1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/ValueMapper.h"
16 #include "llvm/IR/CallSite.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/InlineAsm.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Metadata.h"
22 #include "llvm/IR/Operator.h"
23 using namespace llvm;
24
25 // Out of line method to get vtable etc for class.
anchor()26 void ValueMapTypeRemapper::anchor() {}
anchor()27 void ValueMaterializer::anchor() {}
materializeInitFor(GlobalValue * New,GlobalValue * Old)28 void ValueMaterializer::materializeInitFor(GlobalValue *New, GlobalValue *Old) {
29 }
30
MapValue(const Value * V,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)31 Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
32 ValueMapTypeRemapper *TypeMapper,
33 ValueMaterializer *Materializer) {
34 ValueToValueMapTy::iterator I = VM.find(V);
35
36 // If the value already exists in the map, use it.
37 if (I != VM.end() && I->second) return I->second;
38
39 // If we have a materializer and it can materialize a value, use that.
40 if (Materializer) {
41 if (Value *NewV =
42 Materializer->materializeDeclFor(const_cast<Value *>(V))) {
43 VM[V] = NewV;
44 if (auto *NewGV = dyn_cast<GlobalValue>(NewV))
45 Materializer->materializeInitFor(
46 NewGV, const_cast<GlobalValue *>(cast<GlobalValue>(V)));
47 return NewV;
48 }
49 }
50
51 // Global values do not need to be seeded into the VM if they
52 // are using the identity mapping.
53 if (isa<GlobalValue>(V)) {
54 if (Flags & RF_NullMapMissingGlobalValues) {
55 assert(!(Flags & RF_IgnoreMissingEntries) &&
56 "Illegal to specify both RF_NullMapMissingGlobalValues and "
57 "RF_IgnoreMissingEntries");
58 return nullptr;
59 }
60 return VM[V] = const_cast<Value*>(V);
61 }
62
63 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
64 // Inline asm may need *type* remapping.
65 FunctionType *NewTy = IA->getFunctionType();
66 if (TypeMapper) {
67 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
68
69 if (NewTy != IA->getFunctionType())
70 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
71 IA->hasSideEffects(), IA->isAlignStack());
72 }
73
74 return VM[V] = const_cast<Value*>(V);
75 }
76
77 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
78 const Metadata *MD = MDV->getMetadata();
79 // If this is a module-level metadata and we know that nothing at the module
80 // level is changing, then use an identity mapping.
81 if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges))
82 return VM[V] = const_cast<Value *>(V);
83
84 auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer);
85 if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries)))
86 return VM[V] = const_cast<Value *>(V);
87
88 // FIXME: This assert crashes during bootstrap, but I think it should be
89 // correct. For now, just match behaviour from before the metadata/value
90 // split.
91 //
92 // assert((MappedMD || (Flags & RF_NullMapMissingGlobalValues)) &&
93 // "Referenced metadata value not in value map");
94 return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD);
95 }
96
97 // Okay, this either must be a constant (which may or may not be mappable) or
98 // is something that is not in the mapping table.
99 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
100 if (!C)
101 return nullptr;
102
103 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
104 Function *F =
105 cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer));
106 BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
107 Flags, TypeMapper, Materializer));
108 return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
109 }
110
111 // Otherwise, we have some other constant to remap. Start by checking to see
112 // if all operands have an identity remapping.
113 unsigned OpNo = 0, NumOperands = C->getNumOperands();
114 Value *Mapped = nullptr;
115 for (; OpNo != NumOperands; ++OpNo) {
116 Value *Op = C->getOperand(OpNo);
117 Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer);
118 if (Mapped != C) break;
119 }
120
121 // See if the type mapper wants to remap the type as well.
122 Type *NewTy = C->getType();
123 if (TypeMapper)
124 NewTy = TypeMapper->remapType(NewTy);
125
126 // If the result type and all operands match up, then just insert an identity
127 // mapping.
