for (auto &BG : BitGroups) {
1102 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1103 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1104 VRI.V = BG.V;
1105 VRI.RLAmt = BG.RLAmt;
1106 VRI.Repl32 = BG.Repl32;
1107 VRI.NumGroups += 1;
1108 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1109 }
1110
1111 // Now that we've collected the various ValueRotInfo instances, we need to
1112 // sort them.
1113 ValueRotsVec.clear();
1114 for (auto &I : ValueRots) {
1115 ValueRotsVec.push_back(I.second);
1116 }
1117 std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
1118 }
1119
1120 // In 64-bit mode, rlwinm and friends have a rotation operator that
1121 // replicates the low-order 32 bits into the high-order 32-bits. The mask
1122 // indices of these instructions can only be in the lower 32 bits, so they
1123 // can only represent some 64-bit bit groups. However, when they can be used,
1124 // the 32-bit replication can be used to represent, as a single bit group,
1125 // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1126 // groups when possible. Returns true if any of the bit groups were
1127 // converted.
assignRepl32BitGroups()1128 void assignRepl32BitGroups() {
1129 // If we have bits like this:
1130 //
1131 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1132 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
1133 // Groups: | RLAmt = 8 | RLAmt = 40 |
1134 //
1135 // But, making use of a 32-bit operation that replicates the low-order 32
1136 // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1137 // of 8.
1138
1139 auto IsAllLow32 = [this](BitGroup & BG) {
1140 if (BG.StartIdx <= BG.EndIdx) {
1141 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1142 if (!Bits[i].hasValue())
1143 continue;
1144 if (Bits[i].getValueBitIndex() >= 32)
1145 return false;
1146 }
1147 } else {
1148 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1149 if (!Bits[i].hasValue())
1150 continue;
1151 if (Bits[i].getValueBitIndex() >= 32)
1152 return false;
1153 }
1154 for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1155 if (!Bits[i].hasValue())
1156 continue;
1157 if (Bits[i].getValueBitIndex() >= 32)
1158 return false;
1159 }
1160 }
1161
1162 return true;
1163 };
1164
1165 for (auto &BG : BitGroups) {
1166 if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1167 if (IsAllLow32(BG)) {
1168 if (BG.RLAmt >= 32) {
1169 BG.RLAmt -= 32;
1170 BG.Repl32CR = true;
1171 }
1172
1173 BG.Repl32 = true;
1174
1175 DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
1176 BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
1177 " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1178 }
1179 }
1180 }
1181
1182 // Now walk through the bit groups, consolidating where possible.
1183 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1184 // We might want to remove this bit group by merging it with the previous
1185 // group (which might be the ending group).
1186 auto IP = (I == BitGroups.begin()) ?
1187 std::prev(BitGroups.end()) : std::prev(I);
1188 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1189 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1190
1191 DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
1192 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1193 " [" << I->StartIdx << ", " << I->EndIdx <<
1194 "] with group with range [" <<
1195 IP->StartIdx << ", " << IP->EndIdx << "]\n");
1196
1197 IP->EndIdx = I->EndIdx;
1198 IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1199 IP->Repl32Coalesced = true;
1200 I = BitGroups.erase(I);
1201 continue;
1202 } else {
1203 // There is a special case worth handling: If there is a single group
1204 // covering the entire upper 32 bits, and it can be merged with both
1205 // the next and previous groups (which might be the same group), then
1206 // do so. If it is the same group (so there will be only one group in
1207 // total), then we need to reverse the order of the range so that it
1208 // covers the entire 64 bits.
1209 if (I->StartIdx == 32 && I->EndIdx == 63) {
1210 assert(std::next(I) == BitGroups.end() &&
1211 "bit group ends at index 63 but there is another?");
1212 auto IN = BitGroups.begin();
1213
1214 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1215 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1216 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1217 IsAllLow32(*I)) {
1218
1219 DEBUG(dbgs() << "\tcombining bit group for " <<
1220 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1221 " [" << I->StartIdx << ", " << I->EndIdx <<
1222 "] with 32-bit replicated groups with ranges [" <<
1223 IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
1224 IN->StartIdx << ", " << IN->EndIdx << "]\n");
1225
1226 if (IP == IN) {
1227 // There is only one other group; change it to cover the whole
1228 // range (backward, so that it can still be Repl32 but cover the
1229 // whole 64-bit range).
1230 IP->StartIdx = 31;
1231 IP->EndIdx = 30;
1232 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1233 IP->Repl32Coalesced = true;
1234 I = BitGroups.erase(I);
1235 } else {
1236 // There are two separate groups, one before this group and one
1237 // after us (at the beginning). We're going to remove this group,
1238 // but also the group at the very beginning.
1239 IP->EndIdx = IN->EndIdx;
1240 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1241 IP->Repl32Coalesced = true;
1242 I = BitGroups.erase(I);
1243 BitGroups.erase(BitGroups.begin());
1244 }
1245
1246 // This must be the last group in the vector (and we might have
1247 // just invalidated the iterator above), so break here.
1248 break;
1249 }
1250 }
1251 }
1252
1253 ++I;
1254 }
1255 }
1256
getI32Imm(unsigned Imm,SDLoc dl)1257 SDValue getI32Imm(unsigned Imm, SDLoc dl) {
1258 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1259 }
1260
getZerosMask()1261 uint64_t getZerosMask() {
1262 uint64_t Mask = 0;
1263 for (unsigned i = 0; i < Bits.size(); ++i) {
1264 if (Bits[i].hasValue())
1265 continue;
1266 Mask |= (UINT64_C(1) << i);
1267 }
1268
1269 return ~Mask;
1270 }
1271
1272 // Depending on the number of groups for a particular value, it might be
1273 // better to rotate, mask explicitly (using andi/andis), and then or the
1274 // result. Select this part of the result first.
SelectAndParts32(SDLoc dl,SDValue & Res,unsigned * InstCnt)1275 void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
1276 if (BPermRewriterNoMasking)
1277 return;
1278
1279 for (ValueRotInfo &VRI : ValueRotsVec) {
1280 unsigned Mask = 0;
1281 for (unsigned i = 0; i < Bits.size(); ++i) {
1282 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1283 continue;
1284 if (RLAmt[i] != VRI.RLAmt)
1285 continue;
1286 Mask |= (1u << i);
1287 }
1288
1289 // Compute the masks for andi/andis that would be necessary.
1290 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1291 assert((ANDIMask != 0 || ANDISMask != 0) &&
1292 "No set bits in mask for value bit groups");
1293 bool NeedsRotate = VRI.RLAmt != 0;
1294
1295 // We're trying to minimize the number of instructions. If we have one
1296 // group, using one of andi/andis can break even. If we have three
1297 // groups, we can use both andi and andis and break even (to use both
1298 // andi and andis we also need to or the results together). We need four
1299 // groups if we also need to rotate. To use andi/andis we need to do more
1300 // than break even because rotate-and-mask instructions tend to be easier
1301 // to schedule.
1302
1303 // FIXME: We've biased here against using andi/andis, which is right for
1304 // POWER cores, but not optimal everywhere. For example, on the A2,
1305 // andi/andis have single-cycle latency whereas the rotate-and-mask
1306 // instructions take two cycles, and it would be better to bias toward
1307 // andi/andis in break-even cases.
1308
1309 unsigned NumAndInsts = (unsigned) NeedsRotate +
1310 (unsigned) (ANDIMask != 0) +
1311 (unsigned) (ANDISMask != 0) +
1312 (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1313 (unsigned) (bool) Res;
1314
1315 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1316 " RL: " << VRI.RLAmt << ":" <<
1317 "\n\t\t\tisel using masking: " << NumAndInsts <<
1318 " using rotates: " << VRI.NumGroups << "\n");
1319
1320 if (NumAndInsts >= VRI.NumGroups)
1321 continue;
1322
1323 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1324
1325 if (InstCnt) *InstCnt += NumAndInsts;
1326
1327 SDValue VRot;
1328 if (VRI.RLAmt) {
1329 SDValue Ops[] =
1330 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1331 getI32Imm(31, dl) };
1332 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1333 Ops), 0);
1334 } else {
1335 VRot = VRI.V;
1336 }
1337
1338 SDValue ANDIVal, ANDISVal;
1339 if (ANDIMask != 0)
1340 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1341 VRot, getI32Imm(ANDIMask, dl)), 0);
1342 if (ANDISMask != 0)
1343 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1344 VRot, getI32Imm(ANDISMask, dl)), 0);
1345
1346 SDValue TotalVal;
1347 if (!ANDIVal)
1348 TotalVal = ANDISVal;
1349 else if (!ANDISVal)
1350 TotalVal = ANDIVal;
1351 else
1352 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1353 ANDIVal, ANDISVal), 0);
1354
1355 if (!Res)
1356 Res = TotalVal;
1357 else
1358 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1359 Res, TotalVal), 0);
1360
1361 // Now, remove all groups with this underlying value and rotation
1362 // factor.
1363 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1364 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1365 });
1366 }
1367 }
1368
1369 // Instruction selection for the 32-bit case.
Select32(SDNode * N,bool LateMask,unsigned * InstCnt)1370 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
1371 SDLoc dl(N);
1372 SDValue Res;
1373
1374 if (InstCnt) *InstCnt = 0;
1375
1376 // Take care of cases that should use andi/andis first.
1377 SelectAndParts32(dl, Res, InstCnt);
1378
1379 // If we've not yet selected a 'starting' instruction, and we have no zeros
1380 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1381 // number of groups), and start with this rotated value.
1382 if ((!HasZeros || LateMask) && !Res) {
1383 ValueRotInfo &VRI = ValueRotsVec[0];
1384 if (VRI.RLAmt) {
1385 if (InstCnt) *InstCnt += 1;
1386 SDValue Ops[] =
1387 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1388 getI32Imm(31, dl) };
1389 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
1390 0);
1391 } else {
1392 Res = VRI.V;
1393 }
1394
1395 // Now, remove all groups with this underlying value and rotation factor.
1396 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1397 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1398 });
1399 }
1400
1401 if (InstCnt) *InstCnt += BitGroups.size();
1402
1403 // Insert the other groups (one at a time).
1404 for (auto &BG : BitGroups) {
1405 if (!Res) {
1406 SDValue Ops[] =
1407 { BG.V, getI32Imm(BG.RLAmt, dl),
1408 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1409 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1410 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1411 } else {
1412 SDValue Ops[] =
1413 { Res, BG.V, getI32Imm(BG.RLAmt, dl),
1414 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1415 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1416 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1417 }
1418 }
1419
1420 if (LateMask) {
1421 unsigned Mask = (unsigned) getZerosMask();
1422
1423 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1424 assert((ANDIMask != 0 || ANDISMask != 0) &&
1425 "No set bits in zeros mask?");
1426
1427 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1428 (unsigned) (ANDISMask != 0) +
1429 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1430
1431 SDValue ANDIVal, ANDISVal;
1432 if (ANDIMask != 0)
1433 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1434 Res, getI32Imm(ANDIMask, dl)), 0);
1435 if (ANDISMask != 0)
1436 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1437 Res, getI32Imm(ANDISMask, dl)), 0);
1438
1439 if (!ANDIVal)
1440 Res = ANDISVal;
1441 else if (!ANDISVal)
1442 Res = ANDIVal;
1443 else
1444 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1445 ANDIVal, ANDISVal), 0);
1446 }
1447
1448 return Res.getNode();
1449 }
1450
SelectRotMask64Count(unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,bool IsIns)1451 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1452 unsigned MaskStart, unsigned MaskEnd,
1453 bool IsIns) {
1454 // In the notation used by the instructions, 'start' and 'end' are reversed
1455 // because bits are counted from high to low order.
1456 unsigned InstMaskStart = 64 - MaskEnd - 1,
1457 InstMaskEnd = 64 - MaskStart - 1;
1458
1459 if (Repl32)
1460 return 1;
1461
1462 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1463 InstMaskEnd == 63 - RLAmt)
1464 return 1;
1465
1466 return 2;
1467 }
1468
1469 // For 64-bit values, not all combinations of rotates and masks are
1470 // available. Produce one if it is available.
SelectRotMask64(SDValue V,SDLoc dl,unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,unsigned * InstCnt=nullptr)1471 SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
1472 unsigned MaskStart, unsigned MaskEnd,
1473 unsigned *InstCnt = nullptr) {
1474 // In the notation used by the instructions, 'start' and 'end' are reversed
1475 // because bits are counted from high to low order.
1476 unsigned InstMaskStart = 64 - MaskEnd - 1,
1477 InstMaskEnd = 64 - MaskStart - 1;
1478
1479 if (InstCnt) *InstCnt += 1;
1480
1481 if (Repl32) {
1482 // This rotation amount assumes that the lower 32 bits of the quantity
1483 // are replicated in the high 32 bits by the rotation operator (which is
1484 // done by rlwinm and friends).
1485 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1486 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1487 SDValue Ops[] =
1488 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
1489 getI32Imm(InstMaskEnd - 32, dl) };
1490 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1491 Ops), 0);
1492 }
1493
1494 if (InstMaskEnd == 63) {
1495 SDValue Ops[] =
1496 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1497 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1498 }
1499
1500 if (InstMaskStart == 0) {
1501 SDValue Ops[] =
1502 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) };
1503 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1504 }
1505
1506 if (InstMaskEnd == 63 - RLAmt) {
1507 SDValue Ops[] =
1508 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1509 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1510 }
1511
1512 // We cannot do this with a single instruction, so we'll use two. The
1513 // problem is that we're not free to choose both a rotation amount and mask
1514 // start and end independently. We can choose an arbitrary mask start and
1515 // end, but then the rotation amount is fixed. Rotation, however, can be
1516 // inverted, and so by applying an "inverse" rotation first, we can get the
1517 // desired result.
1518 if (InstCnt) *InstCnt += 1;
1519
1520 // The rotation mask for the second instruction must be MaskStart.
1521 unsigned RLAmt2 = MaskStart;
1522 // The first instruction must rotate V so that the overall rotation amount
1523 // is RLAmt.
