1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations.  Other strategies
20 // include generate a loop before or after the unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/Utils/UnrollLoop.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpander.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include <algorithm>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 STATISTIC(NumRuntimeUnrolled,
47           "Number of loops unrolled with run-time trip counts");
48 
49 /// Connect the unrolling prolog code to the original loop.
50 /// The unrolling prolog code contains code to execute the
51 /// 'extra' iterations if the run-time trip count modulo the
52 /// unroll count is non-zero.
53 ///
54 /// This function performs the following:
55 /// - Create PHI nodes at prolog end block to combine values
56 ///   that exit the prolog code and jump around the prolog.
57 /// - Add a PHI operand to a PHI node at the loop exit block
58 ///   for values that exit the prolog and go around the loop.
59 /// - Branch around the original loop if the trip count is less
60 ///   than the unroll factor.
61 ///
ConnectProlog(Loop * L,Value * BECount,unsigned Count,BasicBlock * LastPrologBB,BasicBlock * PrologEnd,BasicBlock * OrigPH,BasicBlock * NewPH,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
63                           BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
64                           BasicBlock *OrigPH, BasicBlock *NewPH,
65                           ValueToValueMapTy &VMap, DominatorTree *DT,
66                           LoopInfo *LI, bool PreserveLCSSA) {
67   BasicBlock *Latch = L->getLoopLatch();
68   assert(Latch && "Loop must have a latch");
69 
70   // Create a PHI node for each outgoing value from the original loop
71   // (which means it is an outgoing value from the prolog code too).
72   // The new PHI node is inserted in the prolog end basic block.
73   // The new PHI name is added as an operand of a PHI node in either
74   // the loop header or the loop exit block.
75   for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
76        SBI != SBE; ++SBI) {
77     for (BasicBlock::iterator BBI = (*SBI)->begin();
78          PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
79 
80       // Add a new PHI node to the prolog end block and add the
81       // appropriate incoming values.
82       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
83                                        PrologEnd->getTerminator());
84       // Adding a value to the new PHI node from the original loop preheader.
85       // This is the value that skips all the prolog code.
86       if (L->contains(PN)) {
87         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
88       } else {
89         NewPN->addIncoming(UndefValue::get(PN->getType()), OrigPH);
90       }
91 
92       Value *V = PN->getIncomingValueForBlock(Latch);
93       if (Instruction *I = dyn_cast<Instruction>(V)) {
94         if (L->contains(I)) {
95           V = VMap[I];
96         }
97       }
98       // Adding a value to the new PHI node from the last prolog block
99       // that was created.
100       NewPN->addIncoming(V, LastPrologBB);
101 
102       // Update the existing PHI node operand with the value from the
103       // new PHI node.  How this is done depends on if the existing
104       // PHI node is in the original loop block, or the exit block.
105       if (L->contains(PN)) {
106         PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
107       } else {
108         PN->addIncoming(NewPN, PrologEnd);
109       }
110     }
111   }
112 
113   // Create a branch around the orignal loop, which is taken if there are no
114   // iterations remaining to be executed after running the prologue.
115   Instruction *InsertPt = PrologEnd->getTerminator();
116   IRBuilder<> B(InsertPt);
117 
118   assert(Count != 0 && "nonsensical Count!");
119 
120   // If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1)
121   // (since Count is a power of 2).  This means %xtraiter is (BECount + 1) and
122   // and all of the iterations of this loop were executed by the prologue.  Note
123   // that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow.
124   Value *BrLoopExit =
125       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
126   BasicBlock *Exit = L->getUniqueExitBlock();
127   assert(Exit && "Loop must have a single exit block only");
128   // Split the exit to maintain loop canonicalization guarantees
129   SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
130   SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI,
131                          PreserveLCSSA);
132   // Add the branch to the exit block (around the unrolled loop)
133   B.CreateCondBr(BrLoopExit, Exit, NewPH);
134   InsertPt->eraseFromParent();
135 }
136 
137 /// Create a clone of the blocks in a loop and connect them together.
138 /// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
139 /// loop will be created including all cloned blocks, and the iterator of it
140 /// switches to count NewIter down to 0.
141 ///
CloneLoopBlocks(Loop * L,Value * NewIter,const bool UnrollProlog,BasicBlock * InsertTop,BasicBlock * InsertBot,std::vector<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,LoopInfo * LI)142 static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
143                             BasicBlock *InsertTop, BasicBlock *InsertBot,
144                             std::vector<BasicBlock *> &NewBlocks,
145                             LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
146                             LoopInfo *LI) {
147   BasicBlock *Preheader = L->getLoopPreheader();
148   BasicBlock *Header = L->getHeader();
149   BasicBlock *Latch = L->getLoopLatch();
150   Function *F = Header->getParent();
151   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
152   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
153   Loop *NewLoop = nullptr;
154   Loop *ParentLoop = L->getParentLoop();
155   if (!UnrollProlog) {
156     NewLoop = new Loop();
157     if (ParentLoop)
158       ParentLoop->addChildLoop(NewLoop);
159     else
160       LI->addTopLevelLoop(NewLoop);
161   }
162 
163   // For each block in the original loop, create a new copy,
164   // and update the value map with the newly created values.