128 if (OpNo == NumOperands && NewTy == C->getType())
129 return VM[V] = C;
130
131 // Okay, we need to create a new constant. We've already processed some or
132 // all of the operands, set them all up now.
133 SmallVector<Constant*, 8> Ops;
134 Ops.reserve(NumOperands);
135 for (unsigned j = 0; j != OpNo; ++j)
136 Ops.push_back(cast<Constant>(C->getOperand(j)));
137
138 // If one of the operands mismatch, push it and the other mapped operands.
139 if (OpNo != NumOperands) {
140 Ops.push_back(cast<Constant>(Mapped));
141
142 // Map the rest of the operands that aren't processed yet.
143 for (++OpNo; OpNo != NumOperands; ++OpNo)
144 Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
145 Flags, TypeMapper, Materializer));
146 }
147 Type *NewSrcTy = nullptr;
148 if (TypeMapper)
149 if (auto *GEPO = dyn_cast<GEPOperator>(C))
150 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
151
152 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
153 return VM[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
154 if (isa<ConstantArray>(C))
155 return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
156 if (isa<ConstantStruct>(C))
157 return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
158 if (isa<ConstantVector>(C))
159 return VM[V] = ConstantVector::get(Ops);
160 // If this is a no-operand constant, it must be because the type was remapped.
161 if (isa<UndefValue>(C))
162 return VM[V] = UndefValue::get(NewTy);
163 if (isa<ConstantAggregateZero>(C))
164 return VM[V] = ConstantAggregateZero::get(NewTy);
165 assert(isa<ConstantPointerNull>(C));
166 return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
167 }
168
mapToMetadata(ValueToValueMapTy & VM,const Metadata * Key,Metadata * Val,ValueMaterializer * Materializer,RemapFlags Flags)169 static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key,
170 Metadata *Val, ValueMaterializer *Materializer,
171 RemapFlags Flags) {
172 VM.MD()[Key].reset(Val);
173 if (Materializer && !(Flags & RF_HaveUnmaterializedMetadata)) {
174 auto *N = dyn_cast_or_null<MDNode>(Val);
175 // Need to invoke this once we have non-temporary MD.
176 if (!N || !N->isTemporary())
177 Materializer->replaceTemporaryMetadata(Key, Val);
178 }
179 return Val;
180 }
181
mapToSelf(ValueToValueMapTy & VM,const Metadata * MD,ValueMaterializer * Materializer,RemapFlags Flags)182 static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD,
183 ValueMaterializer *Materializer, RemapFlags Flags) {
184 return mapToMetadata(VM, MD, const_cast<Metadata *>(MD), Materializer, Flags);
185 }
186
187 static Metadata *MapMetadataImpl(const Metadata *MD,
188 SmallVectorImpl<MDNode *> &DistinctWorklist,
189 ValueToValueMapTy &VM, RemapFlags Flags,
190 ValueMapTypeRemapper *TypeMapper,
191 ValueMaterializer *Materializer);
192
mapMetadataOp(Metadata * Op,SmallVectorImpl<MDNode * > & DistinctWorklist,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)193 static Metadata *mapMetadataOp(Metadata *Op,
194 SmallVectorImpl<MDNode *> &DistinctWorklist,
195 ValueToValueMapTy &VM, RemapFlags Flags,
196 ValueMapTypeRemapper *TypeMapper,
197 ValueMaterializer *Materializer) {
198 if (!Op)
199 return nullptr;
200
201 if (Materializer && !Materializer->isMetadataNeeded(Op))
202 return nullptr;
203
204 if (Metadata *MappedOp = MapMetadataImpl(Op, DistinctWorklist, VM, Flags,
205 TypeMapper, Materializer))
206 return MappedOp;
207 // Use identity map if MappedOp is null and we can ignore missing entries.
208 if (Flags & RF_IgnoreMissingEntries)
209 return Op;
210
211 // FIXME: This assert crashes during bootstrap, but I think it should be
212 // correct. For now, just match behaviour from before the metadata/value
213 // split.