1524 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1525 if (RLAmt1)
1526 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1527 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
1528 }
1529
1530 // For 64-bit values, not all combinations of rotates and masks are
1531 // available. Produce a rotate-mask-and-insert if one is available.
SelectRotMaskIns64(SDValue Base,SDValue V,SDLoc dl,unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,unsigned * InstCnt=nullptr)1532 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
1533 bool Repl32, unsigned MaskStart,
1534 unsigned MaskEnd, unsigned *InstCnt = nullptr) {
1535 // In the notation used by the instructions, 'start' and 'end' are reversed
1536 // because bits are counted from high to low order.
1537 unsigned InstMaskStart = 64 - MaskEnd - 1,
1538 InstMaskEnd = 64 - MaskStart - 1;
1539
1540 if (InstCnt) *InstCnt += 1;
1541
1542 if (Repl32) {
1543 // This rotation amount assumes that the lower 32 bits of the quantity
1544 // are replicated in the high 32 bits by the rotation operator (which is
1545 // done by rlwinm and friends).
1546 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1547 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1548 SDValue Ops[] =
1549 { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
1550 getI32Imm(InstMaskEnd - 32, dl) };
1551 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
1552 Ops), 0);
1553 }
1554
1555 if (InstMaskEnd == 63 - RLAmt) {
1556 SDValue Ops[] =
1557 { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1558 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
1559 }
1560
1561 // We cannot do this with a single instruction, so we'll use two. The
1562 // problem is that we're not free to choose both a rotation amount and mask
1563 // start and end independently. We can choose an arbitrary mask start and
1564 // end, but then the rotation amount is fixed. Rotation, however, can be
1565 // inverted, and so by applying an "inverse" rotation first, we can get the
1566 // desired result.
1567 if (InstCnt) *InstCnt += 1;
1568
1569 // The rotation mask for the second instruction must be MaskStart.
1570 unsigned RLAmt2 = MaskStart;
1571 // The first instruction must rotate V so that the overall rotation amount
1572 // is RLAmt.
1573 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1574 if (RLAmt1)
1575 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1576 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
1577 }
1578
SelectAndParts64(SDLoc dl,SDValue & Res,unsigned * InstCnt)1579 void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
1580 if (BPermRewriterNoMasking)
1581 return;
1582
1583 // The idea here is the same as in the 32-bit version, but with additional
1584 // complications from the fact that Repl32 might be true. Because we
1585 // aggressively convert bit groups to Repl32 form (which, for small
1586 // rotation factors, involves no other change), and then coalesce, it might
1587 // be the case that a single 64-bit masking operation could handle both
1588 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1589 // form allowed coalescing, then we must use a 32-bit rotaton in order to
1590 // completely capture the new combined bit group.
1591
1592 for (ValueRotInfo &VRI : ValueRotsVec) {
1593 uint64_t Mask = 0;
1594
1595 // We need to add to the mask all bits from the associated bit groups.
1596 // If Repl32 is false, we need to add bits from bit groups that have
1597 // Repl32 true, but are trivially convertable to Repl32 false. Such a
1598 // group is trivially convertable if it overlaps only with the lower 32
1599 // bits, and the group has not been coalesced.
1600 auto MatchingBG = [VRI](const BitGroup &BG) {
1601 if (VRI.V != BG.V)
1602 return false;
1603
1604 unsigned EffRLAmt = BG.RLAmt;
1605 if (!VRI.Repl32 && BG.Repl32) {
1606 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
1607 !BG.Repl32Coalesced) {
1608 if (BG.Repl32CR)
1609 EffRLAmt += 32;
1610 } else {
1611 return false;
1612 }
1613 } else if (VRI.Repl32 != BG.Repl32) {
1614 return false;
1615 }
1616
1617 if (VRI.RLAmt != EffRLAmt)
1618 return false;
1619
1620 return true;
1621 };
1622
1623 for (auto &BG : BitGroups) {
1624 if (!MatchingBG(BG))
1625 continue;
1626
1627 if (BG.StartIdx <= BG.EndIdx) {
1628 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
1629 Mask |= (UINT64_C(1) << i);
1630 } else {
1631 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
1632 Mask |= (UINT64_C(1) << i);
1633 for (unsigned i = 0; i <= BG.EndIdx; ++i)
1634 Mask |= (UINT64_C(1) << i);
1635 }
1636 }
1637
1638 // We can use the 32-bit andi/andis technique if the mask does not
1639 // require any higher-order bits. This can save an instruction compared
1640 // to always using the general 64-bit technique.
1641 bool Use32BitInsts = isUInt<32>(Mask);
1642 // Compute the masks for andi/andis that would be necessary.
1643 unsigned ANDIMask = (Mask & UINT16_MAX),
1644 ANDISMask = (Mask >> 16) & UINT16_MAX;
1645
1646 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
1647
1648 unsigned NumAndInsts = (unsigned) NeedsRotate +
1649 (unsigned) (bool) Res;
1650 if (Use32BitInsts)
1651 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
1652 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1653 else
1654 NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;
1655
1656 unsigned NumRLInsts = 0;
1657 bool FirstBG = true;
1658 for (auto &BG : BitGroups) {
1659 if (!MatchingBG(BG))
1660 continue;
1661 NumRLInsts +=
1662 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
1663 !FirstBG);
1664 FirstBG = false;
1665 }
1666
1667 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1668 " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
1669 "\n\t\t\tisel using masking: " << NumAndInsts <<
1670 " using rotates: " << NumRLInsts << "\n");
1671
1672 // When we'd use andi/andis, we bias toward using the rotates (andi only
1673 // has a record form, and is cracked on POWER cores). However, when using
1674 // general 64-bit constant formation, bias toward the constant form,
1675 // because that exposes more opportunities for CSE.
1676 if (NumAndInsts > NumRLInsts)
1677 continue;
1678 if (Use32BitInsts && NumAndInsts == NumRLInsts)
1679 continue;
1680
1681 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1682
1683 if (InstCnt) *InstCnt += NumAndInsts;
1684
1685 SDValue VRot;
1686 // We actually need to generate a rotation if we have a non-zero rotation
1687 // factor or, in the Repl32 case, if we care about any of the
1688 // higher-order replicated bits. In the latter case, we generate a mask
1689 // backward so that it actually includes the entire 64 bits.
1690 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
1691 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1692 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
1693 else
1694 VRot = VRI.V;
1695
1696 SDValue TotalVal;
1697 if (Use32BitInsts) {
1698 assert((ANDIMask != 0 || ANDISMask != 0) &&
1699 "No set bits in mask when using 32-bit ands for 64-bit value");
1700
1701 SDValue ANDIVal, ANDISVal;
1702 if (ANDIMask != 0)
1703 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1704 VRot, getI32Imm(ANDIMask, dl)), 0);
1705 if (ANDISMask != 0)
1706 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1707 VRot, getI32Imm(ANDISMask, dl)), 0);
1708
1709 if (!ANDIVal)
1710 TotalVal = ANDISVal;
1711 else if (!ANDISVal)
1712 TotalVal = ANDIVal;
1713 else
1714 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1715 ANDIVal, ANDISVal), 0);
1716 } else {
1717 TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
1718 TotalVal =
1719 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1720 VRot, TotalVal), 0);
1721 }
1722
1723 if (!Res)
1724 Res = TotalVal;
1725 else
1726 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1727 Res, TotalVal), 0);
1728
1729 // Now, remove all groups with this underlying value and rotation
1730 // factor.
1731 eraseMatchingBitGroups(MatchingBG);
1732 }
1733 }
1734
1735 // Instruction selection for the 64-bit case.
Select64(SDNode * N,bool LateMask,unsigned * InstCnt)1736 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
1737 SDLoc dl(N);
1738 SDValue Res;
1739
1740 if (InstCnt) *InstCnt = 0;
1741
1742 // Take care of cases that should use andi/andis first.
1743 SelectAndParts64(dl, Res, InstCnt);
1744
1745 // If we've not yet selected a 'starting' instruction, and we have no zeros
1746 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1747 // number of groups), and start with this rotated value.
1748 if ((!HasZeros || LateMask) && !Res) {
1749 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
1750 // groups will come first, and so the VRI representing the largest number
1751 // of groups might not be first (it might be the first Repl32 groups).
1752 unsigned MaxGroupsIdx = 0;
1753 if (!ValueRotsVec[0].Repl32) {
1754 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
1755 if (ValueRotsVec[i].Repl32) {
1756 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
1757 MaxGroupsIdx = i;
1758 break;
1759 }
1760 }
1761
1762 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
1763 bool NeedsRotate = false;
1764 if (VRI.RLAmt) {
1765 NeedsRotate = true;
1766 } else if (VRI.Repl32) {
1767 for (auto &BG : BitGroups) {
1768 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
1769 BG.Repl32 != VRI.Repl32)
1770 continue;
1771
1772 // We don't need a rotate if the bit group is confined to the lower
1773 // 32 bits.
1774 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
1775 continue;
1776
1777 NeedsRotate = true;
1778 break;
1779 }
1780 }
1781
1782 if (NeedsRotate)
1783 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1784 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
1785 InstCnt);
1786 else
1787 Res = VRI.V;
1788
1789 // Now, remove all groups with this underlying value and rotation factor.
1790 if (Res)
1791 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1792 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
1793 BG.Repl32 == VRI.Repl32;
1794 });
1795 }
1796
1797 // Because 64-bit rotates are more flexible than inserts, we might have a
1798 // preference regarding which one we do first (to save one instruction).
1799 if (!Res)
1800 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
1801 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1802 false) <
1803 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1804 true)) {
1805 if (I != BitGroups.begin()) {
1806 BitGroup BG = *I;
1807 BitGroups.erase(I);
1808 BitGroups.insert(BitGroups.begin(), BG);
1809 }
1810
1811 break;
1812 }
1813 }
1814
1815 // Insert the other groups (one at a time).
1816 for (auto &BG : BitGroups) {
1817 if (!Res)
1818 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
1819 BG.EndIdx, InstCnt);
1820 else
1821 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
1822 BG.StartIdx, BG.EndIdx, InstCnt);
1823 }
1824
1825 if (LateMask) {
1826 uint64_t Mask = getZerosMask();
1827
1828 // We can use the 32-bit andi/andis technique if the mask does not
1829 // require any higher-order bits. This can save an instruction compared
1830 // to always using the general 64-bit technique.
1831 bool Use32BitInsts = isUInt<32>(Mask);
1832 // Compute the masks for andi/andis that would be necessary.
1833 unsigned ANDIMask = (Mask & UINT16_MAX),
1834 ANDISMask = (Mask >> 16) & UINT16_MAX;
1835
1836 if (Use32BitInsts) {
1837 assert((ANDIMask != 0 || ANDISMask != 0) &&
1838 "No set bits in mask when using 32-bit ands for 64-bit value");
1839
1840 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1841 (unsigned) (ANDISMask != 0) +
1842 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1843
1844 SDValue ANDIVal, ANDISVal;
1845 if (ANDIMask != 0)
1846 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1847 Res, getI32Imm(ANDIMask, dl)), 0);
1848 if (ANDISMask != 0)
1849 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1850 Res, getI32Imm(ANDISMask, dl)), 0);
1851
1852 if (!ANDIVal)
1853 Res = ANDISVal;
1854 else if (!ANDISVal)
1855 Res = ANDIVal;
1856 else
1857 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1858 ANDIVal, ANDISVal), 0);
1859 } else {
1860 if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;
1861
1862 SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
1863 Res =
1864 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1865 Res, MaskVal), 0);
1866 }
1867 }
1868
1869 return Res.getNode();
1870 }
1871
Select(SDNode * N,bool LateMask,unsigned * InstCnt=nullptr)1872 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
1873 // Fill in BitGroups.
1874 collectBitGroups(LateMask);
1875 if (BitGroups.empty())
1876 return nullptr;
1877
1878 // For 64-bit values, figure out when we can use 32-bit instructions.
1879 if (Bits.size() == 64)
1880 assignRepl32BitGroups();
1881
1882 // Fill in ValueRotsVec.
1883 collectValueRotInfo();
1884
1885 if (Bits.size() == 32) {
1886 return Select32(N, LateMask, InstCnt);
1887 } else {
1888 assert(Bits.size() == 64 && "Not 64 bits here?");
1889 return Select64(N, LateMask, InstCnt);
1890 }
1891
1892 return nullptr;
1893 }
1894
eraseMatchingBitGroups(function_ref<bool (const BitGroup &)> F)1895 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
1896 BitGroups.erase(std::remove_if(BitGroups.begin(), BitGroups.end(), F),
1897 BitGroups.end());
1898 }
1899
1900 SmallVector<ValueBit, 64> Bits;
1901
1902 bool HasZeros;
1903 SmallVector<unsigned, 64> RLAmt;
1904
1905 SmallVector<BitGroup, 16> BitGroups;
1906
1907 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
1908 SmallVector<ValueRotInfo, 16> ValueRotsVec;
1909
1910 SelectionDAG *CurDAG;
1911
1912 public:
BitPermutationSelector(SelectionDAG * DAG)1913 BitPermutationSelector(SelectionDAG *DAG)
1914 : CurDAG(DAG) {}
1915
1916 // Here we try to match complex bit permutations into a set of
1917 // rotate-and-shift/shift/and/or instructions, using a set of heuristics
1918 // known to produce optimial code for common cases (like i32 byte swapping).
Select(SDNode * N)1919 SDNode *Select(SDNode *N) {
1920 Bits.resize(N->getValueType(0).getSizeInBits());
1921 if (!getValueBits(SDValue(N, 0), Bits))
1922 return nullptr;
1923
1924 DEBUG(dbgs() << "Considering bit-permutation-based instruction"
1925 " selection for: ");
1926 DEBUG(N->dump(CurDAG));
1927
1928 // Fill it RLAmt and set HasZeros.
1929 computeRotationAmounts();
1930
1931 if (!HasZeros)
1932 return Select(N, false);
1933
1934 // We currently have two techniques for handling results with zeros: early
1935 // masking (the default) and late masking. Late masking is sometimes more
1936 // efficient, but because the structure of the bit groups is different, it
1937 // is hard to tell without generating both and comparing the results. With
1938 // late masking, we ignore zeros in the resulting value when inserting each
1939 // set of bit groups, and then mask in the zeros at the end. With early
1940 // masking, we only insert the non-zero parts of the result at every step.
