1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZSelectionDAGInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZTargetMachine.h"
15 #include "llvm/CodeGen/SelectionDAG.h"
16
17 using namespace llvm;
18
19 #define DEBUG_TYPE "systemz-selectiondag-info"
20
21 // Decide whether it is best to use a loop or straight-line code for
22 // a block operation of Size bytes with source address Src and destination
23 // address Dest. Sequence is the opcode to use for straight-line code
24 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP).
25 // Return the chain for the completed operation.
emitMemMem(SelectionDAG & DAG,SDLoc DL,unsigned Sequence,unsigned Loop,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size)26 static SDValue emitMemMem(SelectionDAG &DAG, SDLoc DL, unsigned Sequence,
27 unsigned Loop, SDValue Chain, SDValue Dst,
28 SDValue Src, uint64_t Size) {
29 EVT PtrVT = Src.getValueType();
30 // The heuristic we use is to prefer loops for anything that would
31 // require 7 or more MVCs. With these kinds of sizes there isn't
32 // much to choose between straight-line code and looping code,
33 // since the time will be dominated by the MVCs themselves.
34 // However, the loop has 4 or 5 instructions (depending on whether
35 // the base addresses can be proved equal), so there doesn't seem
36 // much point using a loop for 5 * 256 bytes or fewer. Anything in
37 // the range (5 * 256, 6 * 256) will need another instruction after
38 // the loop, so it doesn't seem worth using a loop then either.
39 // The next value up, 6 * 256, can be implemented in the same
40 // number of straight-line MVCs as 6 * 256 - 1.
41 if (Size > 6 * 256)
42 return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src,
43 DAG.getConstant(Size, DL, PtrVT),
44 DAG.getConstant(Size / 256, DL, PtrVT));
45 return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src,
46 DAG.getConstant(Size, DL, PtrVT));
47 }
48
49 SDValue SystemZSelectionDAGInfo::
EmitTargetCodeForMemcpy(SelectionDAG & DAG,SDLoc DL,SDValue Chain,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool IsVolatile,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo) const50 EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
51 SDValue Dst, SDValue Src, SDValue Size, unsigned Align,
52 bool IsVolatile, bool AlwaysInline,
53 MachinePointerInfo DstPtrInfo,
54 MachinePointerInfo SrcPtrInfo) const {
55 if (IsVolatile)
56 return SDValue();
57
58 if (auto *CSize = dyn_cast<ConstantSDNode>(Size))
59 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
60 Chain, Dst, Src, CSize->getZExtValue());
61 return SDValue();
62 }
63
64 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by
65 // Chain, Dst, ByteVal and Size. These cases are expected to use
66 // MVI, MVHHI, MVHI and MVGHI respectively.
memsetStore(SelectionDAG & DAG,SDLoc DL,SDValue Chain,SDValue Dst,uint64_t ByteVal,uint64_t Size,unsigned Align,MachinePointerInfo DstPtrInfo)67 static SDValue memsetStore(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
68 SDValue Dst, uint64_t ByteVal, uint64_t Size,
69 unsigned Align,
70 MachinePointerInfo DstPtrInfo) {
71 uint64_t StoreVal = ByteVal;
72 for (unsigned I = 1; I < Size; ++I)
73 StoreVal |= ByteVal << (I * 8);
74 return DAG.getStore(Chain, DL,
75 DAG.getConstant(StoreVal, DL,
76 MVT::getIntegerVT(Size * 8)),
77 Dst, DstPtrInfo, false, false, Align);
78 }
79
80 SDValue SystemZSelectionDAGInfo::
EmitTargetCodeForMemset(SelectionDAG & DAG,SDLoc DL,SDValue Chain,SDValue Dst,SDValue Byte,SDValue Size,unsigned Align,bool IsVolatile,MachinePointerInfo DstPtrInfo) const81 EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
82 SDValue Dst, SDValue Byte, SDValue Size,
83 unsigned Align, bool IsVolatile,
84 MachinePointerInfo DstPtrInfo) const {
85 EVT PtrVT = Dst.getValueType();
86
87 if (IsVolatile)
88 return SDValue();
89
90 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
91 uint64_t Bytes = CSize->getZExtValue();
92 if (Bytes == 0)
93 return SDValue();
94 if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) {
95 // Handle cases that can be done using at most two of
96 // MVI, MVHI, MVHHI and MVGHI. The latter two can only be
97 // used if ByteVal is all zeros or all ones; in other casees,
98 // we can move at most 2 halfwords.