214 //
215 // assert((Flags & RF_NullMapMissingGlobalValues) &&
216 // "Referenced metadata not in value map!");
217 return nullptr;
218 }
219
220 /// Resolve uniquing cycles involving the given metadata.
resolveCycles(Metadata * MD,bool MDMaterialized)221 static void resolveCycles(Metadata *MD, bool MDMaterialized) {
222 if (auto *N = dyn_cast_or_null<MDNode>(MD)) {
223 if (!MDMaterialized && N->isTemporary())
224 return;
225 if (!N->isResolved())
226 N->resolveCycles(MDMaterialized);
227 }
228 }
229
230 /// Remap the operands of an MDNode.
231 ///
232 /// If \c Node is temporary, uniquing cycles are ignored. If \c Node is
233 /// distinct, uniquing cycles are resolved as they're found.
234 ///
235 /// \pre \c Node.isDistinct() or \c Node.isTemporary().
remapOperands(MDNode & Node,SmallVectorImpl<MDNode * > & DistinctWorklist,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)236 static bool remapOperands(MDNode &Node,
237 SmallVectorImpl<MDNode *> &DistinctWorklist,
238 ValueToValueMapTy &VM, RemapFlags Flags,
239 ValueMapTypeRemapper *TypeMapper,
240 ValueMaterializer *Materializer) {
241 assert(!Node.isUniqued() && "Expected temporary or distinct node");
242 const bool IsDistinct = Node.isDistinct();
243
244 bool AnyChanged = false;
245 for (unsigned I = 0, E = Node.getNumOperands(); I != E; ++I) {
246 Metadata *Old = Node.getOperand(I);
247 Metadata *New = mapMetadataOp(Old, DistinctWorklist, VM, Flags, TypeMapper,
248 Materializer);
249 if (Old != New) {
250 AnyChanged = true;
251 Node.replaceOperandWith(I, New);
252
253 // Resolve uniquing cycles underneath distinct nodes on the fly so they
254 // don't infect later operands.
255 if (IsDistinct)
256 resolveCycles(New, !(Flags & RF_HaveUnmaterializedMetadata));
257 }
258 }
259
260 return AnyChanged;
261 }
262
263 /// Map a distinct MDNode.
264 ///
265 /// Whether distinct nodes change is independent of their operands. If \a
266 /// RF_MoveDistinctMDs, then they are reused, and their operands remapped in
267 /// place; effectively, they're moved from one graph to another. Otherwise,
268 /// they're cloned/duplicated, and the new copy's operands are remapped.
mapDistinctNode(const MDNode * Node,SmallVectorImpl<MDNode * > & DistinctWorklist,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)269 static Metadata *mapDistinctNode(const MDNode *Node,
270 SmallVectorImpl<MDNode *> &DistinctWorklist,
271 ValueToValueMapTy &VM, RemapFlags Flags,
272 ValueMapTypeRemapper *TypeMapper,
273 ValueMaterializer *Materializer) {
274 assert(Node->isDistinct() && "Expected distinct node");
275
276 MDNode *NewMD;
277 if (Flags & RF_MoveDistinctMDs)
278 NewMD = const_cast<MDNode *>(Node);
279 else
280 NewMD = MDNode::replaceWithDistinct(Node->clone());
281
282 // Remap operands later.
283 DistinctWorklist.push_back(NewMD);
284 return mapToMetadata(VM, Node, NewMD, Materializer, Flags);
285 }
286
287 /// \brief Map a uniqued MDNode.