1941
1942 unsigned InstCnt, InstCntLateMask;
1943 DEBUG(dbgs() << "\tEarly masking:\n");
1944 SDNode *RN = Select(N, false, &InstCnt);
1945 DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
1946
1947 DEBUG(dbgs() << "\tLate masking:\n");
1948 SDNode *RNLM = Select(N, true, &InstCntLateMask);
1949 DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
1950 " instructions\n");
1951
1952 if (InstCnt <= InstCntLateMask) {
1953 DEBUG(dbgs() << "\tUsing early-masking for isel\n");
1954 return RN;
1955 }
1956
1957 DEBUG(dbgs() << "\tUsing late-masking for isel\n");
1958 return RNLM;
1959 }
1960 };
1961 } // anonymous namespace
1962
SelectBitPermutation(SDNode * N)1963 SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
1964 if (N->getValueType(0) != MVT::i32 &&
1965 N->getValueType(0) != MVT::i64)
1966 return nullptr;
1967
1968 if (!UseBitPermRewriter)
1969 return nullptr;
1970
1971 switch (N->getOpcode()) {
1972 default: break;
1973 case ISD::ROTL:
1974 case ISD::SHL:
1975 case ISD::SRL:
1976 case ISD::AND:
1977 case ISD::OR: {
1978 BitPermutationSelector BPS(CurDAG);
1979 return BPS.Select(N);
1980 }
1981 }
1982
1983 return nullptr;
1984 }
1985
1986 /// SelectCC - Select a comparison of the specified values with the specified
1987 /// condition code, returning the CR# of the expression.
SelectCC(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDLoc dl)1988 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
1989 ISD::CondCode CC, SDLoc dl) {
1990 // Always select the LHS.
1991 unsigned Opc;
1992
1993 if (LHS.getValueType() == MVT::i32) {
1994 unsigned Imm;
1995 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
1996 if (isInt32Immediate(RHS, Imm)) {
1997 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
1998 if (isUInt<16>(Imm))
1999 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
2000 getI32Imm(Imm & 0xFFFF, dl)),
2001 0);
2002 // If this is a 16-bit signed immediate, fold it.
2003 if (isInt<16>((int)Imm))
2004 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
2005 getI32Imm(Imm & 0xFFFF, dl)),
2006 0);
2007
2008 // For non-equality comparisons, the default code would materialize the
2009 // constant, then compare against it, like this:
2010 // lis r2, 4660
2011 // ori r2, r2, 22136
2012 // cmpw cr0, r3, r2
2013 // Since we are just comparing for equality, we can emit this instead:
2014 // xoris r0,r3,0x1234
2015 // cmplwi cr0,r0,0x5678
2016 // beq cr0,L6
2017 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
2018 getI32Imm(Imm >> 16, dl)), 0);
2019 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
2020 getI32Imm(Imm & 0xFFFF, dl)), 0);
2021 }
2022 Opc = PPC::CMPLW;
2023 } else if (ISD::isUnsignedIntSetCC(CC)) {
2024 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
2025 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
2026 getI32Imm(Imm & 0xFFFF, dl)), 0);
2027 Opc = PPC::CMPLW;
2028 } else {
2029 short SImm;
2030 if (isIntS16Immediate(RHS, SImm))
2031 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
2032 getI32Imm((int)SImm & 0xFFFF,
2033 dl)),
2034 0);
2035 Opc = PPC::CMPW;
2036 }
2037 } else if (LHS.getValueType() == MVT::i64) {
2038 uint64_t Imm;
2039 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2040 if (isInt64Immediate(RHS.getNode(), Imm)) {
2041 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
2042 if (isUInt<16>(Imm))
2043 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2044 getI32Imm(Imm & 0xFFFF, dl)),
2045 0);
2046 // If this is a 16-bit signed immediate, fold it.
2047 if (isInt<16>(Imm))
2048 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2049 getI32Imm(Imm & 0xFFFF, dl)),
2050 0);
2051
2052 // For non-equality comparisons, the default code would materialize the
2053 // constant, then compare against it, like this:
2054 // lis r2, 4660
2055 // ori r2, r2, 22136
2056 // cmpd cr0, r3, r2
2057 // Since we are just comparing for equality, we can emit this instead:
2058 // xoris r0,r3,0x1234
2059 // cmpldi cr0,r0,0x5678
2060 // beq cr0,L6
2061 if (isUInt<32>(Imm)) {
2062 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
2063 getI64Imm(Imm >> 16, dl)), 0);
2064 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
2065 getI64Imm(Imm & 0xFFFF, dl)),
2066 0);
2067 }
2068 }
2069 Opc = PPC::CMPLD;
2070 } else if (ISD::isUnsignedIntSetCC(CC)) {
2071 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
2072 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2073 getI64Imm(Imm & 0xFFFF, dl)), 0);
2074 Opc = PPC::CMPLD;
2075 } else {
2076 short SImm;
2077 if (isIntS16Immediate(RHS, SImm))
2078 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2079 getI64Imm(SImm & 0xFFFF, dl)),
2080 0);
2081 Opc = PPC::CMPD;
2082 }
2083 } else if (LHS.getValueType() == MVT::f32) {
2084 Opc = PPC::FCMPUS;
2085 } else {
2086 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
2087 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
2088 }
2089 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
2090 }
2091
getPredicateForSetCC(ISD::CondCode CC)2092 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
2093 switch (CC) {
2094 case ISD::SETUEQ:
2095 case ISD::SETONE:
2096 case ISD::SETOLE:
2097 case ISD::SETOGE:
2098 llvm_unreachable("Should be lowered by legalize!");
2099 default: llvm_unreachable("Unknown condition!");
2100 case ISD::SETOEQ:
2101 case ISD::SETEQ: return PPC::PRED_EQ;
2102 case ISD::SETUNE:
2103 case ISD::SETNE: return PPC::PRED_NE;
2104 case ISD::SETOLT:
2105 case ISD::SETLT: return PPC::PRED_LT;
2106 case ISD::SETULE:
2107 case ISD::SETLE: return PPC::PRED_LE;
2108 case ISD::SETOGT:
2109 case ISD::SETGT: return PPC::PRED_GT;
2110 case ISD::SETUGE:
2111 case ISD::SETGE: return PPC::PRED_GE;
2112 case ISD::SETO: return PPC::PRED_NU;
2113 case ISD::SETUO: return PPC::PRED_UN;
2114 // These two are invalid for floating point. Assume we have int.
2115 case ISD::SETULT: return PPC::PRED_LT;
2116 case ISD::SETUGT: return PPC::PRED_GT;
2117 }
2118 }
2119
2120 /// getCRIdxForSetCC - Return the index of the condition register field
2121 /// associated with the SetCC condition, and whether or not the field is
2122 /// treated as inverted. That is, lt = 0; ge = 0 inverted.
getCRIdxForSetCC(ISD::CondCode CC,bool & Invert)2123 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
2124 Invert = false;
2125 switch (CC) {
2126 default: llvm_unreachable("Unknown condition!");
2127 case ISD::SETOLT:
2128 case ISD::SETLT: return 0; // Bit #0 = SETOLT
2129 case ISD::SETOGT:
2130 case ISD::SETGT: return 1; // Bit #1 = SETOGT
2131 case ISD::SETOEQ:
2132 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
2133 case ISD::SETUO: return 3; // Bit #3 = SETUO
2134 case ISD::SETUGE:
2135 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
2136 case ISD::SETULE:
2137 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
2138 case ISD::SETUNE:
2139 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
2140 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
2141 case ISD::SETUEQ:
2142 case ISD::SETOGE:
2143 case ISD::SETOLE:
2144 case ISD::SETONE:
2145 llvm_unreachable("Invalid branch code: should be expanded by legalize");
2146 // These are invalid for floating point. Assume integer.
2147 case ISD::SETULT: return 0;
2148 case ISD::SETUGT: return 1;
2149 }
2150 }
2151
2152 // getVCmpInst: return the vector compare instruction for the specified
2153 // vector type and condition code. Since this is for altivec specific code,
2154 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
getVCmpInst(MVT VecVT,ISD::CondCode CC,bool HasVSX,bool & Swap,bool & Negate)2155 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
2156 bool HasVSX, bool &Swap, bool &Negate) {
2157 Swap = false;
2158 Negate = false;
2159
2160 if (VecVT.isFloatingPoint()) {
2161 /* Handle some cases by swapping input operands. */
2162 switch (CC) {
2163 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
2164 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2165 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
2166 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
2167 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2168 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
2169 default: break;
2170 }
2171 /* Handle some cases by negating the result. */
2172 switch (CC) {
2173 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2174 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
2175 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
2176 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
2177 default: break;
2178 }
2179 /* We have instructions implementing the remaining cases. */
2180 switch (CC) {
2181 case ISD::SETEQ:
2182 case ISD::SETOEQ:
2183 if (VecVT == MVT::v4f32)
2184 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
2185 else if (VecVT == MVT::v2f64)
2186 return PPC::XVCMPEQDP;
2187 break;
2188 case ISD::SETGT:
2189 case ISD::SETOGT:
2190 if (VecVT == MVT::v4f32)
2191 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
2192 else if (VecVT == MVT::v2f64)
2193 return PPC::XVCMPGTDP;
2194 break;
2195 case ISD::SETGE:
2196 case ISD::SETOGE:
2197 if (VecVT == MVT::v4f32)
2198 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
2199 else if (VecVT == MVT::v2f64)
2200 return PPC::XVCMPGEDP;
2201 break;
2202 default:
2203 break;
2204 }
2205 llvm_unreachable("Invalid floating-point vector compare condition");
2206 } else {
2207 /* Handle some cases by swapping input operands. */
2208 switch (CC) {
2209 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
2210 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2211 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2212 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
2213 default: break;
2214 }
2215 /* Handle some cases by negating the result. */
2216 switch (CC) {
2217 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2218 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
2219 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
2220 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
2221 default: break;
2222 }
2223 /* We have instructions implementing the remaining cases. */
2224 switch (CC) {
2225 case ISD::SETEQ:
2226 case ISD::SETUEQ:
2227 if (VecVT == MVT::v16i8)
2228 return PPC::VCMPEQUB;
2229 else if (VecVT == MVT::v8i16)
2230 return PPC::VCMPEQUH;
2231 else if (VecVT == MVT::v4i32)
2232 return PPC::VCMPEQUW;
2233 else if (VecVT == MVT::v2i64)
2234 return PPC::VCMPEQUD;
2235 break;
2236 case ISD::SETGT:
2237 if (VecVT == MVT::v16i8)
2238 return PPC::VCMPGTSB;
2239 else if (VecVT == MVT::v8i16)
2240 return PPC::VCMPGTSH;
2241 else if (VecVT == MVT::v4i32)
2242 return PPC::VCMPGTSW;
2243 else if (VecVT == MVT::v2i64)
2244 return PPC::VCMPGTSD;
2245 break;
2246 case ISD::SETUGT:
2247 if (VecVT == MVT::v16i8)
2248 return PPC::VCMPGTUB;
2249 else if (VecVT == MVT::v8i16)
2250 return PPC::VCMPGTUH;
2251 else if (VecVT == MVT::v4i32)
2252 return PPC::VCMPGTUW;
2253 else if (VecVT == MVT::v2i64)
2254 return PPC::VCMPGTUD;
2255 break;
2256 default:
2257 break;
2258 }
2259 llvm_unreachable("Invalid integer vector compare condition");
2260 }
2261 }
2262
SelectSETCC(SDNode * N)2263 SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
2264 SDLoc dl(N);
2265 unsigned Imm;
2266 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
2267 EVT PtrVT =
2268 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
2269 bool isPPC64 = (PtrVT == MVT::i64);
2270
2271 if (!PPCSubTarget->useCRBits() &&
2272 isInt32Immediate(N->getOperand(1), Imm)) {
2273 // We can codegen setcc op, imm very efficiently compared to a brcond.
2274 // Check for those cases here.
2275 // setcc op, 0
2276 if (Imm == 0) {
2277 SDValue Op = N->getOperand(0);
2278 switch (CC) {
2279 default: break;
2280 case ISD::SETEQ: {
2281 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
2282 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
2283 getI32Imm(31, dl) };
2284 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2285 }
2286 case ISD::SETNE: {
2287 if (isPPC64) break;
2288 SDValue AD =
2289 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2290 Op, getI32Imm(~0U, dl)), 0);
2291 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
2292 AD.getValue(1));
2293 }
2294 case ISD::SETLT: {
2295 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
2296 getI32Imm(31, dl) };
2297 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2298 }
2299 case ISD::SETGT: {
2300 SDValue T =
2301 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
2302 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
2303 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
2304 getI32Imm(31, dl) };
2305 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2306 }
2307 }
2308 } else if (Imm == ~0U) { // setcc op, -1
2309 SDValue Op = N->getOperand(0);
2310 switch (CC) {
2311 default: break;
2312 case ISD::SETEQ:
2313 if (isPPC64) break;
2314 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2315 Op, getI32Imm(1, dl)), 0);
2316 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2317 SDValue(CurDAG->getMachineNode(PPC::LI, dl,
2318 MVT::i32,
2319 getI32Imm(0, dl)),
2320 0), Op.getValue(1));
2321 case ISD::SETNE: {
2322 if (isPPC64) break;
2323 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
2324 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2325 Op, getI32Imm(~0U, dl));
2326 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
2327 Op, SDValue(AD, 1));
2328 }
2329 case ISD::SETLT: {
2330 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
2331 getI32Imm(1, dl)), 0);
2332 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
2333 Op), 0);
2334 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
2335 getI32Imm(31, dl) };
2336 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2337 }
2338 case ISD::SETGT: {
2339 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
2340 getI32Imm(31, dl) };
2341 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2342 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
2343 getI32Imm(1, dl));
2344 }
2345 }
2346 }
2347 }
2348
2349 SDValue LHS = N->getOperand(0);
2350 SDValue RHS = N->getOperand(1);
2351
2352 // Altivec Vector compare instructions do not set any CR register by default and
2353 // vector compare operations return the same type as the operands.
