1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0. When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations. Other strategies
20 // include generate a loop before or after the unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/Transforms/Utils/UnrollLoop.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpander.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include <algorithm>
41
42 using namespace llvm;
43
44 #define DEBUG_TYPE "loop-unroll"
45
46 STATISTIC(NumRuntimeUnrolled,
47 "Number of loops unrolled with run-time trip counts");
48
49 /// Connect the unrolling prolog code to the original loop.
50 /// The unrolling prolog code contains code to execute the
51 /// 'extra' iterations if the run-time trip count modulo the
52 /// unroll count is non-zero.
53 ///
54 /// This function performs the following:
55 /// - Create PHI nodes at prolog end block to combine values
56 /// that exit the prolog code and jump around the prolog.
57 /// - Add a PHI operand to a PHI node at the loop exit block
58 /// for values that exit the prolog and go around the loop.
59 /// - Branch around the original loop if the trip count is less
60 /// than the unroll factor.
61 ///
ConnectProlog(Loop * L,Value * BECount,unsigned Count,BasicBlock * LastPrologBB,BasicBlock * PrologEnd,BasicBlock * OrigPH,BasicBlock * NewPH,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
63 BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
64 BasicBlock *OrigPH, BasicBlock *NewPH,
65 ValueToValueMapTy &VMap, DominatorTree *DT,
66 LoopInfo *LI, bool PreserveLCSSA) {
67 BasicBlock *Latch = L->getLoopLatch();
68 assert(Latch && "Loop must have a latch");
69
70 // Create a PHI node for each outgoing value from the original loop
71 // (which means it is an outgoing value from the prolog code too).
72 // The new PHI node is inserted in the prolog end basic block.
73 // The new PHI name is added as an operand of a PHI node in either
74 // the loop header or the loop exit block.
75 for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
76 SBI != SBE; ++SBI) {
77 for (BasicBlock::iterator BBI = (*SBI)->begin();
78 PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
79
80 // Add a new PHI node to the prolog end block and add the
81 // appropriate incoming values.
82 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
83 PrologEnd->getTerminator());
84 // Adding a value to the new PHI node from the original loop preheader.
85 // This is the value that skips all the prolog code.
86 if (L->contains(PN)) {
87 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
88 } else {
89 NewPN->addIncoming(UndefValue::get(PN->getType()), OrigPH);
90 }
91
92 Value *V = PN->getIncomingValueForBlock(Latch);
93 if (Instruction *I = dyn_cast<Instruction>(V)) {
94 if (L->contains(I)) {
95 V = VMap[I];
96 }
97 }
98 // Adding a value to the new PHI node from the last prolog block
99 // that was created.
100 NewPN->addIncoming(V, LastPrologBB);
101
102 // Update the existing PHI node operand with the value from the
103 // new PHI node. How this is done depends on if the existing
104 // PHI node is in the original loop block, or the exit block.
105 if (L->contains(PN)) {
106 PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
107 } else {
108 PN->addIncoming(NewPN, PrologEnd);
109 }
110 }
111 }
112
113 // Create a branch around the orignal loop, which is taken if there are no
114 // iterations remaining to be executed after running the prologue.
115 Instruction *InsertPt = PrologEnd->getTerminator();
116 IRBuilder<> B(InsertPt);
117
118 assert(Count != 0 && "nonsensical Count!");
119
120 // If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1)
121 // (since Count is a power of 2). This means %xtraiter is (BECount + 1) and
122 // and all of the iterations of this loop were executed by the prologue. Note
123 // that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow.
124 Value *BrLoopExit =
125 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
126 BasicBlock *Exit = L->getUniqueExitBlock();
127 assert(Exit && "Loop must have a single exit block only");
128 // Split the exit to maintain loop canonicalization guarantees
129 SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
130 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI,
131 PreserveLCSSA);
132 // Add the branch to the exit block (around the unrolled loop)
133 B.CreateCondBr(BrLoopExit, Exit, NewPH);
134 InsertPt->eraseFromParent();
135 }
136
137 /// Create a clone of the blocks in a loop and connect them together.
138 /// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
139 /// loop will be created including all cloned blocks, and the iterator of it
140 /// switches to count NewIter down to 0.
