1 //===- LoopInstSimplify.cpp - Loop Instruction Simplification Pass --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs lightweight instruction simplification on loop bodies.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "loop-instsimplify"
31 
32 STATISTIC(NumSimplified, "Number of redundant instructions simplified");
33 
34 namespace {
35   class LoopInstSimplify : public LoopPass {
36   public:
37     static char ID; // Pass ID, replacement for typeid
LoopInstSimplify()38     LoopInstSimplify() : LoopPass(ID) {
39       initializeLoopInstSimplifyPass(*PassRegistry::getPassRegistry());
40     }
41 
42     bool runOnLoop(Loop*, LPPassManager&) override;
43 
getAnalysisUsage(AnalysisUsage & AU) const44     void getAnalysisUsage(AnalysisUsage &AU) const override {
45       AU.setPreservesCFG();
46       AU.addRequired<AssumptionCacheTracker>();
47       AU.addRequired<LoopInfoWrapperPass>();
48       AU.addRequiredID(LoopSimplifyID);
49       AU.addPreservedID(LoopSimplifyID);
50       AU.addPreservedID(LCSSAID);
51       AU.addPreserved<ScalarEvolutionWrapperPass>();
52       AU.addRequired<TargetLibraryInfoWrapperPass>();
53     }
54   };
55 }
56 
57 char LoopInstSimplify::ID = 0;
58 INITIALIZE_PASS_BEGIN(LoopInstSimplify, "loop-instsimplify",
59                 "Simplify instructions in loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)60 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
61 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
63 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
64 INITIALIZE_PASS_DEPENDENCY(LCSSA)
65 INITIALIZE_PASS_END(LoopInstSimplify, "loop-instsimplify",
66                 "Simplify instructions in loops", false, false)
67 
68 Pass *llvm::createLoopInstSimplifyPass() {
69   return new LoopInstSimplify();
70 }
71 
runOnLoop(Loop * L,LPPassManager & LPM)72 bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
73   if (skipOptnoneFunction(L))
74     return false;
75 
76   DominatorTreeWrapperPass *DTWP =
77       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
78   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
79   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
80   const TargetLibraryInfo *TLI =
81       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
82   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
83       *L->getHeader()->getParent());
84 
85   SmallVector<BasicBlock*, 8> ExitBlocks;
86   L->getUniqueExitBlocks(ExitBlocks);
87   array_pod_sort(ExitBlocks.begin(), ExitBlocks.end());
88 
89   SmallPtrSet<const Instruction*, 8> S1, S2, *ToSimplify = &S1, *Next = &S2;
90 
91   // The bit we are stealing from the pointer represents whether this basic
92   // block is the header of a subloop, in which case we only process its phis.
93   typedef PointerIntPair<BasicBlock*, 1> WorklistItem;
94   SmallVector<WorklistItem, 16> VisitStack;
95   SmallPtrSet<BasicBlock*, 32> Visited;
96 
97   bool Changed = false;
98   bool LocalChanged;
99   do {
100     LocalChanged = false;
101 
102     VisitStack.clear();
103     Visited.clear();
104 
105     VisitStack.push_back(WorklistItem(L->getHeader(), false));
106 
107     while (!VisitStack.empty()) {
108       WorklistItem Item = VisitStack.pop_back_val();
109       BasicBlock *BB = Item.getPointer();
110       bool IsSubloopHeader = Item.getInt();
111       const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
112 
113       // Simplify instructions in the current basic block.
114       for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
115         Instruction *I = &*BI++;
116 
117         // The first time through the loop ToSimplify is empty and we try to
118         // simplify all instructions. On later iterations ToSimplify is not
119         // empty and we only bother simplifying instructions that are in it.
120         if (!ToSimplify->empty() && !ToSimplify->count(I))
121           continue;
122 
123         // Don't bother simplifying unused instructions.
124         if (!I->use_empty()) {
125           Value *V = SimplifyInstruction(I, DL, TLI, DT, &AC);
126           if (V && LI->replacementPreservesLCSSAForm(I, V)) {
127             // Mark all uses for resimplification next time round the loop.
128             for (User *U : I->users())
129               Next->insert(cast<Instruction>(U));
130 
131             I->replaceAllUsesWith(V);
132             LocalChanged = true;
133             ++NumSimplified;
134           }
135         }
136         bool res = RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
137         if (res) {
138           // RecursivelyDeleteTriviallyDeadInstruction can remove
139           // more than one instruction, so simply incrementing the
140           // iterator does not work. When instructions get deleted
141           // re-iterate instead.
142           BI = BB->begin(); BE = BB->end();
143           LocalChanged |= res;
144         }
145 
146         if (IsSubloopHeader && !isa<PHINode>(I))
147           break;
148       }
149 
150       // Add all successors to the worklist, except for loop exit blocks and the
151       // bodies of subloops. We visit the headers of loops so that we can process
152       // their phis, but we contract the rest of the subloop body and only follow
153       // edges leading back to the original loop.
154       for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
155            ++SI) {
156         BasicBlock *SuccBB = *SI;
157         if (!Visited.insert(SuccBB).second)
158           continue;
159 
160         const Loop *SuccLoop = LI->getLoopFor(SuccBB);
161         if (SuccLoop && SuccLoop->getHeader() == SuccBB
162                      && L->contains(SuccLoop)) {
163           VisitStack.push_back(WorklistItem(SuccBB, true));
164 
165           SmallVector<BasicBlock*, 8> SubLoopExitBlocks;
166           SuccLoop->getExitBlocks(SubLoopExitBlocks);
167 
168           for (unsigned i = 0; i < SubLoopExitBlocks.size(); ++i) {
169             BasicBlock *ExitBB = SubLoopExitBlocks[i];
170             if (LI->getLoopFor(ExitBB) == L && Visited.insert(ExitBB).second)
171               VisitStack.push_back(WorklistItem(ExitBB, false));
172           }
173 
174           continue;
175         }
176 
177         bool IsExitBlock = std::binary_search(ExitBlocks.begin(),
178                                               ExitBlocks.end(), SuccBB);
179         if (IsExitBlock)
180           continue;
181 
182         VisitStack.push_back(WorklistItem(SuccBB, false));
183       }
184     }
185 
186     // Place the list of instructions to simplify on the next loop iteration
187     // into ToSimplify.
188     std::swap(ToSimplify, Next);
189     Next->clear();
190 
191     Changed |= LocalChanged;
192   } while (LocalChanged);
193 
194   return Changed;
195 }
196