2354 if (LHS.getValueType().isVector()) {
2355 if (PPCSubTarget->hasQPX())
2356 return nullptr;
2357
2358 EVT VecVT = LHS.getValueType();
2359 bool Swap, Negate;
2360 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
2361 PPCSubTarget->hasVSX(), Swap, Negate);
2362 if (Swap)
2363 std::swap(LHS, RHS);
2364
2365 EVT ResVT = VecVT.changeVectorElementTypeToInteger();
2366 if (Negate) {
2367 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
2368 return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
2369 PPC::VNOR,
2370 ResVT, VCmp, VCmp);
2371 }
2372
2373 return CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
2374 }
2375
2376 if (PPCSubTarget->useCRBits())
2377 return nullptr;
2378
2379 bool Inv;
2380 unsigned Idx = getCRIdxForSetCC(CC, Inv);
2381 SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
2382 SDValue IntCR;
2383
2384 // Force the ccreg into CR7.
2385 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
2386
2387 SDValue InFlag(nullptr, 0); // Null incoming flag value.
2388 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
2389 InFlag).getValue(1);
2390
2391 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
2392 CCReg), 0);
2393
2394 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
2395 getI32Imm(31, dl), getI32Imm(31, dl) };
2396 if (!Inv)
2397 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2398
2399 // Get the specified bit.
2400 SDValue Tmp =
2401 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2402 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
2403 }
2404
transferMemOperands(SDNode * N,SDNode * Result)2405 SDNode *PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
2406 // Transfer memoperands.
2407 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2408 MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2409 cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
2410 return Result;
2411 }
2412
2413
2414 // Select - Convert the specified operand from a target-independent to a
2415 // target-specific node if it hasn't already been changed.
Select(SDNode * N)2416 SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
2417 SDLoc dl(N);
2418 if (N->isMachineOpcode()) {
2419 N->setNodeId(-1);
2420 return nullptr; // Already selected.
2421 }
2422
2423 // In case any misguided DAG-level optimizations form an ADD with a
2424 // TargetConstant operand, crash here instead of miscompiling (by selecting
2425 // an r+r add instead of some kind of r+i add).
2426 if (N->getOpcode() == ISD::ADD &&
2427 N->getOperand(1).getOpcode() == ISD::TargetConstant)
2428 llvm_unreachable("Invalid ADD with TargetConstant operand");
2429
2430 // Try matching complex bit permutations before doing anything else.
2431 if (SDNode *NN = SelectBitPermutation(N))
2432 return NN;
2433
2434 switch (N->getOpcode()) {
2435 default: break;
2436
2437 case ISD::Constant: {
2438 if (N->getValueType(0) == MVT::i64)
2439 return SelectInt64(CurDAG, N);
2440 break;
2441 }
2442
2443 case ISD::SETCC: {
2444 SDNode *SN = SelectSETCC(N);
2445 if (SN)
2446 return SN;
2447 break;
2448 }
2449 case PPCISD::GlobalBaseReg:
2450 return getGlobalBaseReg();
2451
2452 case ISD::FrameIndex:
2453 return getFrameIndex(N, N);
2454
2455 case PPCISD::MFOCRF: {
2456 SDValue InFlag = N->getOperand(1);
2457 return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
2458 N->getOperand(0), InFlag);
2459 }
2460
2461 case PPCISD::READ_TIME_BASE: {
2462 return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
2463 MVT::Other, N->getOperand(0));
2464 }
2465
2466 case PPCISD::SRA_ADDZE: {
2467 SDValue N0 = N->getOperand(0);
2468 SDValue ShiftAmt =
2469 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
2470 getConstantIntValue(), dl,
2471 N->getValueType(0));
2472 if (N->getValueType(0) == MVT::i64) {
2473 SDNode *Op =
2474 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
2475 N0, ShiftAmt);
2476 return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
2477 SDValue(Op, 0), SDValue(Op, 1));
2478 } else {
2479 assert(N->getValueType(0) == MVT::i32 &&
2480 "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
2481 SDNode *Op =
2482 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
2483 N0, ShiftAmt);
2484 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2485 SDValue(Op, 0), SDValue(Op, 1));
2486 }
2487 }
2488
2489 case ISD::LOAD: {
2490 // Handle preincrement loads.
2491 LoadSDNode *LD = cast<LoadSDNode>(N);
2492 EVT LoadedVT = LD->getMemoryVT();
2493
2494 // Normal loads are handled by code generated from the .td file.
2495 if (LD->getAddressingMode() != ISD::PRE_INC)
2496 break;
2497
2498 SDValue Offset = LD->getOffset();
2499 if (Offset.getOpcode() == ISD::TargetConstant ||
2500 Offset.getOpcode() == ISD::TargetGlobalAddress) {
2501
2502 unsigned Opcode;
2503 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2504 if (LD->getValueType(0) != MVT::i64) {
2505 // Handle PPC32 integer and normal FP loads.
2506 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2507 switch (LoadedVT.getSimpleVT().SimpleTy) {
2508 default: llvm_unreachable("Invalid PPC load type!");
2509 case MVT::f64: Opcode = PPC::LFDU; break;
2510 case MVT::f32: Opcode = PPC::LFSU; break;
2511 case MVT::i32: Opcode = PPC::LWZU; break;
2512 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
2513 case MVT::i1:
2514 case MVT::i8: Opcode = PPC::LBZU; break;
2515 }
2516 } else {
2517 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2518 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2519 switch (LoadedVT.getSimpleVT().SimpleTy) {
2520 default: llvm_unreachable("Invalid PPC load type!");
2521 case MVT::i64: Opcode = PPC::LDU; break;
2522 case MVT::i32: Opcode = PPC::LWZU8; break;
2523 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
2524 case MVT::i1:
2525 case MVT::i8: Opcode = PPC::LBZU8; break;
2526 }
2527 }
2528
2529 SDValue Chain = LD->getChain();
2530 SDValue Base = LD->getBasePtr();
2531 SDValue Ops[] = { Offset, Base, Chain };
2532 return transferMemOperands(
2533 N, CurDAG->getMachineNode(
2534 Opcode, dl, LD->getValueType(0),
2535 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other,
2536 Ops));
2537 } else {
2538 unsigned Opcode;
2539 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2540 if (LD->getValueType(0) != MVT::i64) {
2541 // Handle PPC32 integer and normal FP loads.
2542 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2543 switch (LoadedVT.getSimpleVT().SimpleTy) {
2544 default: llvm_unreachable("Invalid PPC load type!");
2545 case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
2546 case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
2547 case MVT::f64: Opcode = PPC::LFDUX; break;
2548 case MVT::f32: Opcode = PPC::LFSUX; break;
2549 case MVT::i32: Opcode = PPC::LWZUX; break;
2550 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
2551 case MVT::i1:
2552 case MVT::i8: Opcode = PPC::LBZUX; break;
2553 }
2554 } else {
2555 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2556 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
2557 "Invalid sext update load");
2558 switch (LoadedVT.getSimpleVT().SimpleTy) {
2559 default: llvm_unreachable("Invalid PPC load type!");
2560 case MVT::i64: Opcode = PPC::LDUX; break;
2561 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
2562 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
2563 case MVT::i1:
2564 case MVT::i8: Opcode = PPC::LBZUX8; break;
2565 }
2566 }
2567
2568 SDValue Chain = LD->getChain();
2569 SDValue Base = LD->getBasePtr();
2570 SDValue Ops[] = { Base, Offset, Chain };
2571 return transferMemOperands(
2572 N, CurDAG->getMachineNode(
2573 Opcode, dl, LD->getValueType(0),
2574 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other,
2575 Ops));
2576 }
2577 }
2578
2579 case ISD::AND: {
2580 unsigned Imm, Imm2, SH, MB, ME;
2581 uint64_t Imm64;
2582
2583 // If this is an and of a value rotated between 0 and 31 bits and then and'd
2584 // with a mask, emit rlwinm
2585 if (isInt32Immediate(N->getOperand(1), Imm) &&
2586 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
2587 SDValue Val = N->getOperand(0).getOperand(0);
2588 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
2589 getI32Imm(ME, dl) };
2590 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2591 }
2592 // If this is just a masked value where the input is not handled above, and
2593 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
2594 if (isInt32Immediate(N->getOperand(1), Imm) &&
2595 isRunOfOnes(Imm, MB, ME) &&
2596 N->getOperand(0).getOpcode() != ISD::ROTL) {
2597 SDValue Val = N->getOperand(0);
2598 SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
2599 getI32Imm(ME, dl) };
2600 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2601 }
2602 // If this is a 64-bit zero-extension mask, emit rldicl.
2603 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
2604 isMask_64(Imm64)) {
2605 SDValue Val = N->getOperand(0);
2606 MB = 64 - countTrailingOnes(Imm64);
2607 SH = 0;
2608
2609 // If the operand is a logical right shift, we can fold it into this
2610 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
2611 // for n <= mb. The right shift is really a left rotate followed by a
2612 // mask, and this mask is a more-restrictive sub-mask of the mask implied
2613 // by the shift.
2614 if (Val.getOpcode() == ISD::SRL &&
2615 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
2616 assert(Imm < 64 && "Illegal shift amount");
2617 Val = Val.getOperand(0);
2618 SH = 64 - Imm;
2619 }
2620
2621 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
2622 return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
2623 }
2624 // AND X, 0 -> 0, not "rlwinm 32".
2625 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
2626 ReplaceUses(SDValue(N, 0), N->getOperand(1));
2627 return nullptr;
2628 }
2629 // ISD::OR doesn't get all the bitfield insertion fun.
2630 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
2631 // bitfield insert.
2632 if (isInt32Immediate(N->getOperand(1), Imm) &&
2633 N->getOperand(0).getOpcode() == ISD::OR &&
2634 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
2635 // The idea here is to check whether this is equivalent to:
2636 // (c1 & m) | (x & ~m)
2637 // where m is a run-of-ones mask. The logic here is that, for each bit in
2638 // c1 and c2:
2639 // - if both are 1, then the output will be 1.
2640 // - if both are 0, then the output will be 0.
2641 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
2642 // come from x.
2643 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
2644 // be 0.
2645 // If that last condition is never the case, then we can form m from the
2646 // bits that are the same between c1 and c2.
2647 unsigned MB, ME;
2648 if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
2649 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2650 N->getOperand(0).getOperand(1),
2651 getI32Imm(0, dl), getI32Imm(MB, dl),
2652 getI32Imm(ME, dl) };
2653 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
2654 }
2655 }
2656
2657 // Other cases are autogenerated.
2658 break;
2659 }
2660 case ISD::OR: {
2661 if (N->getValueType(0) == MVT::i32)
2662 if (SDNode *I = SelectBitfieldInsert(N))
2663 return I;
2664
2665 short Imm;
2666 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2667 isIntS16Immediate(N->getOperand(1), Imm)) {
2668 APInt LHSKnownZero, LHSKnownOne;
2669 CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
2670
2671 // If this is equivalent to an add, then we can fold it with the
2672 // FrameIndex calculation.
2673 if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
2674 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2675 }
2676
2677 // Other cases are autogenerated.
2678 break;
2679 }
2680 case ISD::ADD: {
2681 short Imm;
2682 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2683 isIntS16Immediate(N->getOperand(1), Imm))
2684 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2685
2686 break;
2687 }
2688 case ISD::SHL: {
2689 unsigned Imm, SH, MB, ME;
2690 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
2691 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
2692 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2693 getI32Imm(SH, dl), getI32Imm(MB, dl),
2694 getI32Imm(ME, dl) };
2695 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2696 }
2697
2698 // Other cases are autogenerated.
2699 break;
2700 }
2701 case ISD::SRL: {
2702 unsigned Imm, SH, MB, ME;
2703 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
2704 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
2705 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2706 getI32Imm(SH, dl), getI32Imm(MB, dl),
2707 getI32Imm(ME, dl) };
2708 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2709 }
2710
2711 // Other cases are autogenerated.
2712 break;
2713 }
2714 // FIXME: Remove this once the ANDI glue bug is fixed:
2715 case PPCISD::ANDIo_1_EQ_BIT:
2716 case PPCISD::ANDIo_1_GT_BIT: {
2717 if (!ANDIGlueBug)
2718 break;
2719
2720 EVT InVT = N->getOperand(0).getValueType();
2721 assert((InVT == MVT::i64 || InVT == MVT::i32) &&
2722 "Invalid input type for ANDIo_1_EQ_BIT");
2723
2724 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
2725 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
2726 N->getOperand(0),
2727 CurDAG->getTargetConstant(1, dl, InVT)),
2728 0);
2729 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2730 SDValue SRIdxVal =
2731 CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
2732 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
2733
2734 return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
2735 CR0Reg, SRIdxVal,
2736 SDValue(AndI.getNode(), 1) /* glue */);
2737 }
2738 case ISD::SELECT_CC: {
2739 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
2740 EVT PtrVT =
2741 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
2742 bool isPPC64 = (PtrVT == MVT::i64);
2743
2744 // If this is a select of i1 operands, we'll pattern match it.
2745 if (PPCSubTarget->useCRBits() &&
2746 N->getOperand(0).getValueType() == MVT::i1)
2747 break;
2748
2749 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
2750 if (!isPPC64)
2751 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2752 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
2753 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
2754 if (N1C->isNullValue() && N3C->isNullValue() &&
2755 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
2756 // FIXME: Implement this optzn for PPC64.
2757 N->getValueType(0) == MVT::i32) {
2758 SDNode *Tmp =
2759 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2760 N->getOperand(0), getI32Imm(~0U, dl));
2761 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
2762 SDValue(Tmp, 0), N->getOperand(0),
2763 SDValue(Tmp, 1));
2764 }
2765
2766 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
2767
2768 if (N->getValueType(0) == MVT::i1) {
2769 // An i1 select is: (c & t) | (!c & f).