141 ///
CloneLoopBlocks(Loop * L,Value * NewIter,const bool UnrollProlog,BasicBlock * InsertTop,BasicBlock * InsertBot,std::vector<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,LoopInfo * LI)142 static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
143 BasicBlock *InsertTop, BasicBlock *InsertBot,
144 std::vector<BasicBlock *> &NewBlocks,
145 LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
146 LoopInfo *LI) {
147 BasicBlock *Preheader = L->getLoopPreheader();
148 BasicBlock *Header = L->getHeader();
149 BasicBlock *Latch = L->getLoopLatch();
150 Function *F = Header->getParent();
151 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
152 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
153 Loop *NewLoop = nullptr;
154 Loop *ParentLoop = L->getParentLoop();
155 if (!UnrollProlog) {
156 NewLoop = new Loop();
157 if (ParentLoop)
158 ParentLoop->addChildLoop(NewLoop);
159 else
160 LI->addTopLevelLoop(NewLoop);
161 }
162
163 // For each block in the original loop, create a new copy,
164 // and update the value map with the newly created values.
165 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
166 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
167 NewBlocks.push_back(NewBB);
168
169 if (NewLoop)
170 NewLoop->addBasicBlockToLoop(NewBB, *LI);
171 else if (ParentLoop)
172 ParentLoop->addBasicBlockToLoop(NewBB, *LI);
173
174 VMap[*BB] = NewBB;
175 if (Header == *BB) {
176 // For the first block, add a CFG connection to this newly
177 // created block.
178 InsertTop->getTerminator()->setSuccessor(0, NewBB);
179
180 }
181 if (Latch == *BB) {
182 // For the last block, if UnrollProlog is true, create a direct jump to
183 // InsertBot. If not, create a loop back to cloned head.
184 VMap.erase((*BB)->getTerminator());
185 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
186 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
187 IRBuilder<> Builder(LatchBR);
188 if (UnrollProlog) {
189 Builder.CreateBr(InsertBot);
190 } else {
191 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
192 FirstLoopBB->getFirstNonPHI());
193 Value *IdxSub =
194 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
195 NewIdx->getName() + ".sub");
196 Value *IdxCmp =
197 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
198 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
199 NewIdx->addIncoming(NewIter, InsertTop);
200 NewIdx->addIncoming(IdxSub, NewBB);
201 }
202 LatchBR->eraseFromParent();
203 }
204 }
205
206 // Change the incoming values to the ones defined in the preheader or
207 // cloned loop.
208 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
209 PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
210 if (UnrollProlog) {
211 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
212 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
213 } else {
214 unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
215 NewPHI->setIncomingBlock(idx, InsertTop);
216 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
217 idx = NewPHI->getBasicBlockIndex(Latch);
218 Value *InVal = NewPHI->getIncomingValue(idx);
219 NewPHI->setIncomingBlock(idx, NewLatch);
220 if (VMap[InVal])
221 NewPHI->setIncomingValue(idx, VMap[InVal]);
222 }
223 }
224 if (NewLoop) {
225 // Add unroll disable metadata to disable future unrolling for this loop.
226 SmallVector<Metadata *, 4> MDs;
227 // Reserve first location for self reference to the LoopID metadata node.
228 MDs.push_back(nullptr);
229 MDNode *LoopID = NewLoop->getLoopID();
230 if (LoopID) {
231 // First remove any existing loop unrolling metadata.
232 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
233 bool IsUnrollMetadata = false;
234 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
235 if (MD) {
236 const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
237 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
238 }
239 if (!IsUnrollMetadata)
240 MDs.push_back(LoopID->getOperand(i));
241 }
242 }
243
244 LLVMContext &Context = NewLoop->getHeader()->getContext();
245 SmallVector<Metadata *, 1> DisableOperands;
246 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
247 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
248 MDs.push_back(DisableNode);
249
250 MDNode *NewLoopID = MDNode::get(Context, MDs);
251 // Set operand 0 to refer to the loop id itself.
252 NewLoopID->replaceOperandWith(0, NewLoopID);
253 NewLoop->setLoopID(NewLoopID);
254 }
255 }
256
257 /// Insert code in the prolog code when unrolling a loop with a
258 /// run-time trip-count.
259 ///
260 /// This method assumes that the loop unroll factor is total number
261 /// of loop bodes in the loop after unrolling. (Some folks refer
262 /// to the unroll factor as the number of *extra* copies added).
263 /// We assume also that the loop unroll factor is a power-of-two. So, after
264 /// unrolling the loop, the number of loop bodies executed is 2,
265 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
266 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
267 /// the switch instruction is generated.
268 ///
269 /// extraiters = tripcount % loopfactor
270 /// if (extraiters == 0) jump Loop:
271 /// else jump Prol
272 /// Prol: LoopBody;
273 /// extraiters -= 1 // Omitted if unroll factor is 2.
274 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
275 /// if (tripcount < loopfactor) jump End
276 /// Loop:
277 /// ...
