1; RUN: llc < %s -asm-verbose=false | FileCheck %s 2 3; Test that basic 32-bit floating-point operations assemble as expected. 4 5target datalayout = "e-p:32:32-i64:64-n32:64-S128" 6target triple = "wasm32-unknown-unknown" 7 8declare float @llvm.fabs.f32(float) 9declare float @llvm.copysign.f32(float, float) 10declare float @llvm.sqrt.f32(float) 11declare float @llvm.ceil.f32(float) 12declare float @llvm.floor.f32(float) 13declare float @llvm.trunc.f32(float) 14declare float @llvm.nearbyint.f32(float) 15declare float @llvm.rint.f32(float) 16declare float @llvm.fma.f32(float, float, float) 17 18; CHECK-LABEL: fadd32: 19; CHECK-NEXT: .param f32, f32{{$}} 20; CHECK-NEXT: .result f32{{$}} 21; CHECK-NEXT: f32.add $push0=, $0, $1{{$}} 22; CHECK-NEXT: return $pop0{{$}} 23define float @fadd32(float %x, float %y) { 24 %a = fadd float %x, %y 25 ret float %a 26} 27 28; CHECK-LABEL: fsub32: 29; CHECK: f32.sub $push0=, $0, $1{{$}} 30; CHECK-NEXT: return $pop0{{$}} 31define float @fsub32(float %x, float %y) { 32 %a = fsub float %x, %y 33 ret float %a 34} 35 36; CHECK-LABEL: fmul32: 37; CHECK: f32.mul $push0=, $0, $1{{$}} 38; CHECK-NEXT: return $pop0{{$}} 39define float @fmul32(float %x, float %y) { 40 %a = fmul float %x, %y 41 ret float %a 42} 43 44; CHECK-LABEL: fdiv32: 45; CHECK: f32.div $push0=, $0, $1{{$}} 46; CHECK-NEXT: return $pop0{{$}} 47define float @fdiv32(float %x, float %y) { 48 %a = fdiv float %x, %y 49 ret float %a 50} 51 52; CHECK-LABEL: fabs32: 53; CHECK: f32.abs $push0=, $0{{$}} 54; CHECK-NEXT: return $pop0{{$}} 55define float @fabs32(float %x) { 56 %a = call float @llvm.fabs.f32(float %x) 57 ret float %a 58} 59 60; CHECK-LABEL: fneg32: 61; CHECK: f32.neg $push0=, $0{{$}} 62; CHECK-NEXT: return $pop0{{$}} 63define float @fneg32(float %x) { 64 %a = fsub float -0., %x 65 ret float %a 66} 67 68; CHECK-LABEL: copysign32: 69; CHECK: f32.copysign $push0=, $0, $1{{$}} 70; CHECK-NEXT: return $pop0{{$}} 71define float @copysign32(float %x, float %y) { 72 %a = call float @llvm.copysign.f32(float %x, float %y) 73 ret float %a 74} 75 76; CHECK-LABEL: sqrt32: 77; CHECK: f32.sqrt $push0=, $0{{$}} 78; CHECK-NEXT: return $pop0{{$}} 79define float @sqrt32(float %x) { 80 %a = call float @llvm.sqrt.f32(float %x) 81 ret float %a 82} 83 84; CHECK-LABEL: ceil32: 85; CHECK: f32.ceil $push0=, $0{{$}} 86; CHECK-NEXT: return $pop0{{$}} 87define float @ceil32(float %x) { 88 %a = call float @llvm.ceil.f32(float %x) 89 ret float %a 90} 91 92; CHECK-LABEL: floor32: 93; CHECK: f32.floor $push0=, $0{{$}} 94; CHECK-NEXT: return $pop0{{$}} 95define float @floor32(float %x) { 96 %a = call float @llvm.floor.f32(float %x) 97 ret float %a 98} 99 100; CHECK-LABEL: trunc32: 101; CHECK: f32.trunc $push0=, $0{{$}} 102; CHECK-NEXT: return $pop0{{$}} 103define float @trunc32(float %x) { 104 %a = call float @llvm.trunc.f32(float %x) 105 ret float %a 106} 107 108; CHECK-LABEL: nearest32: 109; CHECK: f32.nearest $push0=, $0{{$}} 110; CHECK-NEXT: return $pop0{{$}} 111define float @nearest32(float %x) { 112 %a = call float @llvm.nearbyint.f32(float %x) 113 ret float %a 114} 115 116; CHECK-LABEL: nearest32_via_rint: 117; CHECK: f32.nearest $push0=, $0{{$}} 118; CHECK-NEXT: return $pop0{{$}} 119define float @nearest32_via_rint(float %x) { 120 %a = call float @llvm.rint.f32(float %x) 121 ret float %a 122} 123 124; Min and max tests. LLVM currently only forms fminnan and fmaxnan nodes in 125; cases where there's a single fcmp with a select and it can prove that one 126; of the arms is never NaN, so we only test that case. In the future if LLVM 127; learns to form fminnan/fmaxnan in more cases, we can write more general 128; tests. 129 130; CHECK-LABEL: fmin32: 131; CHECK: f32.min $push1=, $0, $pop0{{$}} 132; CHECK-NEXT: return $pop1{{$}} 133define float @fmin32(float %x) { 134 %a = fcmp ult float %x, 0.0 135 %b = select i1 %a, float %x, float 0.0 136 ret float %b 137} 138 139; CHECK-LABEL: fmax32: 140; CHECK: f32.max $push1=, $0, $pop0{{$}} 141; CHECK-NEXT: return $pop1{{$}} 142define float @fmax32(float %x) { 143 %a = fcmp ugt float %x, 0.0 144 %b = select i1 %a, float %x, float 0.0 145 ret float %b 146} 147 148; CHECK-LABEL: fma32: 149; CHECK: {{^}} f32.call $push0=, fmaf, $0, $1, $2{{$}} 150; CHECK-NEXT: return $pop0{{$}} 151define float @fma32(float %a, float %b, float %c) { 152 %d = call float @llvm.fma.f32(float %a, float %b, float %c) 153 ret float %d 154} 155