1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Float2Int pass, which aims to demote floating
11 // point operations to work on integers, where that is losslessly possible.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "float2int"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/EquivalenceClasses.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/IR/ConstantRange.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstIterator.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include <deque>
35 #include <functional> // For std::function
36 using namespace llvm;
37 
38 // The algorithm is simple. Start at instructions that convert from the
39 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
40 // graph, using an equivalence datastructure to unify graphs that interfere.
41 //
42 // Mappable instructions are those with an integer corrollary that, given
43 // integer domain inputs, produce an integer output; fadd, for example.
44 //
45 // If a non-mappable instruction is seen, this entire def-use graph is marked
46 // as non-transformable. If we see an instruction that converts from the
47 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
48 
49 /// The largest integer type worth dealing with.
50 static cl::opt<unsigned>
51 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
52              cl::desc("Max integer bitwidth to consider in float2int"
53                       "(default=64)"));
54 
55 namespace {
56   struct Float2Int : public FunctionPass {
57     static char ID; // Pass identification, replacement for typeid
Float2Int__anona5fede280111::Float2Int58     Float2Int() : FunctionPass(ID) {
59       initializeFloat2IntPass(*PassRegistry::getPassRegistry());
60     }
61 
62     bool runOnFunction(Function &F) override;
getAnalysisUsage__anona5fede280111::Float2Int63     void getAnalysisUsage(AnalysisUsage &AU) const override {
64       AU.setPreservesCFG();
65       AU.addPreserved<GlobalsAAWrapperPass>();
66     }
67 
68     void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots);
69     ConstantRange seen(Instruction *I, ConstantRange R);
70     ConstantRange badRange();
71     ConstantRange unknownRange();
72     ConstantRange validateRange(ConstantRange R);
73     void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots);
74     void walkForwards();
75     bool validateAndTransform();
76     Value *convert(Instruction *I, Type *ToTy);
77     void cleanup();
78 
79     MapVector<Instruction*, ConstantRange > SeenInsts;
80     SmallPtrSet<Instruction*,8> Roots;
81     EquivalenceClasses<Instruction*> ECs;
82     MapVector<Instruction*, Value*> ConvertedInsts;
83     LLVMContext *Ctx;
84   };
85 }
86 
87 char Float2Int::ID = 0;
88 INITIALIZE_PASS_BEGIN(Float2Int, "float2int", "Float to int", false, false)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)89 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
90 INITIALIZE_PASS_END(Float2Int, "float2int", "Float to int", false, false)
91 
92 // Given a FCmp predicate, return a matching ICmp predicate if one
93 // exists, otherwise return BAD_ICMP_PREDICATE.
94 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
95   switch (P) {
96   case CmpInst::FCMP_OEQ:
97   case CmpInst::FCMP_UEQ:
98     return CmpInst::ICMP_EQ;
99   case CmpInst::FCMP_OGT:
100   case CmpInst::FCMP_UGT:
101     return CmpInst::ICMP_SGT;
102   case CmpInst::FCMP_OGE:
103   case CmpInst::FCMP_UGE:
104     return CmpInst::ICMP_SGE;
105   case CmpInst::FCMP_OLT:
106   case CmpInst::FCMP_ULT:
107     return CmpInst::ICMP_SLT;
108   case CmpInst::FCMP_OLE:
109   case CmpInst::FCMP_ULE:
110     return CmpInst::ICMP_SLE;
111   case CmpInst::FCMP_ONE:
112   case CmpInst::FCMP_UNE:
113     return CmpInst::ICMP_NE;
114   default:
115     return CmpInst::BAD_ICMP_PREDICATE;
116   }
117 }
118 
119 // Given a floating point binary operator, return the matching
120 // integer version.
mapBinOpcode(unsigned Opcode)121 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
122   switch (Opcode) {
123   default: llvm_unreachable("Unhandled opcode!");
124   case Instruction::FAdd: return Instruction::Add;
125   case Instruction::FSub: return Instruction::Sub;
126   case Instruction::FMul: return Instruction::Mul;
127   }
128 }
129 
130 // Find the roots - instructions that convert from the FP domain to
131 // integer domain.