99 uint64_t ByteVal = CByte->getZExtValue();
100 if (ByteVal == 0 || ByteVal == 255 ?
101 Bytes <= 16 && countPopulation(Bytes) <= 2 :
102 Bytes <= 4) {
103 unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes);
104 unsigned Size2 = Bytes - Size1;
105 SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1,
106 Align, DstPtrInfo);
107 if (Size2 == 0)
108 return Chain1;
109 Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
110 DAG.getConstant(Size1, DL, PtrVT));
111 DstPtrInfo = DstPtrInfo.getWithOffset(Size1);
112 SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2,
113 std::min(Align, Size1), DstPtrInfo);
114 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
115 }
116 } else {
117 // Handle one and two bytes using STC.
118 if (Bytes <= 2) {
119 SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
120 false, false, Align);
121 if (Bytes == 1)
122 return Chain1;
123 SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
124 DAG.getConstant(1, DL, PtrVT));
125 SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2,
126 DstPtrInfo.getWithOffset(1),
127 false, false, 1);
128 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
129 }
130 }
131 assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already");
132
133 // Handle the special case of a memset of 0, which can use XC.
134 auto *CByte = dyn_cast<ConstantSDNode>(Byte);
135 if (CByte && CByte->getZExtValue() == 0)
136 return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP,
137 Chain, Dst, Dst, Bytes);
138
139 // Copy the byte to the first location and then use MVC to copy
140 // it to the rest.
141 Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
142 false, false, Align);
143 SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
144 DAG.getConstant(1, DL, PtrVT));
145 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
146 Chain, DstPlus1, Dst, Bytes - 1);
147 }
148 return SDValue();
149 }
150
151 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size),
152 // deciding whether to use a loop or straight-line code.
emitCLC(SelectionDAG & DAG,SDLoc DL,SDValue Chain,SDValue Src1,SDValue Src2,uint64_t Size)153 static SDValue emitCLC(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
154 SDValue Src1, SDValue Src2, uint64_t Size) {
155 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
156 EVT PtrVT = Src1.getValueType();
157 // A two-CLC sequence is a clear win over a loop, not least because it
158 // needs only one branch. A three-CLC sequence needs the same number
159 // of branches as a loop (i.e. 2), but is shorter. That brings us to
160 // lengths greater than 768 bytes. It seems relatively likely that
161 // a difference will be found within the first 768 bytes, so we just
162 // optimize for the smallest number of branch instructions, in order
163 // to avoid polluting the prediction buffer too much. A loop only ever
164 // needs 2 branches, whereas a straight-line sequence would need 3 or more.
165 if (Size > 3 * 256)
166 return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2,
167 DAG.getConstant(Size, DL, PtrVT),
168 DAG.getConstant(Size / 256, DL, PtrVT));
169 return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2,
170 DAG.getConstant(Size, DL, PtrVT));
171 }
172
173 // Convert the current CC value into an integer that is 0 if CC == 0,
174 // less than zero if CC == 1 and greater than zero if CC >= 2.
175 // The sequence starts with IPM, which puts CC into bits 29 and 28
176 // of an integer and clears bits 30 and 31.
addIPMSequence(SDLoc DL,SDValue Glue,SelectionDAG & DAG)177 static SDValue addIPMSequence(SDLoc DL, SDValue Glue, SelectionDAG &DAG) {
178 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
179 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
180 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
181 SDValue ROTL = DAG.getNode(ISD::ROTL, DL, MVT::i32, SRL,
182 DAG.getConstant(31, DL, MVT::i32));
183 return ROTL;
184 }
185
186 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
EmitTargetCodeForMemcmp(SelectionDAG & DAG,SDLoc DL,SDValue Chain,SDValue Src1,SDValue Src2,SDValue Size,MachinePointerInfo Op1PtrInfo,MachinePointerInfo Op2PtrInfo) const187 EmitTargetCodeForMemcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
188 SDValue Src1, SDValue Src2, SDValue Size,
189 MachinePointerInfo Op1PtrInfo,
190 MachinePointerInfo Op2PtrInfo) const {
191 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
192 uint64_t Bytes = CSize->getZExtValue();
193 assert(Bytes > 0 && "Caller should have handled 0-size case");
194 Chain = emitCLC(DAG, DL, Chain, Src1, Src2, Bytes);
195 SDValue Glue = Chain.getValue(1);
196 return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
197 }
198 return std::make_pair(SDValue(), SDValue());
199 }
200
201 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
EmitTargetCodeForMemchr(SelectionDAG & DAG,SDLoc DL,SDValue Chain,SDValue Src,SDValue Char,SDValue Length,MachinePointerInfo SrcPtrInfo) const202 EmitTargetCodeForMemchr(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
203 SDValue Src, SDValue Char, SDValue Length,
204 MachinePointerInfo SrcPtrInfo) const {
205 // Use SRST to find the character. End is its address on success.
