1 //===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend is responsible for emitting a description of the target
11 // instruction set for the code generator.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenDAGPatterns.h"
16 #include "CodeGenSchedule.h"
17 #include "CodeGenTarget.h"
18 #include "SequenceToOffsetTable.h"
19 #include "TableGenBackends.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/TableGen/Error.h"
22 #include "llvm/TableGen/Record.h"
23 #include "llvm/TableGen/TableGenBackend.h"
24 #include <algorithm>
25 #include <cstdio>
26 #include <map>
27 #include <vector>
28
29 using namespace llvm;
30
31 namespace {
32 class InstrInfoEmitter {
33 RecordKeeper &Records;
34 CodeGenDAGPatterns CDP;
35 const CodeGenSchedModels &SchedModels;
36
37 public:
InstrInfoEmitter(RecordKeeper & R)38 InstrInfoEmitter(RecordKeeper &R):
39 Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {}
40
41 // run - Output the instruction set description.
42 void run(raw_ostream &OS);
43
44 private:
45 void emitEnums(raw_ostream &OS);
46
47 typedef std::map<std::vector<std::string>, unsigned> OperandInfoMapTy;
48
49 /// The keys of this map are maps which have OpName enum values as their keys
50 /// and instruction operand indices as their values. The values of this map
51 /// are lists of instruction names.
52 typedef std::map<std::map<unsigned, unsigned>,
53 std::vector<std::string> > OpNameMapTy;
54 typedef std::map<std::string, unsigned>::iterator StrUintMapIter;
55 void emitRecord(const CodeGenInstruction &Inst, unsigned Num,
56 Record *InstrInfo,
57 std::map<std::vector<Record*>, unsigned> &EL,
58 const OperandInfoMapTy &OpInfo,
59 raw_ostream &OS);
60 void emitOperandTypesEnum(raw_ostream &OS, const CodeGenTarget &Target);
61 void initOperandMapData(
62 const std::vector<const CodeGenInstruction *> &NumberedInstructions,
63 const std::string &Namespace,
64 std::map<std::string, unsigned> &Operands,
65 OpNameMapTy &OperandMap);
66 void emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target,
67 const std::vector<const CodeGenInstruction*> &NumberedInstructions);
68
69 // Operand information.
70 void EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs);
71 std::vector<std::string> GetOperandInfo(const CodeGenInstruction &Inst);
72 };
73 } // end anonymous namespace
74
PrintDefList(const std::vector<Record * > & Uses,unsigned Num,raw_ostream & OS)75 static void PrintDefList(const std::vector<Record*> &Uses,
76 unsigned Num, raw_ostream &OS) {
77 OS << "static const MCPhysReg ImplicitList" << Num << "[] = { ";
78 for (unsigned i = 0, e = Uses.size(); i != e; ++i)
79 OS << getQualifiedName(Uses[i]) << ", ";
80 OS << "0 };\n";
81 }
82
83 //===----------------------------------------------------------------------===//
84 // Operand Info Emission.
85 //===----------------------------------------------------------------------===//
86
87 std::vector<std::string>
GetOperandInfo(const CodeGenInstruction & Inst)88 InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) {
89 std::vector<std::string> Result;
90
91 for (auto &Op : Inst.Operands) {
92 // Handle aggregate operands and normal operands the same way by expanding
93 // either case into a list of operands for this op.
94 std::vector<CGIOperandList::OperandInfo> OperandList;
95
96 // This might be a multiple operand thing. Targets like X86 have
97 // registers in their multi-operand operands. It may also be an anonymous
98 // operand, which has a single operand, but no declared class for the
99 // operand.
100 DagInit *MIOI = Op.MIOperandInfo;
101
102 if (!MIOI || MIOI->getNumArgs() == 0) {
103 // Single, anonymous, operand.
104 OperandList.push_back(Op);
105 } else {
106 for (unsigned j = 0, e = Op.MINumOperands; j != e; ++j) {
107 OperandList.push_back(Op);
108
109 Record *OpR = cast<DefInit>(MIOI->getArg(j))->getDef();
110 OperandList.back().Rec = OpR;
111 }
112 }
113
114 for (unsigned j = 0, e = OperandList.size(); j != e; ++j) {
115 Record *OpR = OperandList[j].Rec;
116 std::string Res;
117
118 if (OpR->isSubClassOf("RegisterOperand"))
119 OpR = OpR->getValueAsDef("RegClass");
120 if (OpR->isSubClassOf("RegisterClass"))
121 Res += getQualifiedName(OpR) + "RegClassID, ";
122 else if (OpR->isSubClassOf("PointerLikeRegClass"))
123 Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", ";
124 else
125 // -1 means the operand does not have a fixed register class.
126 Res += "-1, ";
127
128 // Fill in applicable flags.
129 Res += "0";
130
131 // Ptr value whose register class is resolved via callback.