288 ///
289 /// Uniqued nodes may not need to be recreated (they may map to themselves).
mapUniquedNode(const MDNode * Node,SmallVectorImpl<MDNode * > & DistinctWorklist,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)290 static Metadata *mapUniquedNode(const MDNode *Node,
291 SmallVectorImpl<MDNode *> &DistinctWorklist,
292 ValueToValueMapTy &VM, RemapFlags Flags,
293 ValueMapTypeRemapper *TypeMapper,
294 ValueMaterializer *Materializer) {
295 assert(((Flags & RF_HaveUnmaterializedMetadata) || Node->isUniqued()) &&
296 "Expected uniqued node");
297
298 // Create a temporary node and map it upfront in case we have a uniquing
299 // cycle. If necessary, this mapping will get updated by RAUW logic before
300 // returning.
301 auto ClonedMD = Node->clone();
302 mapToMetadata(VM, Node, ClonedMD.get(), Materializer, Flags);
303 if (!remapOperands(*ClonedMD, DistinctWorklist, VM, Flags, TypeMapper,
304 Materializer)) {
305 // No operands changed, so use the original.
306 ClonedMD->replaceAllUsesWith(const_cast<MDNode *>(Node));
307 // Even though replaceAllUsesWith would have replaced the value map
308 // entry, we need to explictly map with the final non-temporary node
309 // to replace any temporary metadata via the callback.
310 return mapToSelf(VM, Node, Materializer, Flags);
311 }
312
313 // Uniquify the cloned node. Explicitly map it with the final non-temporary
314 // node so that replacement of temporary metadata via the callback occurs.
315 return mapToMetadata(VM, Node,
316 MDNode::replaceWithUniqued(std::move(ClonedMD)),
317 Materializer, Flags);
318 }
319
MapMetadataImpl(const Metadata * MD,SmallVectorImpl<MDNode * > & DistinctWorklist,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)320 static Metadata *MapMetadataImpl(const Metadata *MD,
321 SmallVectorImpl<MDNode *> &DistinctWorklist,
322 ValueToValueMapTy &VM, RemapFlags Flags,
323 ValueMapTypeRemapper *TypeMapper,
324 ValueMaterializer *Materializer) {
325 // If the value already exists in the map, use it.
326 if (Metadata *NewMD = VM.MD().lookup(MD).get())
327 return NewMD;
328
329 if (isa<MDString>(MD))
330 return mapToSelf(VM, MD, Materializer, Flags);
331
332 if (isa<ConstantAsMetadata>(MD))
333 if ((Flags & RF_NoModuleLevelChanges))
334 return mapToSelf(VM, MD, Materializer, Flags);
335
336 if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) {
337 Value *MappedV =
338 MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer);
339 if (VMD->getValue() == MappedV ||
340 (!MappedV && (Flags & RF_IgnoreMissingEntries)))
341 return mapToSelf(VM, MD, Materializer, Flags);
342
343 // FIXME: This assert crashes during bootstrap, but I think it should be
344 // correct. For now, just match behaviour from before the metadata/value
345 // split.
346 //
347 // assert((MappedV || (Flags & RF_NullMapMissingGlobalValues)) &&
348 // "Referenced metadata not in value map!");
349 if (MappedV)
350 return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV), Materializer,
351 Flags);
352 return nullptr;
353 }
354
355 // Note: this cast precedes the Flags check so we always get its associated
356 // assertion.
357 const MDNode *Node = cast<MDNode>(MD);
358
359 // If this is a module-level metadata and we know that nothing at the
360 // module level is changing, then use an identity mapping.
361 if (Flags & RF_NoModuleLevelChanges)
362 return mapToSelf(VM, MD, Materializer, Flags);
363
364 // Require resolved nodes whenever metadata might be remapped.
365 assert(((Flags & RF_HaveUnmaterializedMetadata) || Node->isResolved()) &&
366 "Unexpected unresolved node");
367
368 if (Materializer && Node->isTemporary()) {
369 assert(Flags & RF_HaveUnmaterializedMetadata);
370 Metadata *TempMD =
371 Materializer->mapTemporaryMetadata(const_cast<Metadata *>(MD));
372 // If the above callback returned an existing temporary node, use it
373 // instead of the current temporary node. This happens when earlier
374 // function importing passes already created and saved a temporary
375 // metadata node for the same value id.