206 EVT PtrVT = Src.getValueType();
207 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
208 Length = DAG.getZExtOrTrunc(Length, DL, PtrVT);
209 Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32);
210 Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char,
211 DAG.getConstant(255, DL, MVT::i32));
212 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length);
213 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
214 Limit, Src, Char);
215 Chain = End.getValue(1);
216 SDValue Glue = End.getValue(2);
217
218 // Now select between End and null, depending on whether the character
219 // was found.
220 SDValue Ops[] = {End, DAG.getConstant(0, DL, PtrVT),
221 DAG.getConstant(SystemZ::CCMASK_SRST, DL, MVT::i32),
222 DAG.getConstant(SystemZ::CCMASK_SRST_FOUND, DL, MVT::i32),
223 Glue};
224 VTs = DAG.getVTList(PtrVT, MVT::Glue);
225 End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
226 return std::make_pair(End, Chain);
227 }
228
229 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
EmitTargetCodeForStrcpy(SelectionDAG & DAG,SDLoc DL,SDValue Chain,SDValue Dest,SDValue Src,MachinePointerInfo DestPtrInfo,MachinePointerInfo SrcPtrInfo,bool isStpcpy) const230 EmitTargetCodeForStrcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
231 SDValue Dest, SDValue Src,
232 MachinePointerInfo DestPtrInfo,
233 MachinePointerInfo SrcPtrInfo, bool isStpcpy) const {
234 SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other);
235 SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src,
236 DAG.getConstant(0, DL, MVT::i32));
237 return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1));
238 }
239
240 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
EmitTargetCodeForStrcmp(SelectionDAG & DAG,SDLoc DL,SDValue Chain,SDValue Src1,SDValue Src2,MachinePointerInfo Op1PtrInfo,MachinePointerInfo Op2PtrInfo) const241 EmitTargetCodeForStrcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
242 SDValue Src1, SDValue Src2,
243 MachinePointerInfo Op1PtrInfo,
244 MachinePointerInfo Op2PtrInfo) const {
245 SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::Other, MVT::Glue);
246 SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src1, Src2,
247 DAG.getConstant(0, DL, MVT::i32));
248 Chain = Unused.getValue(1);
249 SDValue Glue = Chain.getValue(2);
250 return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
251 }
252
253 // Search from Src for a null character, stopping once Src reaches Limit.
254 // Return a pair of values, the first being the number of nonnull characters
255 // and the second being the out chain.
256 //
257 // This can be used for strlen by setting Limit to 0.
getBoundedStrlen(SelectionDAG & DAG,SDLoc DL,SDValue Chain,SDValue Src,SDValue Limit)258 static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG, SDLoc DL,
259 SDValue Chain, SDValue Src,
260 SDValue Limit) {
261 EVT PtrVT = Src.getValueType();
262 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
263 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
264 Limit, Src, DAG.getConstant(0, DL, MVT::i32));
265 Chain = End.getValue(1);
266 SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src);
267 return std::make_pair(Len, Chain);
268 }
269
270 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
EmitTargetCodeForStrlen(SelectionDAG & DAG,SDLoc DL,SDValue Chain,SDValue Src,MachinePointerInfo SrcPtrInfo) const271 EmitTargetCodeForStrlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
272 SDValue Src, MachinePointerInfo SrcPtrInfo) const {
273 EVT PtrVT = Src.getValueType();
274 return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, DL, PtrVT));
275 }
276
277 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
EmitTargetCodeForStrnlen(SelectionDAG & DAG,SDLoc DL,SDValue Chain,SDValue Src,SDValue MaxLength,MachinePointerInfo SrcPtrInfo) const278 EmitTargetCodeForStrnlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
279 SDValue Src, SDValue MaxLength,
280 MachinePointerInfo SrcPtrInfo) const {
281 EVT PtrVT = Src.getValueType();
282 MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT);
283 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength);
284 return getBoundedStrlen(DAG, DL, Chain, Src, Limit);
285 }
286