findRoots(Function & F,SmallPtrSet<Instruction *,8> & Roots)132 void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
133   for (auto &I : instructions(F)) {
134     if (isa<VectorType>(I.getType()))
135       continue;
136     switch (I.getOpcode()) {
137     default: break;
138     case Instruction::FPToUI:
139     case Instruction::FPToSI:
140       Roots.insert(&I);
141       break;
142     case Instruction::FCmp:
143       if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
144           CmpInst::BAD_ICMP_PREDICATE)
145         Roots.insert(&I);
146       break;
147     }
148   }
149 }
150 
151 // Helper - mark I as having been traversed, having range R.
seen(Instruction * I,ConstantRange R)152 ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) {
153   DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
154   if (SeenInsts.find(I) != SeenInsts.end())
155     SeenInsts.find(I)->second = R;
156   else
157     SeenInsts.insert(std::make_pair(I, R));
158   return R;
159 }
160 
161 // Helper - get a range representing a poison value.
badRange()162 ConstantRange Float2Int::badRange() {
163   return ConstantRange(MaxIntegerBW + 1, true);
164 }
unknownRange()165 ConstantRange Float2Int::unknownRange() {
166   return ConstantRange(MaxIntegerBW + 1, false);
167 }
validateRange(ConstantRange R)168 ConstantRange Float2Int::validateRange(ConstantRange R) {
169   if (R.getBitWidth() > MaxIntegerBW + 1)
170     return badRange();
171   return R;
172 }
173 
174 // The most obvious way to structure the search is a depth-first, eager
175 // search from each root. However, that require direct recursion and so
176 // can only handle small instruction sequences. Instead, we split the search
177 // up into two phases:
178 //   - walkBackwards:  A breadth-first walk of the use-def graph starting from
179 //                     the roots. Populate "SeenInsts" with interesting
180 //                     instructions and poison values if they're obvious and
181 //                     cheap to compute. Calculate the equivalance set structure
182 //                     while we're here too.
183 //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
184 //                     defs before their uses. Calculate the real range info.
185 
186 // Breadth-first walk of the use-def graph; determine the set of nodes
187 // we care about and eagerly determine if some of them are poisonous.
walkBackwards(const SmallPtrSetImpl<Instruction * > & Roots)188 void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
189   std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
190   while (!Worklist.empty()) {
191     Instruction *I = Worklist.back();
192     Worklist.pop_back();
193 
194     if (SeenInsts.find(I) != SeenInsts.end())
195       // Seen already.
196       continue;
197 
198     switch (I->getOpcode()) {
199       // FIXME: Handle select and phi nodes.
200     default:
201       // Path terminated uncleanly.
202       seen(I, badRange());
203       break;
204 
205     case Instruction::UIToFP: {
206       // Path terminated cleanly.
207       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
208       APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1);
209       APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1);
210       seen(I, validateRange(ConstantRange(Min, Max)));
211       continue;
212     }
213 
214     case Instruction::SIToFP: {
215       // Path terminated cleanly.
216       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
217       APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1);
218       APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1);
219       seen(I, validateRange(ConstantRange(SMin, SMax)));
220       continue;
221     }
222 
223     case Instruction::FAdd:
224     case Instruction::FSub:
225     case Instruction::FMul:
226     case Instruction::FPToUI:
227     case Instruction::FPToSI:
228     case Instruction::FCmp:
229       seen(I, unknownRange());
230       break;
231     }
232 
233     for (Value *O : I->operands()) {
234       if (Instruction *OI = dyn_cast<Instruction>(O)) {
235         // Unify def-use chains if they interfere.
236         ECs.unionSets(I, OI);
237         if (SeenInsts.find(I)->second != badRange())
238           Worklist.push_back(OI);
239       } else if (!isa<ConstantFP>(O)) {
240         // Not an instruction or ConstantFP? we can't do anything.
241         seen(I, badRange());
242       }
243     }
244   }
245 }
246 
247 // Walk forwards down the list of seen instructions, so we visit defs before
248 // uses.
walkForwards()249 void Float2Int::walkForwards() {
250   for (auto &It : make_range(SeenInsts.rbegin(), SeenInsts.rend())) {
251     if (It.second != unknownRange())
252       continue;
253 
254     Instruction *I = It.first;
255     std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
256     switch (I->getOpcode()) {
257       // FIXME: Handle select and phi nodes.