376 if (TempMD) {
377 mapToMetadata(VM, MD, TempMD, Materializer, Flags);
378 return TempMD;
379 }
380 }
381
382 if (Node->isDistinct())
383 return mapDistinctNode(Node, DistinctWorklist, VM, Flags, TypeMapper,
384 Materializer);
385
386 return mapUniquedNode(Node, DistinctWorklist, VM, Flags, TypeMapper,
387 Materializer);
388 }
389
MapMetadata(const Metadata * MD,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)390 Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
391 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
392 ValueMaterializer *Materializer) {
393 SmallVector<MDNode *, 8> DistinctWorklist;
394 Metadata *NewMD = MapMetadataImpl(MD, DistinctWorklist, VM, Flags, TypeMapper,
395 Materializer);
396
397 // When there are no module-level changes, it's possible that the metadata
398 // graph has temporaries. Skip the logic to resolve cycles, since it's
399 // unnecessary (and invalid) in that case.
400 if (Flags & RF_NoModuleLevelChanges)
401 return NewMD;
402
403 // Resolve cycles involving the entry metadata.
404 resolveCycles(NewMD, !(Flags & RF_HaveUnmaterializedMetadata));
405
406 // Remap the operands of distinct MDNodes.
407 while (!DistinctWorklist.empty())
408 remapOperands(*DistinctWorklist.pop_back_val(), DistinctWorklist, VM, Flags,
409 TypeMapper, Materializer);
410
411 return NewMD;
412 }
413
MapMetadata(const MDNode * MD,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)414 MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM,
415 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
416 ValueMaterializer *Materializer) {
417 return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags,
418 TypeMapper, Materializer));
419 }
420
421 /// RemapInstruction - Convert the instruction operands from referencing the
422 /// current values into those specified by VMap.
423 ///
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)424 void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
425 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
426 ValueMaterializer *Materializer){
427 // Remap operands.
428 for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
429 Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer);
430 // If we aren't ignoring missing entries, assert that something happened.
431 if (V)
432 *op = V;
433 else
434 assert((Flags & RF_IgnoreMissingEntries) &&
435 "Referenced value not in value map!");
436 }
437
438 // Remap phi nodes' incoming blocks.
439 if (PHINode *PN = dyn_cast<PHINode>(I)) {
440 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
441 Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
442 // If we aren't ignoring missing entries, assert that something happened.
443 if (V)
444 PN->setIncomingBlock(i, cast<BasicBlock>(V));
445 else
446 assert((Flags & RF_IgnoreMissingEntries) &&
447 "Referenced block not in value map!");
448 }
449 }
450
451 // Remap attached metadata.
452 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
453 I->getAllMetadata(MDs);
454 for (const auto &MI : MDs) {
455 MDNode *Old = MI.second;
456 MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer);
457 if (New != Old)
458 I->setMetadata(MI.first, New);
459 }
460
461 if (!TypeMapper)
462 return;
463
464 // If the instruction's type is being remapped, do so now.
465 if (auto CS = CallSite(I)) {
466 SmallVector<Type *, 3> Tys;
467 FunctionType *FTy = CS.getFunctionType();
468 Tys.reserve(FTy->getNumParams());
469 for (Type *Ty : FTy->params())
470 Tys.push_back(TypeMapper->remapType(Ty));
471 CS.mutateFunctionType(FunctionType::get(
472 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
473 return;
474 }
475 if (auto *AI = dyn_cast<AllocaInst>(I))
476 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
477 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
478 GEP->setSourceElementType(
479 TypeMapper->remapType(GEP->getSourceElementType()));
480 GEP->setResultElementType(
481 TypeMapper->remapType(GEP->getResultElementType()));
482 }
483 I->mutateType(TypeMapper->remapType(I->getType()));
484 }
485