2770 bool Inv;
2771 unsigned Idx = getCRIdxForSetCC(CC, Inv);
2772
2773 unsigned SRI;
2774 switch (Idx) {
2775 default: llvm_unreachable("Invalid CC index");
2776 case 0: SRI = PPC::sub_lt; break;
2777 case 1: SRI = PPC::sub_gt; break;
2778 case 2: SRI = PPC::sub_eq; break;
2779 case 3: SRI = PPC::sub_un; break;
2780 }
2781
2782 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
2783
2784 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
2785 CCBit, CCBit), 0);
2786 SDValue C = Inv ? NotCCBit : CCBit,
2787 NotC = Inv ? CCBit : NotCCBit;
2788
2789 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2790 C, N->getOperand(2)), 0);
2791 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2792 NotC, N->getOperand(3)), 0);
2793
2794 return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
2795 }
2796
2797 unsigned BROpc = getPredicateForSetCC(CC);
2798
2799 unsigned SelectCCOp;
2800 if (N->getValueType(0) == MVT::i32)
2801 SelectCCOp = PPC::SELECT_CC_I4;
2802 else if (N->getValueType(0) == MVT::i64)
2803 SelectCCOp = PPC::SELECT_CC_I8;
2804 else if (N->getValueType(0) == MVT::f32)
2805 if (PPCSubTarget->hasP8Vector())
2806 SelectCCOp = PPC::SELECT_CC_VSSRC;
2807 else
2808 SelectCCOp = PPC::SELECT_CC_F4;
2809 else if (N->getValueType(0) == MVT::f64)
2810 if (PPCSubTarget->hasVSX())
2811 SelectCCOp = PPC::SELECT_CC_VSFRC;
2812 else
2813 SelectCCOp = PPC::SELECT_CC_F8;
2814 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
2815 SelectCCOp = PPC::SELECT_CC_QFRC;
2816 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
2817 SelectCCOp = PPC::SELECT_CC_QSRC;
2818 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
2819 SelectCCOp = PPC::SELECT_CC_QBRC;
2820 else if (N->getValueType(0) == MVT::v2f64 ||
2821 N->getValueType(0) == MVT::v2i64)
2822 SelectCCOp = PPC::SELECT_CC_VSRC;
2823 else
2824 SelectCCOp = PPC::SELECT_CC_VRRC;
2825
2826 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
2827 getI32Imm(BROpc, dl) };
2828 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
2829 }
2830 case ISD::VSELECT:
2831 if (PPCSubTarget->hasVSX()) {
2832 SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
2833 return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
2834 }
2835
2836 break;
2837 case ISD::VECTOR_SHUFFLE:
2838 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
2839 N->getValueType(0) == MVT::v2i64)) {
2840 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
2841
2842 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
2843 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
2844 unsigned DM[2];
2845
2846 for (int i = 0; i < 2; ++i)
2847 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
2848 DM[i] = 0;
2849 else
2850 DM[i] = 1;
2851
2852 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
2853 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
2854 isa<LoadSDNode>(Op1.getOperand(0))) {
2855 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
2856 SDValue Base, Offset;
2857
2858 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
2859 (LD->getMemoryVT() == MVT::f64 ||
2860 LD->getMemoryVT() == MVT::i64) &&
2861 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
2862 SDValue Chain = LD->getChain();
2863 SDValue Ops[] = { Base, Offset, Chain };
2864 return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
2865 N->getValueType(0), Ops);
2866 }
2867 }
2868
2869 // For little endian, we must swap the input operands and adjust
2870 // the mask elements (reverse and invert them).
2871 if (PPCSubTarget->isLittleEndian()) {
2872 std::swap(Op1, Op2);
2873 unsigned tmp = DM[0];
2874 DM[0] = 1 - DM[1];
2875 DM[1] = 1 - tmp;
2876 }
2877
2878 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
2879 MVT::i32);
2880 SDValue Ops[] = { Op1, Op2, DMV };
2881 return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
2882 }
2883
2884 break;
2885 case PPCISD::BDNZ:
2886 case PPCISD::BDZ: {
2887 bool IsPPC64 = PPCSubTarget->isPPC64();
2888 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
2889 return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
2890 (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
2891 (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
2892 MVT::Other, Ops);
2893 }
2894 case PPCISD::COND_BRANCH: {
2895 // Op #0 is the Chain.
2896 // Op #1 is the PPC::PRED_* number.
2897 // Op #2 is the CR#
2898 // Op #3 is the Dest MBB
2899 // Op #4 is the Flag.
2900 // Prevent PPC::PRED_* from being selected into LI.
2901 unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2902 if (EnableBranchHint)
2903 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3));
2904
2905 SDValue Pred = getI32Imm(PCC, dl);
2906 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
2907 N->getOperand(0), N->getOperand(4) };
2908 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
2909 }
2910 case ISD::BR_CC: {
2911 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2912 unsigned PCC = getPredicateForSetCC(CC);
2913
2914 if (N->getOperand(2).getValueType() == MVT::i1) {
2915 unsigned Opc;
2916 bool Swap;
2917 switch (PCC) {
2918 default: llvm_unreachable("Unexpected Boolean-operand predicate");
2919 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
2920 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
2921 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
2922 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
2923 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
2924 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
2925 }
2926
2927 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
2928 N->getOperand(Swap ? 3 : 2),
2929 N->getOperand(Swap ? 2 : 3)), 0);
2930 return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
2931 BitComp, N->getOperand(4), N->getOperand(0));
2932 }
2933
2934 if (EnableBranchHint)
2935 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4));
2936
2937 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
2938 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
2939 N->getOperand(4), N->getOperand(0) };
2940 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
2941 }
2942 case ISD::BRIND: {
2943 // FIXME: Should custom lower this.
2944 SDValue Chain = N->getOperand(0);
2945 SDValue Target = N->getOperand(1);
2946 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
2947 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
2948 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
2949 Chain), 0);
2950 return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
2951 }
2952 case PPCISD::TOC_ENTRY: {
2953 assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
2954 "Only supported for 64-bit ABI and 32-bit SVR4");
2955 if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
2956 SDValue GA = N->getOperand(0);
2957 return transferMemOperands(N, CurDAG->getMachineNode(PPC::LWZtoc, dl,
2958 MVT::i32, GA, N->getOperand(1)));
2959 }
2960
2961 // For medium and large code model, we generate two instructions as
2962 // described below. Otherwise we allow SelectCodeCommon to handle this,
2963 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
2964 CodeModel::Model CModel = TM.getCodeModel();
2965 if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
2966 break;
2967
2968 // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
2969 // If it must be toc-referenced according to PPCSubTarget, we generate:
2970 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
2971 // Otherwise we generate:
2972 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
2973 SDValue GA = N->getOperand(0);
2974 SDValue TOCbase = N->getOperand(1);
2975 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
2976 TOCbase, GA);
2977
2978 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
2979 CModel == CodeModel::Large)
2980 return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
2981 MVT::i64, GA, SDValue(Tmp, 0)));
2982
2983 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
2984 const GlobalValue *GV = G->getGlobal();
2985 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
2986 if (GVFlags & PPCII::MO_NLP_FLAG) {
2987 return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
2988 MVT::i64, GA, SDValue(Tmp, 0)));
2989 }
2990 }
2991
2992 return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
2993 SDValue(Tmp, 0), GA);
2994 }
2995 case PPCISD::PPC32_PICGOT: {
2996 // Generate a PIC-safe GOT reference.
2997 assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
2998 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
2999 return CurDAG->SelectNodeTo(
3000 N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(CurDAG->getDataLayout()),
3001 MVT::i32);
3002 }
3003 case PPCISD::VADD_SPLAT: {
3004 // This expands into one of three sequences, depending on whether
3005 // the first operand is odd or even, positive or negative.
3006 assert(isa<ConstantSDNode>(N->getOperand(0)) &&
3007 isa<ConstantSDNode>(N->getOperand(1)) &&
3008 "Invalid operand on VADD_SPLAT!");
3009
3010 int Elt = N->getConstantOperandVal(0);
3011 int EltSize = N->getConstantOperandVal(1);
3012 unsigned Opc1, Opc2, Opc3;
3013 EVT VT;
3014
3015 if (EltSize == 1) {
3016 Opc1 = PPC::VSPLTISB;
3017 Opc2 = PPC::VADDUBM;
3018 Opc3 = PPC::VSUBUBM;
3019 VT = MVT::v16i8;
3020 } else if (EltSize == 2) {
3021 Opc1 = PPC::VSPLTISH;
3022 Opc2 = PPC::VADDUHM;
3023 Opc3 = PPC::VSUBUHM;
3024 VT = MVT::v8i16;
3025 } else {
3026 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
3027 Opc1 = PPC::VSPLTISW;
3028 Opc2 = PPC::VADDUWM;
3029 Opc3 = PPC::VSUBUWM;
3030 VT = MVT::v4i32;
3031 }
3032
3033 if ((Elt & 1) == 0) {
3034 // Elt is even, in the range [-32,-18] + [16,30].
3035 //
3036 // Convert: VADD_SPLAT elt, size
3037 // Into: tmp = VSPLTIS[BHW] elt
3038 // VADDU[BHW]M tmp, tmp
3039 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
3040 SDValue EltVal = getI32Imm(Elt >> 1, dl);
3041 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3042 SDValue TmpVal = SDValue(Tmp, 0);
3043 return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
3044
3045 } else if (Elt > 0) {
3046 // Elt is odd and positive, in the range [17,31].
3047 //
3048 // Convert: VADD_SPLAT elt, size
3049 // Into: tmp1 = VSPLTIS[BHW] elt-16
3050 // tmp2 = VSPLTIS[BHW] -16
3051 // VSUBU[BHW]M tmp1, tmp2
3052 SDValue EltVal = getI32Imm(Elt - 16, dl);
3053 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3054 EltVal = getI32Imm(-16, dl);
3055 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3056 return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
3057 SDValue(Tmp2, 0));
3058
3059 } else {
3060 // Elt is odd and negative, in the range [-31,-17].
3061 //
3062 // Convert: VADD_SPLAT elt, size
3063 // Into: tmp1 = VSPLTIS[BHW] elt+16
3064 // tmp2 = VSPLTIS[BHW] -16
3065 // VADDU[BHW]M tmp1, tmp2
3066 SDValue EltVal = getI32Imm(Elt + 16, dl);
3067 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3068 EltVal = getI32Imm(-16, dl);
3069 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3070 return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
3071 SDValue(Tmp2, 0));
3072 }
3073 }
3074 }
3075
3076 return SelectCode(N);
3077 }
3078
3079 // If the target supports the cmpb instruction, do the idiom recognition here.
3080 // We don't do this as a DAG combine because we don't want to do it as nodes
3081 // are being combined (because we might miss part of the eventual idiom). We
3082 // don't want to do it during instruction selection because we want to reuse
3083 // the logic for lowering the masking operations already part of the
3084 // instruction selector.
combineToCMPB(SDNode * N)3085 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
3086 SDLoc dl(N);
3087
3088 assert(N->getOpcode() == ISD::OR &&
3089 "Only OR nodes are supported for CMPB");
3090
3091 SDValue Res;
3092 if (!PPCSubTarget->hasCMPB())
3093 return Res;
3094
3095 if (N->getValueType(0) != MVT::i32 &&
3096 N->getValueType(0) != MVT::i64)
3097 return Res;
3098
3099 EVT VT = N->getValueType(0);
3100
3101 SDValue RHS, LHS;
3102 bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
3103 uint64_t Mask = 0, Alt = 0;
3104
3105 auto IsByteSelectCC = [this](SDValue O, unsigned &b,
3106 uint64_t &Mask, uint64_t &Alt,
3107 SDValue &LHS, SDValue &RHS) {
3108 if (O.getOpcode() != ISD::SELECT_CC)
3109 return false;
3110 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
3111
3112 if (!isa<ConstantSDNode>(O.getOperand(2)) ||
3113 !isa<ConstantSDNode>(O.getOperand(3)))
3114 return false;
3115
3116 uint64_t PM = O.getConstantOperandVal(2);
3117 uint64_t PAlt = O.getConstantOperandVal(3);
3118 for (b = 0; b < 8; ++b) {
3119 uint64_t Mask = UINT64_C(0xFF) << (8*b);
3120 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
3121 break;
3122 }
3123
3124 if (b == 8)
3125 return false;
3126 Mask |= PM;
3127 Alt |= PAlt;
3128
3129 if (!isa<ConstantSDNode>(O.getOperand(1)) ||
3130 O.getConstantOperandVal(1) != 0) {
3131 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
3132 if (Op0.getOpcode() == ISD::TRUNCATE)
3133 Op0 = Op0.getOperand(0);
3134 if (Op1.getOpcode() == ISD::TRUNCATE)
3135 Op1 = Op1.getOperand(0);
3136
3137 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
3138 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
3139 isa<ConstantSDNode>(Op0.getOperand(1))) {
3140
3141 unsigned Bits = Op0.getValueType().getSizeInBits();
3142 if (b != Bits/8-1)
3143 return false;
3144 if (Op0.getConstantOperandVal(1) != Bits-8)
3145 return false;
3146
3147 LHS = Op0.getOperand(0);
3148 RHS = Op1.getOperand(0);
3149 return true;
3150 }
3151
3152 // When we have small integers (i16 to be specific), the form present
3153 // post-legalization uses SETULT in the SELECT_CC for the
3154 // higher-order byte, depending on the fact that the
3155 // even-higher-order bytes are known to all be zero, for example:
3156 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
3157 // (so when the second byte is the same, because all higher-order
3158 // bits from bytes 3 and 4 are known to be zero, the result of the
3159 // xor can be at most 255)
3160 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
3161 isa<ConstantSDNode>(O.getOperand(1))) {
3162
3163 uint64_t ULim = O.getConstantOperandVal(1);
3164 if (ULim != (UINT64_C(1) << b*8))
3165 return false;
3166
3167 // Now we need to make sure that the upper bytes are known to be
3168 // zero.