258     default:
259     case Instruction::UIToFP:
260     case Instruction::SIToFP:
261       llvm_unreachable("Should have been handled in walkForwards!");
262 
263     case Instruction::FAdd:
264       Op = [](ArrayRef<ConstantRange> Ops) {
265         assert(Ops.size() == 2 && "FAdd is a binary operator!");
266         return Ops[0].add(Ops[1]);
267       };
268       break;
269 
270     case Instruction::FSub:
271       Op = [](ArrayRef<ConstantRange> Ops) {
272         assert(Ops.size() == 2 && "FSub is a binary operator!");
273         return Ops[0].sub(Ops[1]);
274       };
275       break;
276 
277     case Instruction::FMul:
278       Op = [](ArrayRef<ConstantRange> Ops) {
279         assert(Ops.size() == 2 && "FMul is a binary operator!");
280         return Ops[0].multiply(Ops[1]);
281       };
282       break;
283 
284     //
285     // Root-only instructions - we'll only see these if they're the
286     //                          first node in a walk.
287     //
288     case Instruction::FPToUI:
289     case Instruction::FPToSI:
290       Op = [](ArrayRef<ConstantRange> Ops) {
291         assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
292         return Ops[0];
293       };
294       break;
295 
296     case Instruction::FCmp:
297       Op = [](ArrayRef<ConstantRange> Ops) {
298         assert(Ops.size() == 2 && "FCmp is a binary operator!");
299         return Ops[0].unionWith(Ops[1]);
300       };
301       break;
302     }
303 
304     bool Abort = false;
305     SmallVector<ConstantRange,4> OpRanges;
306     for (Value *O : I->operands()) {
307       if (Instruction *OI = dyn_cast<Instruction>(O)) {
308         assert(SeenInsts.find(OI) != SeenInsts.end() &&
309                "def not seen before use!");
310         OpRanges.push_back(SeenInsts.find(OI)->second);
311       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
312         // Work out if the floating point number can be losslessly represented
313         // as an integer.
314         // APFloat::convertToInteger(&Exact) purports to do what we want, but
315         // the exactness can be too precise. For example, negative zero can
316         // never be exactly converted to an integer.
317         //
318         // Instead, we ask APFloat to round itself to an integral value - this
319         // preserves sign-of-zero - then compare the result with the original.
320         //
321         APFloat F = CF->getValueAPF();
322 
323         // First, weed out obviously incorrect values. Non-finite numbers
324         // can't be represented and neither can negative zero, unless
325         // we're in fast math mode.
326         if (!F.isFinite() ||
327             (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
328              !I->hasNoSignedZeros())) {
329           seen(I, badRange());
330           Abort = true;
331           break;
332         }
333 
334         APFloat NewF = F;
335         auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
336         if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
337           seen(I, badRange());
338           Abort = true;
339           break;
340         }
341         // OK, it's representable. Now get it.
342         APSInt Int(MaxIntegerBW+1, false);
343         bool Exact;
344         CF->getValueAPF().convertToInteger(Int,
345                                            APFloat::rmNearestTiesToEven,
346                                            &Exact);
347         OpRanges.push_back(ConstantRange(Int));
348       } else {
349         llvm_unreachable("Should have already marked this as badRange!");
350       }
351     }
352 
353     // Reduce the operands' ranges to a single range and return.
354     if (!Abort)
355       seen(I, Op(OpRanges));
356   }
357 }
358 
359 // If there is a valid transform to be done, do it.
validateAndTransform()360 bool Float2Int::validateAndTransform() {
361   bool MadeChange = false;
362 
363   // Iterate over every disjoint partition of the def-use graph.
364   for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
365     ConstantRange R(MaxIntegerBW + 1, false);
366     bool Fail = false;
367     Type *ConvertedToTy = nullptr;
368 
369     // For every member of the partition, union all the ranges together.
370     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
371          MI != ME; ++MI) {
372       Instruction *I = *MI;
373       auto SeenI = SeenInsts.find(I);
374       if (SeenI == SeenInsts.end())
375         continue;
376 
377       R = R.unionWith(SeenI->second);
378       // We need to ensure I has no users that have not been seen.
379       // If it does, transformation would be illegal.
380       //
381       // Don't count the roots, as they terminate the graphs.
382       if (Roots.count(I) == 0) {
383         // Set the type of the conversion while we're here.
384         if (!ConvertedToTy)
385           ConvertedToTy = I->getType();
386         for (User *U : I->users()) {
387           Instruction *UI = dyn_cast<Instruction>(U);
388           if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
389             DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
390             Fail = true;
391             break;
392           }
393         }
394       }
395       if (Fail)
396         break;
397     }
398 
399     // If the set was empty, or we failed, or the range is poisonous,
400     // bail out.