165   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
166     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
167     NewBlocks.push_back(NewBB);
168 
169     if (NewLoop)
170       NewLoop->addBasicBlockToLoop(NewBB, *LI);
171     else if (ParentLoop)
172       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
173 
174     VMap[*BB] = NewBB;
175     if (Header == *BB) {
176       // For the first block, add a CFG connection to this newly
177       // created block.
178       InsertTop->getTerminator()->setSuccessor(0, NewBB);
179 
180     }
181     if (Latch == *BB) {
182       // For the last block, if UnrollProlog is true, create a direct jump to
183       // InsertBot. If not, create a loop back to cloned head.
184       VMap.erase((*BB)->getTerminator());
185       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
186       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
187       IRBuilder<> Builder(LatchBR);
188       if (UnrollProlog) {
189         Builder.CreateBr(InsertBot);
190       } else {
191         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
192                                           FirstLoopBB->getFirstNonPHI());
193         Value *IdxSub =
194             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
195                               NewIdx->getName() + ".sub");
196         Value *IdxCmp =
197             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
198         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
199         NewIdx->addIncoming(NewIter, InsertTop);
200         NewIdx->addIncoming(IdxSub, NewBB);
201       }
202       LatchBR->eraseFromParent();
203     }
204   }
205 
206   // Change the incoming values to the ones defined in the preheader or
207   // cloned loop.
208   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
209     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
210     if (UnrollProlog) {
211       VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
212       cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
213     } else {
214       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
215       NewPHI->setIncomingBlock(idx, InsertTop);
216       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
217       idx = NewPHI->getBasicBlockIndex(Latch);
218       Value *InVal = NewPHI->getIncomingValue(idx);
219       NewPHI->setIncomingBlock(idx, NewLatch);
220       if (VMap[InVal])
221         NewPHI->setIncomingValue(idx, VMap[InVal]);
222     }
223   }
224   if (NewLoop) {
225     // Add unroll disable metadata to disable future unrolling for this loop.
226     SmallVector<Metadata *, 4> MDs;
227     // Reserve first location for self reference to the LoopID metadata node.
228     MDs.push_back(nullptr);
229     MDNode *LoopID = NewLoop->getLoopID();
230     if (LoopID) {
231       // First remove any existing loop unrolling metadata.
232       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
233         bool IsUnrollMetadata = false;
234         MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
235         if (MD) {
236           const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
237           IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
238         }
239         if (!IsUnrollMetadata)
240           MDs.push_back(LoopID->getOperand(i));
241       }
242     }
243 
244     LLVMContext &Context = NewLoop->getHeader()->getContext();
245     SmallVector<Metadata *, 1> DisableOperands;
246     DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
247     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
248     MDs.push_back(DisableNode);
249 
250     MDNode *NewLoopID = MDNode::get(Context, MDs);
251     // Set operand 0 to refer to the loop id itself.
252     NewLoopID->replaceOperandWith(0, NewLoopID);
253     NewLoop->setLoopID(NewLoopID);
254   }
255 }
256 
257 /// Insert code in the prolog code when unrolling a loop with a
258 /// run-time trip-count.
259 ///
260 /// This method assumes that the loop unroll factor is total number
261 /// of loop bodes in the loop after unrolling. (Some folks refer
262 /// to the unroll factor as the number of *extra* copies added).
263 /// We assume also that the loop unroll factor is a power-of-two. So, after
264 /// unrolling the loop, the number of loop bodies executed is 2,
265 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
266 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
267 /// the switch instruction is generated.
268 ///
269 ///        extraiters = tripcount % loopfactor
270 ///        if (extraiters == 0) jump Loop:
271 ///        else jump Prol
272 /// Prol:  LoopBody;
273 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
274 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
275 ///        if (tripcount < loopfactor) jump End
276 /// Loop:
277 /// ...
278 /// End:
279 ///
UnrollRuntimeLoopProlog(Loop * L,unsigned Count,bool AllowExpensiveTripCount,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,bool PreserveLCSSA)280 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
281                                    bool AllowExpensiveTripCount, LoopInfo *LI,
282                                    ScalarEvolution *SE, DominatorTree *DT,
283                                    bool PreserveLCSSA) {
284   // for now, only unroll loops that contain a single exit
285   if (!L->getExitingBlock())
286     return false;
287 
288   // Make sure the loop is in canonical form, and there is a single
289   // exit block only.