3169 unsigned Bits = Op0.getValueType().getSizeInBits();
3170 if (!CurDAG->MaskedValueIsZero(Op0,
3171 APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
3172 return false;
3173
3174 LHS = Op0.getOperand(0);
3175 RHS = Op0.getOperand(1);
3176 return true;
3177 }
3178
3179 return false;
3180 }
3181
3182 if (CC != ISD::SETEQ)
3183 return false;
3184
3185 SDValue Op = O.getOperand(0);
3186 if (Op.getOpcode() == ISD::AND) {
3187 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3188 return false;
3189 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
3190 return false;
3191
3192 SDValue XOR = Op.getOperand(0);
3193 if (XOR.getOpcode() == ISD::TRUNCATE)
3194 XOR = XOR.getOperand(0);
3195 if (XOR.getOpcode() != ISD::XOR)
3196 return false;
3197
3198 LHS = XOR.getOperand(0);
3199 RHS = XOR.getOperand(1);
3200 return true;
3201 } else if (Op.getOpcode() == ISD::SRL) {
3202 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3203 return false;
3204 unsigned Bits = Op.getValueType().getSizeInBits();
3205 if (b != Bits/8-1)
3206 return false;
3207 if (Op.getConstantOperandVal(1) != Bits-8)
3208 return false;
3209
3210 SDValue XOR = Op.getOperand(0);
3211 if (XOR.getOpcode() == ISD::TRUNCATE)
3212 XOR = XOR.getOperand(0);
3213 if (XOR.getOpcode() != ISD::XOR)
3214 return false;
3215
3216 LHS = XOR.getOperand(0);
3217 RHS = XOR.getOperand(1);
3218 return true;
3219 }
3220
3221 return false;
3222 };
3223
3224 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
3225 while (!Queue.empty()) {
3226 SDValue V = Queue.pop_back_val();
3227
3228 for (const SDValue &O : V.getNode()->ops()) {
3229 unsigned b;
3230 uint64_t M = 0, A = 0;
3231 SDValue OLHS, ORHS;
3232 if (O.getOpcode() == ISD::OR) {
3233 Queue.push_back(O);
3234 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
3235 if (!LHS) {
3236 LHS = OLHS;
3237 RHS = ORHS;
3238 BytesFound[b] = true;
3239 Mask |= M;
3240 Alt |= A;
3241 } else if ((LHS == ORHS && RHS == OLHS) ||
3242 (RHS == ORHS && LHS == OLHS)) {
3243 BytesFound[b] = true;
3244 Mask |= M;
3245 Alt |= A;
3246 } else {
3247 return Res;
3248 }
3249 } else {
3250 return Res;
3251 }
3252 }
3253 }
3254
3255 unsigned LastB = 0, BCnt = 0;
3256 for (unsigned i = 0; i < 8; ++i)
3257 if (BytesFound[LastB]) {
3258 ++BCnt;
3259 LastB = i;
3260 }
3261
3262 if (!LastB || BCnt < 2)
3263 return Res;
3264
3265 // Because we'll be zero-extending the output anyway if don't have a specific
3266 // value for each input byte (via the Mask), we can 'anyext' the inputs.
3267 if (LHS.getValueType() != VT) {
3268 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
3269 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
3270 }
3271
3272 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
3273
3274 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
3275 if (NonTrivialMask && !Alt) {
3276 // Res = Mask & CMPB
3277 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3278 CurDAG->getConstant(Mask, dl, VT));
3279 } else if (Alt) {
3280 // Res = (CMPB & Mask) | (~CMPB & Alt)
3281 // Which, as suggested here:
3282 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
3283 // can be written as:
3284 // Res = Alt ^ ((Alt ^ Mask) & CMPB)
3285 // useful because the (Alt ^ Mask) can be pre-computed.
3286 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3287 CurDAG->getConstant(Mask ^ Alt, dl, VT));
3288 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
3289 CurDAG->getConstant(Alt, dl, VT));
3290 }
3291
3292 return Res;
3293 }
3294
3295 // When CR bit registers are enabled, an extension of an i1 variable to a i32
3296 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
3297 // involves constant materialization of a 0 or a 1 or both. If the result of
3298 // the extension is then operated upon by some operator that can be constant
3299 // folded with a constant 0 or 1, and that constant can be materialized using
3300 // only one instruction (like a zero or one), then we should fold in those
3301 // operations with the select.
foldBoolExts(SDValue & Res,SDNode * & N)3302 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
3303 if (!PPCSubTarget->useCRBits())
3304 return;
3305
3306 if (N->getOpcode() != ISD::ZERO_EXTEND &&
3307 N->getOpcode() != ISD::SIGN_EXTEND &&
3308 N->getOpcode() != ISD::ANY_EXTEND)
3309 return;
3310
3311 if (N->getOperand(0).getValueType() != MVT::i1)
3312 return;
3313
3314 if (!N->hasOneUse())
3315 return;
3316
3317 SDLoc dl(N);
3318 EVT VT = N->getValueType(0);
3319 SDValue Cond = N->getOperand(0);
3320 SDValue ConstTrue =
3321 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
3322 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
3323
3324 do {
3325 SDNode *User = *N->use_begin();
3326 if (User->getNumOperands() != 2)
3327 break;
3328
3329 auto TryFold = [this, N, User, dl](SDValue Val) {
3330 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
3331 SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
3332 SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
3333
3334 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
3335 User->getValueType(0),
3336 O0.getNode(), O1.getNode());
3337 };
3338
3339 SDValue TrueRes = TryFold(ConstTrue);
3340 if (!TrueRes)
3341 break;
3342 SDValue FalseRes = TryFold(ConstFalse);
3343 if (!FalseRes)
3344 break;
3345
3346 // For us to materialize these using one instruction, we must be able to
3347 // represent them as signed 16-bit integers.
3348 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
3349 False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
3350 if (!isInt<16>(True) || !isInt<16>(False))
3351 break;
3352
3353 // We can replace User with a new SELECT node, and try again to see if we
3354 // can fold the select with its user.
3355 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
3356 N = User;
3357 ConstTrue = TrueRes;
3358 ConstFalse = FalseRes;
3359 } while (N->hasOneUse());
3360 }
3361
PreprocessISelDAG()3362 void PPCDAGToDAGISel::PreprocessISelDAG() {
3363 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3364 ++Position;
3365
3366 bool MadeChange = false;
3367 while (Position != CurDAG->allnodes_begin()) {
3368 SDNode *N = &*--Position;
3369 if (N->use_empty())
3370 continue;
3371
3372 SDValue Res;
3373 switch (N->getOpcode()) {
3374 default: break;
3375 case ISD::OR:
3376 Res = combineToCMPB(N);
3377 break;
3378 }
3379
3380 if (!Res)
3381 foldBoolExts(Res, N);
3382
3383 if (Res) {
3384 DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
3385 DEBUG(N->dump(CurDAG));
3386 DEBUG(dbgs() << "\nNew: ");
3387 DEBUG(Res.getNode()->dump(CurDAG));
3388 DEBUG(dbgs() << "\n");
3389
3390 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
3391 MadeChange = true;
3392 }
3393 }
3394
3395 if (MadeChange)
3396 CurDAG->RemoveDeadNodes();
3397 }
3398
3399 /// PostprocessISelDAG - Perform some late peephole optimizations
3400 /// on the DAG representation.
PostprocessISelDAG()3401 void PPCDAGToDAGISel::PostprocessISelDAG() {
3402
3403 // Skip peepholes at -O0.
3404 if (TM.getOptLevel() == CodeGenOpt::None)
3405 return;
3406
3407 PeepholePPC64();
3408 PeepholeCROps();
3409 PeepholePPC64ZExt();
3410 }
3411
3412 // Check if all users of this node will become isel where the second operand
3413 // is the constant zero. If this is so, and if we can negate the condition,
3414 // then we can flip the true and false operands. This will allow the zero to
3415 // be folded with the isel so that we don't need to materialize a register
3416 // containing zero.
AllUsersSelectZero(SDNode * N)3417 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
3418 // If we're not using isel, then this does not matter.
3419 if (!PPCSubTarget->hasISEL())
3420 return false;
3421
3422 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3423 UI != UE; ++UI) {
3424 SDNode *User = *UI;
3425 if (!User->isMachineOpcode())
3426 return false;
3427 if (User->getMachineOpcode() != PPC::SELECT_I4 &&
3428 User->getMachineOpcode() != PPC::SELECT_I8)
3429 return false;
3430
3431 SDNode *Op2 = User->getOperand(2).getNode();
3432 if (!Op2->isMachineOpcode())
3433 return false;
3434
3435 if (Op2->getMachineOpcode() != PPC::LI &&
3436 Op2->getMachineOpcode() != PPC::LI8)
3437 return false;
3438
3439 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
3440 if (!C)
3441 return false;
3442
3443 if (!C->isNullValue())
3444 return false;
3445 }
3446
3447 return true;
3448 }
3449
SwapAllSelectUsers(SDNode * N)3450 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
3451 SmallVector<SDNode *, 4> ToReplace;
3452 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3453 UI != UE; ++UI) {
3454 SDNode *User = *UI;
3455 assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
3456 User->getMachineOpcode() == PPC::SELECT_I8) &&
3457 "Must have all select users");
3458 ToReplace.push_back(User);
3459 }
3460
3461 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
3462 UE = ToReplace.end(); UI != UE; ++UI) {
3463 SDNode *User = *UI;
3464 SDNode *ResNode =
3465 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
3466 User->getValueType(0), User->getOperand(0),
3467 User->getOperand(2),
3468 User->getOperand(1));
3469
3470 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
3471 DEBUG(User->dump(CurDAG));
3472 DEBUG(dbgs() << "\nNew: ");
3473 DEBUG(ResNode->dump(CurDAG));
3474 DEBUG(dbgs() << "\n");
3475
3476 ReplaceUses(User, ResNode);
3477 }
3478 }
3479
PeepholeCROps()3480 void PPCDAGToDAGISel::PeepholeCROps() {
3481 bool IsModified;
3482 do {
3483 IsModified = false;
3484 for (SDNode &Node : CurDAG->allnodes()) {
3485 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
3486 if (!MachineNode || MachineNode->use_empty())
3487 continue;
3488 SDNode *ResNode = MachineNode;
3489
3490 bool Op1Set = false, Op1Unset = false,
3491 Op1Not = false,
3492 Op2Set = false, Op2Unset = false,
3493 Op2Not = false;
3494
3495 unsigned Opcode = MachineNode->getMachineOpcode();
3496 switch (Opcode) {
3497 default: break;
3498 case PPC::CRAND:
3499 case PPC::CRNAND:
3500 case PPC::CROR:
3501 case PPC::CRXOR:
3502 case PPC::CRNOR:
3503 case PPC::CREQV:
3504 case PPC::CRANDC:
3505 case PPC::CRORC: {
3506 SDValue Op = MachineNode->getOperand(1);
3507 if (Op.isMachineOpcode()) {
3508 if (Op.getMachineOpcode() == PPC::CRSET)
3509 Op2Set = true;
3510 else if (Op.getMachineOpcode() == PPC::CRUNSET)
3511 Op2Unset = true;
3512 else if (Op.getMachineOpcode() == PPC::CRNOR &&
3513 Op.getOperand(0) == Op.getOperand(1))
3514 Op2Not = true;
3515 }
3516 } // fallthrough
3517 case PPC::BC:
3518 case PPC::BCn:
3519 case PPC::SELECT_I4:
3520 case PPC::SELECT_I8:
3521 case PPC::SELECT_F4:
3522 case PPC::SELECT_F8:
3523 case PPC::SELECT_QFRC:
3524 case PPC::SELECT_QSRC:
3525 case PPC::SELECT_QBRC:
3526 case PPC::SELECT_VRRC:
3527 case PPC::SELECT_VSFRC:
3528 case PPC::SELECT_VSSRC:
3529 case PPC::SELECT_VSRC: {
3530 SDValue Op = MachineNode->getOperand(0);
3531 if (Op.isMachineOpcode()) {
3532 if (Op.getMachineOpcode() == PPC::CRSET)
3533 Op1Set = true;
3534 else if (Op.getMachineOpcode() == PPC::CRUNSET)
3535 Op1Unset = true;
3536 else if (Op.getMachineOpcode() == PPC::CRNOR &&
3537 Op.getOperand(0) == Op.getOperand(1))
3538 Op1Not = true;
3539 }
3540 }
3541 break;
3542 }
3543
3544 bool SelectSwap = false;
3545 switch (Opcode) {
3546 default: break;
3547 case PPC::CRAND:
3548 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3549 // x & x = x
3550 ResNode = MachineNode->getOperand(0).getNode();
3551 else if (Op1Set)
3552 // 1 & y = y
3553 ResNode = MachineNode->getOperand(1).getNode();
3554 else if (Op2Set)
3555 // x & 1 = x
3556 ResNode = MachineNode->getOperand(0).getNode();
3557 else if (Op1Unset || Op2Unset)
3558 // x & 0 = 0 & y = 0
3559 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3560 MVT::i1);
3561 else if (Op1Not)
3562 // ~x & y = andc(y, x)
3563 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3564 MVT::i1, MachineNode->getOperand(1),
3565 MachineNode->getOperand(0).
3566 getOperand(0));
3567 else if (Op2Not)
3568 // x & ~y = andc(x, y)
3569 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3570 MVT::i1, MachineNode->getOperand(0),
3571 MachineNode->getOperand(1).
3572 getOperand(0));
3573 else if (AllUsersSelectZero(MachineNode))
3574 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3575 MVT::i1, MachineNode->getOperand(0),
3576 MachineNode->getOperand(1)),
3577 SelectSwap = true;
3578 break;
3579 case PPC::CRNAND:
3580 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3581 // nand(x, x) -> nor(x, x)
3582 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3583 MVT::i1, MachineNode->getOperand(0),
3584 MachineNode->getOperand(0));
3585 else if (Op1Set)
3586 // nand(1, y) -> nor(y, y)
3587 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3588 MVT::i1, MachineNode->getOperand(1),
3589 MachineNode->getOperand(1));
3590 else if (Op2Set)
3591 // nand(x, 1) -> nor(x, x)
3592 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3593 MVT::i1, MachineNode->getOperand(0),
3594 MachineNode->getOperand(0));
3595 else if (Op1Unset || Op2Unset)
3596 // nand(x, 0) = nand(0, y) = 1
3597 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3598 MVT::i1);
3599 else if (Op1Not)
3600 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
3601 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3602 MVT::i1, MachineNode->getOperand(0).