401     if (ECs.member_begin(It) == ECs.member_end() || Fail ||
402         R.isFullSet() || R.isSignWrappedSet())
403       continue;
404     assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
405 
406     // The number of bits required is the maximum of the upper and
407     // lower limits, plus one so it can be signed.
408     unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
409                               R.getUpper().getMinSignedBits()) + 1;
410     DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
411 
412     // If we've run off the realms of the exactly representable integers,
413     // the floating point result will differ from an integer approximation.
414 
415     // Do we need more bits than are in the mantissa of the type we converted
416     // to? semanticsPrecision returns the number of mantissa bits plus one
417     // for the sign bit.
418     unsigned MaxRepresentableBits
419       = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
420     if (MinBW > MaxRepresentableBits) {
421       DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
422       continue;
423     }
424     if (MinBW > 64) {
425       DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
426       continue;
427     }
428 
429     // OK, R is known to be representable. Now pick a type for it.
430     // FIXME: Pick the smallest legal type that will fit.
431     Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
432 
433     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
434          MI != ME; ++MI)
435       convert(*MI, Ty);
436     MadeChange = true;
437   }
438 
439   return MadeChange;
440 }
441 
convert(Instruction * I,Type * ToTy)442 Value *Float2Int::convert(Instruction *I, Type *ToTy) {
443   if (ConvertedInsts.find(I) != ConvertedInsts.end())
444     // Already converted this instruction.
445     return ConvertedInsts[I];
446 
447   SmallVector<Value*,4> NewOperands;
448   for (Value *V : I->operands()) {
449     // Don't recurse if we're an instruction that terminates the path.
450     if (I->getOpcode() == Instruction::UIToFP ||
451         I->getOpcode() == Instruction::SIToFP) {
452       NewOperands.push_back(V);
453     } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
454       NewOperands.push_back(convert(VI, ToTy));
455     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
456       APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
457       bool Exact;
458       CF->getValueAPF().convertToInteger(Val,
459                                          APFloat::rmNearestTiesToEven,
460                                          &Exact);
461       NewOperands.push_back(ConstantInt::get(ToTy, Val));
462     } else {
463       llvm_unreachable("Unhandled operand type?");
464     }
465   }
466 
467   // Now create a new instruction.
468   IRBuilder<> IRB(I);
469   Value *NewV = nullptr;
470   switch (I->getOpcode()) {
471   default: llvm_unreachable("Unhandled instruction!");
472 
473   case Instruction::FPToUI:
474     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
475     break;
476 
477   case Instruction::FPToSI:
478     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
479     break;
480 
481   case Instruction::FCmp: {
482     CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
483     assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
484     NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
485     break;
486   }
487 
488   case Instruction::UIToFP:
489     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
490     break;
491 
492   case Instruction::SIToFP:
493     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
494     break;
495 
496   case Instruction::FAdd:
497   case Instruction::FSub:
498   case Instruction::FMul:
499     NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
500                            NewOperands[0], NewOperands[1],
501                            I->getName());
502     break;
503   }
504 
505   // If we're a root instruction, RAUW.
506   if (Roots.count(I))
507     I->replaceAllUsesWith(NewV);
508 
509   ConvertedInsts[I] = NewV;
510   return NewV;
511 }
512 
513 // Perform dead code elimination on the instructions we just modified.
cleanup()514 void Float2Int::cleanup() {
515   for (auto &I : make_range(ConvertedInsts.rbegin(), ConvertedInsts.rend()))
516     I.first->eraseFromParent();
517 }
518 
runOnFunction(Function & F)519 bool Float2Int::runOnFunction(Function &F) {
520   if (skipOptnoneFunction(F))
521     return false;
522 
523   DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
524   // Clear out all state.
525   ECs = EquivalenceClasses<Instruction*>();
526   SeenInsts.clear();
527   ConvertedInsts.clear();
528   Roots.clear();
529 
530   Ctx = &F.getParent()->getContext();
531 
532   findRoots(F, Roots);
533 
534   walkBackwards(Roots);
535   walkForwards();
536 
537   bool Modified = validateAndTransform();
538   if (Modified)
539     cleanup();
540   return Modified;
541 }
542 
createFloat2IntPass()543 FunctionPass *llvm::createFloat2IntPass() { return new Float2Int(); }
544