278 /// End:
279 ///
UnrollRuntimeLoopProlog(Loop * L,unsigned Count,bool AllowExpensiveTripCount,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,bool PreserveLCSSA)280 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
281 bool AllowExpensiveTripCount, LoopInfo *LI,
282 ScalarEvolution *SE, DominatorTree *DT,
283 bool PreserveLCSSA) {
284 // for now, only unroll loops that contain a single exit
285 if (!L->getExitingBlock())
286 return false;
287
288 // Make sure the loop is in canonical form, and there is a single
289 // exit block only.
290 if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
291 return false;
292
293 // Use Scalar Evolution to compute the trip count. This allows more
294 // loops to be unrolled than relying on induction var simplification
295 if (!SE)
296 return false;
297
298 // Only unroll loops with a computable trip count and the trip count needs
299 // to be an int value (allowing a pointer type is a TODO item)
300 const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
301 if (isa<SCEVCouldNotCompute>(BECountSC) ||
302 !BECountSC->getType()->isIntegerTy())
303 return false;
304
305 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
306
307 // Add 1 since the backedge count doesn't include the first loop iteration
308 const SCEV *TripCountSC =
309 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
310 if (isa<SCEVCouldNotCompute>(TripCountSC))
311 return false;
312
313 BasicBlock *Header = L->getHeader();
314 const DataLayout &DL = Header->getModule()->getDataLayout();
315 SCEVExpander Expander(*SE, DL, "loop-unroll");
316 if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
317 return false;
318
319 // We only handle cases when the unroll factor is a power of 2.
320 // Count is the loop unroll factor, the number of extra copies added + 1.
321 if (!isPowerOf2_32(Count))
322 return false;
323
324 // This constraint lets us deal with an overflowing trip count easily; see the
325 // comment on ModVal below.
326 if (Log2_32(Count) > BEWidth)
327 return false;
328
329 // If this loop is nested, then the loop unroller changes the code in
330 // parent loop, so the Scalar Evolution pass needs to be run again
331 if (Loop *ParentLoop = L->getParentLoop())
332 SE->forgetLoop(ParentLoop);
333
334 BasicBlock *PH = L->getLoopPreheader();
335 BasicBlock *Latch = L->getLoopLatch();
336 // It helps to splits the original preheader twice, one for the end of the
337 // prolog code and one for a new loop preheader
338 BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
339 BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
340 BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
341
342 // Compute the number of extra iterations required, which is:
343 // extra iterations = run-time trip count % (loop unroll factor + 1)
344 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
345 PreHeaderBR);
346 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
347 PreHeaderBR);
348
349 IRBuilder<> B(PreHeaderBR);
350 Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
351
352 // If ModVal is zero, we know that either
353 // 1. there are no iteration to be run in the prologue loop
354 // OR
355 // 2. the addition computing TripCount overflowed
356 //
357 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so the
358 // number of iterations that remain to be run in the original loop is a
359 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
360 // explicitly check this above).
361
362 Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod");
363
364 // Branch to either the extra iterations or the cloned/unrolled loop
365 // We will fix up the true branch label when adding loop body copies
366 B.CreateCondBr(BranchVal, PEnd, PEnd);
367 assert(PreHeaderBR->isUnconditional() &&
368 PreHeaderBR->getSuccessor(0) == PEnd &&
369 "CFG edges in Preheader are not correct");
370 PreHeaderBR->eraseFromParent();
371 Function *F = Header->getParent();
372 // Get an ordered list of blocks in the loop to help with the ordering of the
373 // cloned blocks in the prolog code
374 LoopBlocksDFS LoopBlocks(L);
375 LoopBlocks.perform(LI);
376
377 //
378 // For each extra loop iteration, create a copy of the loop's basic blocks
379 // and generate a condition that branches to the copy depending on the
380 // number of 'left over' iterations.
381 //
382 std::vector<BasicBlock *> NewBlocks;
383 ValueToValueMapTy VMap;
384
385 bool UnrollPrologue = Count == 2;
386
387 // Clone all the basic blocks in the loop. If Count is 2, we don't clone
388 // the loop, otherwise we create a cloned loop to execute the extra
389 // iterations. This function adds the appropriate CFG connections.
390 CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
391 VMap, LI);
392
393 // Insert the cloned blocks into function just before the original loop
394 F->getBasicBlockList().splice(PEnd->getIterator(), F->getBasicBlockList(),
395 NewBlocks[0]->getIterator(), F->end());
396
397 // Rewrite the cloned instruction operands to use the values
398 // created when the clone is created.
399 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
400 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
401 E = NewBlocks[i]->end();
402 I != E; ++I) {
403 RemapInstruction(&*I, VMap,
404 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
405 }
406 }
407
408 // Connect the prolog code to the original loop and update the
409 // PHI functions.
410 BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
411 ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap, DT, LI,
412 PreserveLCSSA);
413 NumRuntimeUnrolled++;
414 return true;
415 }
416