3603 getOperand(0),
3604 MachineNode->getOperand(1));
3605 else if (Op2Not)
3606 // nand(x, ~y) = ~x | y = orc(y, x)
3607 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3608 MVT::i1, MachineNode->getOperand(1).
3609 getOperand(0),
3610 MachineNode->getOperand(0));
3611 else if (AllUsersSelectZero(MachineNode))
3612 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3613 MVT::i1, MachineNode->getOperand(0),
3614 MachineNode->getOperand(1)),
3615 SelectSwap = true;
3616 break;
3617 case PPC::CROR:
3618 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3619 // x | x = x
3620 ResNode = MachineNode->getOperand(0).getNode();
3621 else if (Op1Set || Op2Set)
3622 // x | 1 = 1 | y = 1
3623 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3624 MVT::i1);
3625 else if (Op1Unset)
3626 // 0 | y = y
3627 ResNode = MachineNode->getOperand(1).getNode();
3628 else if (Op2Unset)
3629 // x | 0 = x
3630 ResNode = MachineNode->getOperand(0).getNode();
3631 else if (Op1Not)
3632 // ~x | y = orc(y, x)
3633 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3634 MVT::i1, MachineNode->getOperand(1),
3635 MachineNode->getOperand(0).
3636 getOperand(0));
3637 else if (Op2Not)
3638 // x | ~y = orc(x, y)
3639 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3640 MVT::i1, MachineNode->getOperand(0),
3641 MachineNode->getOperand(1).
3642 getOperand(0));
3643 else if (AllUsersSelectZero(MachineNode))
3644 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3645 MVT::i1, MachineNode->getOperand(0),
3646 MachineNode->getOperand(1)),
3647 SelectSwap = true;
3648 break;
3649 case PPC::CRXOR:
3650 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3651 // xor(x, x) = 0
3652 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3653 MVT::i1);
3654 else if (Op1Set)
3655 // xor(1, y) -> nor(y, y)
3656 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3657 MVT::i1, MachineNode->getOperand(1),
3658 MachineNode->getOperand(1));
3659 else if (Op2Set)
3660 // xor(x, 1) -> nor(x, x)
3661 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3662 MVT::i1, MachineNode->getOperand(0),
3663 MachineNode->getOperand(0));
3664 else if (Op1Unset)
3665 // xor(0, y) = y
3666 ResNode = MachineNode->getOperand(1).getNode();
3667 else if (Op2Unset)
3668 // xor(x, 0) = x
3669 ResNode = MachineNode->getOperand(0).getNode();
3670 else if (Op1Not)
3671 // xor(~x, y) = eqv(x, y)
3672 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3673 MVT::i1, MachineNode->getOperand(0).
3674 getOperand(0),
3675 MachineNode->getOperand(1));
3676 else if (Op2Not)
3677 // xor(x, ~y) = eqv(x, y)
3678 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3679 MVT::i1, MachineNode->getOperand(0),
3680 MachineNode->getOperand(1).
3681 getOperand(0));
3682 else if (AllUsersSelectZero(MachineNode))
3683 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3684 MVT::i1, MachineNode->getOperand(0),
3685 MachineNode->getOperand(1)),
3686 SelectSwap = true;
3687 break;
3688 case PPC::CRNOR:
3689 if (Op1Set || Op2Set)
3690 // nor(1, y) -> 0
3691 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3692 MVT::i1);
3693 else if (Op1Unset)
3694 // nor(0, y) = ~y -> nor(y, y)
3695 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3696 MVT::i1, MachineNode->getOperand(1),
3697 MachineNode->getOperand(1));
3698 else if (Op2Unset)
3699 // nor(x, 0) = ~x
3700 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3701 MVT::i1, MachineNode->getOperand(0),
3702 MachineNode->getOperand(0));
3703 else if (Op1Not)
3704 // nor(~x, y) = andc(x, y)
3705 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3706 MVT::i1, MachineNode->getOperand(0).
3707 getOperand(0),
3708 MachineNode->getOperand(1));
3709 else if (Op2Not)
3710 // nor(x, ~y) = andc(y, x)
3711 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3712 MVT::i1, MachineNode->getOperand(1).
3713 getOperand(0),
3714 MachineNode->getOperand(0));
3715 else if (AllUsersSelectZero(MachineNode))
3716 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3717 MVT::i1, MachineNode->getOperand(0),
3718 MachineNode->getOperand(1)),
3719 SelectSwap = true;
3720 break;
3721 case PPC::CREQV:
3722 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3723 // eqv(x, x) = 1
3724 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3725 MVT::i1);
3726 else if (Op1Set)
3727 // eqv(1, y) = y
3728 ResNode = MachineNode->getOperand(1).getNode();
3729 else if (Op2Set)
3730 // eqv(x, 1) = x
3731 ResNode = MachineNode->getOperand(0).getNode();
3732 else if (Op1Unset)
3733 // eqv(0, y) = ~y -> nor(y, y)
3734 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3735 MVT::i1, MachineNode->getOperand(1),
3736 MachineNode->getOperand(1));
3737 else if (Op2Unset)
3738 // eqv(x, 0) = ~x
3739 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3740 MVT::i1, MachineNode->getOperand(0),
3741 MachineNode->getOperand(0));
3742 else if (Op1Not)
3743 // eqv(~x, y) = xor(x, y)
3744 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3745 MVT::i1, MachineNode->getOperand(0).
3746 getOperand(0),
3747 MachineNode->getOperand(1));
3748 else if (Op2Not)
3749 // eqv(x, ~y) = xor(x, y)
3750 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3751 MVT::i1, MachineNode->getOperand(0),
3752 MachineNode->getOperand(1).
3753 getOperand(0));
3754 else if (AllUsersSelectZero(MachineNode))
3755 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3756 MVT::i1, MachineNode->getOperand(0),
3757 MachineNode->getOperand(1)),
3758 SelectSwap = true;
3759 break;
3760 case PPC::CRANDC:
3761 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3762 // andc(x, x) = 0
3763 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3764 MVT::i1);
3765 else if (Op1Set)
3766 // andc(1, y) = ~y
3767 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3768 MVT::i1, MachineNode->getOperand(1),
3769 MachineNode->getOperand(1));
3770 else if (Op1Unset || Op2Set)
3771 // andc(0, y) = andc(x, 1) = 0
3772 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3773 MVT::i1);
3774 else if (Op2Unset)
3775 // andc(x, 0) = x
3776 ResNode = MachineNode->getOperand(0).getNode();
3777 else if (Op1Not)
3778 // andc(~x, y) = ~(x | y) = nor(x, y)
3779 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3780 MVT::i1, MachineNode->getOperand(0).
3781 getOperand(0),
3782 MachineNode->getOperand(1));
3783 else if (Op2Not)
3784 // andc(x, ~y) = x & y
3785 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3786 MVT::i1, MachineNode->getOperand(0),
3787 MachineNode->getOperand(1).
3788 getOperand(0));
3789 else if (AllUsersSelectZero(MachineNode))
3790 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3791 MVT::i1, MachineNode->getOperand(1),
3792 MachineNode->getOperand(0)),
3793 SelectSwap = true;
3794 break;
3795 case PPC::CRORC:
3796 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3797 // orc(x, x) = 1
3798 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3799 MVT::i1);
3800 else if (Op1Set || Op2Unset)
3801 // orc(1, y) = orc(x, 0) = 1
3802 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3803 MVT::i1);
3804 else if (Op2Set)
3805 // orc(x, 1) = x
3806 ResNode = MachineNode->getOperand(0).getNode();
3807 else if (Op1Unset)
3808 // orc(0, y) = ~y
3809 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3810 MVT::i1, MachineNode->getOperand(1),
3811 MachineNode->getOperand(1));
3812 else if (Op1Not)
3813 // orc(~x, y) = ~(x & y) = nand(x, y)
3814 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3815 MVT::i1, MachineNode->getOperand(0).
3816 getOperand(0),
3817 MachineNode->getOperand(1));
3818 else if (Op2Not)
3819 // orc(x, ~y) = x | y
3820 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3821 MVT::i1, MachineNode->getOperand(0),
3822 MachineNode->getOperand(1).
3823 getOperand(0));
3824 else if (AllUsersSelectZero(MachineNode))
3825 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3826 MVT::i1, MachineNode->getOperand(1),
3827 MachineNode->getOperand(0)),
3828 SelectSwap = true;
3829 break;
3830 case PPC::SELECT_I4:
3831 case PPC::SELECT_I8:
3832 case PPC::SELECT_F4:
3833 case PPC::SELECT_F8:
3834 case PPC::SELECT_QFRC:
3835 case PPC::SELECT_QSRC:
3836 case PPC::SELECT_QBRC:
3837 case PPC::SELECT_VRRC:
3838 case PPC::SELECT_VSFRC:
3839 case PPC::SELECT_VSSRC:
3840 case PPC::SELECT_VSRC:
3841 if (Op1Set)
3842 ResNode = MachineNode->getOperand(1).getNode();
3843 else if (Op1Unset)
3844 ResNode = MachineNode->getOperand(2).getNode();
3845 else if (Op1Not)
3846 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
3847 SDLoc(MachineNode),
3848 MachineNode->getValueType(0),
3849 MachineNode->getOperand(0).
3850 getOperand(0),
3851 MachineNode->getOperand(2),
3852 MachineNode->getOperand(1));
3853 break;
3854 case PPC::BC:
3855 case PPC::BCn:
3856 if (Op1Not)
3857 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
3858 PPC::BC,
3859 SDLoc(MachineNode),
3860 MVT::Other,
3861 MachineNode->getOperand(0).
3862 getOperand(0),
3863 MachineNode->getOperand(1),
3864 MachineNode->getOperand(2));
3865 // FIXME: Handle Op1Set, Op1Unset here too.
3866 break;
3867 }
3868
3869 // If we're inverting this node because it is used only by selects that
3870 // we'd like to swap, then swap the selects before the node replacement.
3871 if (SelectSwap)
3872 SwapAllSelectUsers(MachineNode);
3873
3874 if (ResNode != MachineNode) {
3875 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
3876 DEBUG(MachineNode->dump(CurDAG));
3877 DEBUG(dbgs() << "\nNew: ");
3878 DEBUG(ResNode->dump(CurDAG));
3879 DEBUG(dbgs() << "\n");
3880
3881 ReplaceUses(MachineNode, ResNode);
3882 IsModified = true;
3883 }
3884 }
3885 if (IsModified)
3886 CurDAG->RemoveDeadNodes();
3887 } while (IsModified);
3888 }
3889
3890 // Gather the set of 32-bit operations that are known to have their
3891 // higher-order 32 bits zero, where ToPromote contains all such operations.
PeepholePPC64ZExtGather(SDValue Op32,SmallPtrSetImpl<SDNode * > & ToPromote)3892 static bool PeepholePPC64ZExtGather(SDValue Op32,
3893 SmallPtrSetImpl<SDNode *> &ToPromote) {
3894 if (!Op32.isMachineOpcode())
3895 return false;
3896
3897 // First, check for the "frontier" instructions (those that will clear the
3898 // higher-order 32 bits.
3899
3900 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
3901 // around. If it does not, then these instructions will clear the
3902 // higher-order bits.
3903 if ((Op32.getMachineOpcode() == PPC::RLWINM ||
3904 Op32.getMachineOpcode() == PPC::RLWNM) &&
3905 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
3906 ToPromote.insert(Op32.getNode());
3907 return true;
3908 }
3909
3910 // SLW and SRW always clear the higher-order bits.
3911 if (Op32.getMachineOpcode() == PPC::SLW ||
3912 Op32.getMachineOpcode() == PPC::SRW) {
3913 ToPromote.insert(Op32.getNode());
3914 return true;
3915 }
3916
3917 // For LI and LIS, we need the immediate to be positive (so that it is not
3918 // sign extended).
3919 if (Op32.getMachineOpcode() == PPC::LI ||
3920 Op32.getMachineOpcode() == PPC::LIS) {
3921 if (!isUInt<15>(Op32.getConstantOperandVal(0)))
3922 return false;
3923
3924 ToPromote.insert(Op32.getNode());
3925 return true;
3926 }
3927
3928 // LHBRX and LWBRX always clear the higher-order bits.
3929 if (Op32.getMachineOpcode() == PPC::LHBRX ||
3930 Op32.getMachineOpcode() == PPC::LWBRX) {
3931 ToPromote.insert(Op32.getNode());
3932 return true;
3933 }
3934
3935 // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
3936 if (Op32.getMachineOpcode() == PPC::CNTLZW) {
3937 ToPromote.insert(Op32.getNode());
3938 return true;
3939 }
3940
3941 // Next, check for those instructions we can look through.
3942
3943 // Assuming the mask does not wrap around, then the higher-order bits are
3944 // taken directly from the first operand.
3945 if (Op32.getMachineOpcode() == PPC::RLWIMI &&
3946 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
3947 SmallPtrSet<SDNode *, 16> ToPromote1;
3948 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
3949 return false;
3950
3951 ToPromote.insert(Op32.getNode());
3952 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3953 return true;
3954 }
3955
3956 // For OR, the higher-order bits are zero if that is true for both operands.
3957 // For SELECT_I4, the same is true (but the relevant operand numbers are
3958 // shifted by 1).
3959 if (Op32.getMachineOpcode() == PPC::OR ||
3960 Op32.getMachineOpcode() == PPC::SELECT_I4) {
3961 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
3962 SmallPtrSet<SDNode *, 16> ToPromote1;
3963 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
3964 return false;
3965 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
3966 return false;
3967
3968 ToPromote.insert(Op32.getNode());
3969 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3970 return true;
3971 }
3972
3973 // For ORI and ORIS, we need the higher-order bits of the first operand to be
3974 // zero, and also for the constant to be positive (so that it is not sign
3975 // extended).