290   if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
291     return false;
292 
293   // Use Scalar Evolution to compute the trip count.  This allows more
294   // loops to be unrolled than relying on induction var simplification
295   if (!SE)
296     return false;
297 
298   // Only unroll loops with a computable trip count and the trip count needs
299   // to be an int value (allowing a pointer type is a TODO item)
300   const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
301   if (isa<SCEVCouldNotCompute>(BECountSC) ||
302       !BECountSC->getType()->isIntegerTy())
303     return false;
304 
305   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
306 
307   // Add 1 since the backedge count doesn't include the first loop iteration
308   const SCEV *TripCountSC =
309       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
310   if (isa<SCEVCouldNotCompute>(TripCountSC))
311     return false;
312 
313   BasicBlock *Header = L->getHeader();
314   const DataLayout &DL = Header->getModule()->getDataLayout();
315   SCEVExpander Expander(*SE, DL, "loop-unroll");
316   if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
317     return false;
318 
319   // We only handle cases when the unroll factor is a power of 2.
320   // Count is the loop unroll factor, the number of extra copies added + 1.
321   if (!isPowerOf2_32(Count))
322     return false;
323 
324   // This constraint lets us deal with an overflowing trip count easily; see the
325   // comment on ModVal below.
326   if (Log2_32(Count) > BEWidth)
327     return false;
328 
329   // If this loop is nested, then the loop unroller changes the code in
330   // parent loop, so the Scalar Evolution pass needs to be run again
331   if (Loop *ParentLoop = L->getParentLoop())
332     SE->forgetLoop(ParentLoop);
333 
334   BasicBlock *PH = L->getLoopPreheader();
335   BasicBlock *Latch = L->getLoopLatch();
336   // It helps to splits the original preheader twice, one for the end of the
337   // prolog code and one for a new loop preheader
338   BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
339   BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
340   BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
341 
342   // Compute the number of extra iterations required, which is:
343   //  extra iterations = run-time trip count % (loop unroll factor + 1)
344   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
345                                             PreHeaderBR);
346   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
347                                           PreHeaderBR);
348 
349   IRBuilder<> B(PreHeaderBR);
350   Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
351 
352   // If ModVal is zero, we know that either
353   //  1. there are no iteration to be run in the prologue loop
354   // OR
355   //  2. the addition computing TripCount overflowed
356   //
357   // If (2) is true, we know that TripCount really is (1 << BEWidth) and so the
358   // number of iterations that remain to be run in the original loop is a
359   // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
360   // explicitly check this above).
361 
362   Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod");
363 
364   // Branch to either the extra iterations or the cloned/unrolled loop
365   // We will fix up the true branch label when adding loop body copies
366   B.CreateCondBr(BranchVal, PEnd, PEnd);
367   assert(PreHeaderBR->isUnconditional() &&
368          PreHeaderBR->getSuccessor(0) == PEnd &&
369          "CFG edges in Preheader are not correct");
370   PreHeaderBR->eraseFromParent();
371   Function *F = Header->getParent();
372   // Get an ordered list of blocks in the loop to help with the ordering of the
373   // cloned blocks in the prolog code
374   LoopBlocksDFS LoopBlocks(L);
375   LoopBlocks.perform(LI);
376 
377   //
378   // For each extra loop iteration, create a copy of the loop's basic blocks
379   // and generate a condition that branches to the copy depending on the
380   // number of 'left over' iterations.
381   //
382   std::vector<BasicBlock *> NewBlocks;
383   ValueToValueMapTy VMap;
384 
385   bool UnrollPrologue = Count == 2;
386 
387   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
388   // the loop, otherwise we create a cloned loop to execute the extra
389   // iterations. This function adds the appropriate CFG connections.
390   CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
391                   VMap, LI);
392 
393   // Insert the cloned blocks into function just before the original loop
394   F->getBasicBlockList().splice(PEnd->getIterator(), F->getBasicBlockList(),
395                                 NewBlocks[0]->getIterator(), F->end());
396 
397   // Rewrite the cloned instruction operands to use the values
398   // created when the clone is created.
399   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
400     for (BasicBlock::iterator I = NewBlocks[i]->begin(),
401                               E = NewBlocks[i]->end();
402          I != E; ++I) {
403       RemapInstruction(&*I, VMap,
404                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
405     }
406   }
407 
408   // Connect the prolog code to the original loop and update the
409   // PHI functions.
410   BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
411   ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap, DT, LI,
412                 PreserveLCSSA);
413   NumRuntimeUnrolled++;
414   return true;
415 }
416