3976 if (Op32.getMachineOpcode() == PPC::ORI ||
3977 Op32.getMachineOpcode() == PPC::ORIS) {
3978 SmallPtrSet<SDNode *, 16> ToPromote1;
3979 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
3980 return false;
3981 if (!isUInt<15>(Op32.getConstantOperandVal(1)))
3982 return false;
3983
3984 ToPromote.insert(Op32.getNode());
3985 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3986 return true;
3987 }
3988
3989 // The higher-order bits of AND are zero if that is true for at least one of
3990 // the operands.
3991 if (Op32.getMachineOpcode() == PPC::AND) {
3992 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
3993 bool Op0OK =
3994 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
3995 bool Op1OK =
3996 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
3997 if (!Op0OK && !Op1OK)
3998 return false;
3999
4000 ToPromote.insert(Op32.getNode());
4001
4002 if (Op0OK)
4003 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4004
4005 if (Op1OK)
4006 ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
4007
4008 return true;
4009 }
4010
4011 // For ANDI and ANDIS, the higher-order bits are zero if either that is true
4012 // of the first operand, or if the second operand is positive (so that it is
4013 // not sign extended).
4014 if (Op32.getMachineOpcode() == PPC::ANDIo ||
4015 Op32.getMachineOpcode() == PPC::ANDISo) {
4016 SmallPtrSet<SDNode *, 16> ToPromote1;
4017 bool Op0OK =
4018 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
4019 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
4020 if (!Op0OK && !Op1OK)
4021 return false;
4022
4023 ToPromote.insert(Op32.getNode());
4024
4025 if (Op0OK)
4026 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4027
4028 return true;
4029 }
4030
4031 return false;
4032 }
4033
PeepholePPC64ZExt()4034 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
4035 if (!PPCSubTarget->isPPC64())
4036 return;
4037
4038 // When we zero-extend from i32 to i64, we use a pattern like this:
4039 // def : Pat<(i64 (zext i32:$in)),
4040 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
4041 // 0, 32)>;
4042 // There are several 32-bit shift/rotate instructions, however, that will
4043 // clear the higher-order bits of their output, rendering the RLDICL
4044 // unnecessary. When that happens, we remove it here, and redefine the
4045 // relevant 32-bit operation to be a 64-bit operation.
4046
4047 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4048 ++Position;
4049
4050 bool MadeChange = false;
4051 while (Position != CurDAG->allnodes_begin()) {
4052 SDNode *N = &*--Position;
4053 // Skip dead nodes and any non-machine opcodes.
4054 if (N->use_empty() || !N->isMachineOpcode())
4055 continue;
4056
4057 if (N->getMachineOpcode() != PPC::RLDICL)
4058 continue;
4059
4060 if (N->getConstantOperandVal(1) != 0 ||
4061 N->getConstantOperandVal(2) != 32)
4062 continue;
4063
4064 SDValue ISR = N->getOperand(0);
4065 if (!ISR.isMachineOpcode() ||
4066 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
4067 continue;
4068
4069 if (!ISR.hasOneUse())
4070 continue;
4071
4072 if (ISR.getConstantOperandVal(2) != PPC::sub_32)
4073 continue;
4074
4075 SDValue IDef = ISR.getOperand(0);
4076 if (!IDef.isMachineOpcode() ||
4077 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
4078 continue;
4079
4080 // We now know that we're looking at a canonical i32 -> i64 zext. See if we
4081 // can get rid of it.
4082
4083 SDValue Op32 = ISR->getOperand(1);
4084 if (!Op32.isMachineOpcode())
4085 continue;
4086
4087 // There are some 32-bit instructions that always clear the high-order 32
4088 // bits, there are also some instructions (like AND) that we can look
4089 // through.
4090 SmallPtrSet<SDNode *, 16> ToPromote;
4091 if (!PeepholePPC64ZExtGather(Op32, ToPromote))
4092 continue;
4093
4094 // If the ToPromote set contains nodes that have uses outside of the set
4095 // (except for the original INSERT_SUBREG), then abort the transformation.
4096 bool OutsideUse = false;
4097 for (SDNode *PN : ToPromote) {
4098 for (SDNode *UN : PN->uses()) {
4099 if (!ToPromote.count(UN) && UN != ISR.getNode()) {
4100 OutsideUse = true;
4101 break;
4102 }
4103 }
4104
4105 if (OutsideUse)
4106 break;
4107 }
4108 if (OutsideUse)
4109 continue;
4110
4111 MadeChange = true;
4112
4113 // We now know that this zero extension can be removed by promoting to
4114 // nodes in ToPromote to 64-bit operations, where for operations in the
4115 // frontier of the set, we need to insert INSERT_SUBREGs for their
4116 // operands.
4117 for (SDNode *PN : ToPromote) {
4118 unsigned NewOpcode;
4119 switch (PN->getMachineOpcode()) {
4120 default:
4121 llvm_unreachable("Don't know the 64-bit variant of this instruction");
4122 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
4123 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
4124 case PPC::SLW: NewOpcode = PPC::SLW8; break;
4125 case PPC::SRW: NewOpcode = PPC::SRW8; break;
4126 case PPC::LI: NewOpcode = PPC::LI8; break;
4127 case PPC::LIS: NewOpcode = PPC::LIS8; break;
4128 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
4129 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
4130 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
4131 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
4132 case PPC::OR: NewOpcode = PPC::OR8; break;
4133 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
4134 case PPC::ORI: NewOpcode = PPC::ORI8; break;
4135 case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
4136 case PPC::AND: NewOpcode = PPC::AND8; break;
4137 case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break;
4138 case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break;
4139 }
4140
4141 // Note: During the replacement process, the nodes will be in an
4142 // inconsistent state (some instructions will have operands with values
4143 // of the wrong type). Once done, however, everything should be right
4144 // again.
4145
4146 SmallVector<SDValue, 4> Ops;
4147 for (const SDValue &V : PN->ops()) {
4148 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
4149 !isa<ConstantSDNode>(V)) {
4150 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
4151 SDNode *ReplOp =
4152 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
4153 ISR.getNode()->getVTList(), ReplOpOps);
4154 Ops.push_back(SDValue(ReplOp, 0));
4155 } else {
4156 Ops.push_back(V);
4157 }
4158 }
4159
4160 // Because all to-be-promoted nodes only have users that are other
4161 // promoted nodes (or the original INSERT_SUBREG), we can safely replace
4162 // the i32 result value type with i64.
4163
4164 SmallVector<EVT, 2> NewVTs;
4165 SDVTList VTs = PN->getVTList();
4166 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
4167 if (VTs.VTs[i] == MVT::i32)
4168 NewVTs.push_back(MVT::i64);
4169 else
4170 NewVTs.push_back(VTs.VTs[i]);
4171
4172 DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
4173 DEBUG(PN->dump(CurDAG));
4174
4175 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
4176
4177 DEBUG(dbgs() << "\nNew: ");
4178 DEBUG(PN->dump(CurDAG));
4179 DEBUG(dbgs() << "\n");
4180 }
4181
4182 // Now we replace the original zero extend and its associated INSERT_SUBREG
4183 // with the value feeding the INSERT_SUBREG (which has now been promoted to
4184 // return an i64).
4185
4186 DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
4187 DEBUG(N->dump(CurDAG));
4188 DEBUG(dbgs() << "\nNew: ");
4189 DEBUG(Op32.getNode()->dump(CurDAG));
4190 DEBUG(dbgs() << "\n");
4191
4192 ReplaceUses(N, Op32.getNode());
4193 }
4194
4195 if (MadeChange)
4196 CurDAG->RemoveDeadNodes();
4197 }
4198
PeepholePPC64()4199 void PPCDAGToDAGISel::PeepholePPC64() {
4200 // These optimizations are currently supported only for 64-bit SVR4.
4201 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
4202 return;
4203
4204 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4205 ++Position;
4206
4207 while (Position != CurDAG->allnodes_begin()) {
4208 SDNode *N = &*--Position;
4209 // Skip dead nodes and any non-machine opcodes.
4210 if (N->use_empty() || !N->isMachineOpcode())
4211 continue;
4212
4213 unsigned FirstOp;
4214 unsigned StorageOpcode = N->getMachineOpcode();
4215
4216 switch (StorageOpcode) {
4217 default: continue;
4218
4219 case PPC::LBZ:
4220 case PPC::LBZ8:
4221 case PPC::LD:
4222 case PPC::LFD:
4223 case PPC::LFS:
4224 case PPC::LHA:
4225 case PPC::LHA8:
4226 case PPC::LHZ:
4227 case PPC::LHZ8:
4228 case PPC::LWA:
4229 case PPC::LWZ:
4230 case PPC::LWZ8:
4231 FirstOp = 0;
4232 break;
4233
4234 case PPC::STB:
4235 case PPC::STB8:
4236 case PPC::STD:
4237 case PPC::STFD:
4238 case PPC::STFS:
4239 case PPC::STH:
4240 case PPC::STH8:
4241 case PPC::STW:
4242 case PPC::STW8:
4243 FirstOp = 1;
4244 break;
4245 }
4246
4247 // If this is a load or store with a zero offset, or within the alignment,
4248 // we may be able to fold an add-immediate into the memory operation.
4249 // The check against alignment is below, as it can't occur until we check
4250 // the arguments to N
4251 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
4252 continue;
4253
4254 SDValue Base = N->getOperand(FirstOp + 1);
4255 if (!Base.isMachineOpcode())
4256 continue;
4257
4258 // On targets with fusion, we don't want this to fire and remove a fusion
4259 // opportunity, unless a) it results in another fusion opportunity or
4260 // b) optimizing for size.
4261 if (PPCSubTarget->hasFusion() &&
4262 (!MF->getFunction()->optForSize() && !Base.hasOneUse()))
4263 continue;
4264
4265 unsigned Flags = 0;
4266 bool ReplaceFlags = true;
4267
4268 // When the feeding operation is an add-immediate of some sort,
4269 // determine whether we need to add relocation information to the
4270 // target flags on the immediate operand when we fold it into the
4271 // load instruction.
4272 //
4273 // For something like ADDItocL, the relocation information is
4274 // inferred from the opcode; when we process it in the AsmPrinter,
4275 // we add the necessary relocation there. A load, though, can receive
4276 // relocation from various flavors of ADDIxxx, so we need to carry
4277 // the relocation information in the target flags.
4278 switch (Base.getMachineOpcode()) {
4279 default: continue;
4280
4281 case PPC::ADDI8:
4282 case PPC::ADDI:
4283 // In some cases (such as TLS) the relocation information
4284 // is already in place on the operand, so copying the operand
4285 // is sufficient.
4286 ReplaceFlags = false;
4287 // For these cases, the immediate may not be divisible by 4, in
4288 // which case the fold is illegal for DS-form instructions. (The
4289 // other cases provide aligned addresses and are always safe.)
4290 if ((StorageOpcode == PPC::LWA ||
4291 StorageOpcode == PPC::LD ||
4292 StorageOpcode == PPC::STD) &&
4293 (!isa<ConstantSDNode>(Base.getOperand(1)) ||
4294 Base.getConstantOperandVal(1) % 4 != 0))
4295 continue;
4296 break;
4297 case PPC::ADDIdtprelL:
4298 Flags = PPCII::MO_DTPREL_LO;
4299 break;
4300 case PPC::ADDItlsldL:
4301 Flags = PPCII::MO_TLSLD_LO;
4302 break;
4303 case PPC::ADDItocL:
4304 Flags = PPCII::MO_TOC_LO;
4305 break;
4306 }
4307
4308 SDValue ImmOpnd = Base.getOperand(1);
4309 int MaxDisplacement = 0;
4310 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
4311 const GlobalValue *GV = GA->getGlobal();
4312 MaxDisplacement = GV->getAlignment() - 1;
4313 }
4314
4315 int Offset = N->getConstantOperandVal(FirstOp);
4316 if (Offset < 0 || Offset > MaxDisplacement)
4317 continue;
4318
4319 // We found an opportunity. Reverse the operands from the add
4320 // immediate and substitute them into the load or store. If
4321 // needed, update the target flags for the immediate operand to
4322 // reflect the necessary relocation information.
4323 DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
4324 DEBUG(Base->dump(CurDAG));
4325 DEBUG(dbgs() << "\nN: ");
4326 DEBUG(N->dump(CurDAG));
4327 DEBUG(dbgs() << "\n");
4328
4329 // If the relocation information isn't already present on the
4330 // immediate operand, add it now.
4331 if (ReplaceFlags) {
4332 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
4333 SDLoc dl(GA);
4334 const GlobalValue *GV = GA->getGlobal();
4335 // We can't perform this optimization for data whose alignment
4336 // is insufficient for the instruction encoding.
4337 if (GV->getAlignment() < 4 &&
4338 (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
4339 StorageOpcode == PPC::LWA || (Offset % 4) != 0)) {
4340 DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
4341 continue;
4342 }
4343 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
4344 } else if (ConstantPoolSDNode *CP =
4345 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
4346 const Constant *C = CP->getConstVal();
4347 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
4348 CP->getAlignment(),
4349 Offset, Flags);
4350 }
4351 }
4352
4353 if (FirstOp == 1) // Store
4354 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
4355 Base.getOperand(0), N->getOperand(3));
4356 else // Load
4357 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
4358 N->getOperand(2));
4359
4360 // The add-immediate may now be dead, in which case remove it.
4361 if (Base.getNode()->use_empty())
4362 CurDAG->RemoveDeadNode(Base.getNode());
4363 }
4364 }
4365
4366
4367 /// createPPCISelDag - This pass converts a legalized DAG into a
4368 /// PowerPC-specific DAG, ready for instruction scheduling.
4369 ///
createPPCISelDag(PPCTargetMachine & TM)4370 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
4371 return new PPCDAGToDAGISel(TM);
4372 }
4373
initializePassOnce(PassRegistry & Registry)4374 static void initializePassOnce(PassRegistry &Registry) {
4375 const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
4376 PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
4377 nullptr, false, false);
4378 Registry.registerPass(*PI, true);
4379 }
4380
initializePPCDAGToDAGISelPass(PassRegistry & Registry)4381 void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
4382 CALL_ONCE_INITIALIZATION(initializePassOnce);
4383 }
4384
4385