132 if (OpR->isSubClassOf("PointerLikeRegClass"))
133 Res += "|(1<<MCOI::LookupPtrRegClass)";
134
135 // Predicate operands. Check to see if the original unexpanded operand
136 // was of type PredicateOp.
137 if (Op.Rec->isSubClassOf("PredicateOp"))
138 Res += "|(1<<MCOI::Predicate)";
139
140 // Optional def operands. Check to see if the original unexpanded operand
141 // was of type OptionalDefOperand.
142 if (Op.Rec->isSubClassOf("OptionalDefOperand"))
143 Res += "|(1<<MCOI::OptionalDef)";
144
145 // Fill in operand type.
146 Res += ", ";
147 assert(!Op.OperandType.empty() && "Invalid operand type.");
148 Res += Op.OperandType;
149
150 // Fill in constraint info.
151 Res += ", ";
152
153 const CGIOperandList::ConstraintInfo &Constraint =
154 Op.Constraints[j];
155 if (Constraint.isNone())
156 Res += "0";
157 else if (Constraint.isEarlyClobber())
158 Res += "(1 << MCOI::EARLY_CLOBBER)";
159 else {
160 assert(Constraint.isTied());
161 Res += "((" + utostr(Constraint.getTiedOperand()) +
162 " << 16) | (1 << MCOI::TIED_TO))";
163 }
164
165 Result.push_back(Res);
166 }
167 }
168
169 return Result;
170 }
171
EmitOperandInfo(raw_ostream & OS,OperandInfoMapTy & OperandInfoIDs)172 void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS,
173 OperandInfoMapTy &OperandInfoIDs) {
174 // ID #0 is for no operand info.
175 unsigned OperandListNum = 0;
176 OperandInfoIDs[std::vector<std::string>()] = ++OperandListNum;
177
178 OS << "\n";
179 const CodeGenTarget &Target = CDP.getTargetInfo();
180 for (const CodeGenInstruction *Inst : Target.instructions()) {
181 std::vector<std::string> OperandInfo = GetOperandInfo(*Inst);
182 unsigned &N = OperandInfoIDs[OperandInfo];
183 if (N != 0) continue;
184
185 N = ++OperandListNum;
186 OS << "static const MCOperandInfo OperandInfo" << N << "[] = { ";
187 for (const std::string &Info : OperandInfo)
188 OS << "{ " << Info << " }, ";
189 OS << "};\n";
190 }
191 }
192
193 /// Initialize data structures for generating operand name mappings.
194 ///
195 /// \param Operands [out] A map used to generate the OpName enum with operand
196 /// names as its keys and operand enum values as its values.
197 /// \param OperandMap [out] A map for representing the operand name mappings for
198 /// each instructions. This is used to generate the OperandMap table as
199 /// well as the getNamedOperandIdx() function.
initOperandMapData(const std::vector<const CodeGenInstruction * > & NumberedInstructions,const std::string & Namespace,std::map<std::string,unsigned> & Operands,OpNameMapTy & OperandMap)200 void InstrInfoEmitter::initOperandMapData(
201 const std::vector<const CodeGenInstruction *> &NumberedInstructions,
202 const std::string &Namespace,
203 std::map<std::string, unsigned> &Operands,
204 OpNameMapTy &OperandMap) {
205
206 unsigned NumOperands = 0;
207 for (const CodeGenInstruction *Inst : NumberedInstructions) {
208 if (!Inst->TheDef->getValueAsBit("UseNamedOperandTable"))
209 continue;
210 std::map<unsigned, unsigned> OpList;
211 for (const auto &Info : Inst->Operands) {
212 StrUintMapIter I = Operands.find(Info.Name);
213
214 if (I == Operands.end()) {
215 I = Operands.insert(Operands.begin(),
216 std::pair<std::string, unsigned>(Info.Name, NumOperands++));
217 }
218 OpList[I->second] = Info.MIOperandNo;
219 }
220 OperandMap[OpList].push_back(Namespace + "::" + Inst->TheDef->getName());
221 }
222 }
223
224 /// Generate a table and function for looking up the indices of operands by
225 /// name.
226 ///
227 /// This code generates:
228 /// - An enum in the llvm::TargetNamespace::OpName namespace, with one entry
229 /// for each operand name.
230 /// - A 2-dimensional table called OperandMap for mapping OpName enum values to
231 /// operand indices.
232 /// - A function called getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
233 /// for looking up the operand index for an instruction, given a value from
234 /// OpName enum
emitOperandNameMappings(raw_ostream & OS,const CodeGenTarget & Target,const std::vector<const CodeGenInstruction * > & NumberedInstructions)235 void InstrInfoEmitter::emitOperandNameMappings(raw_ostream &OS,
236 const CodeGenTarget &Target,
237 const std::vector<const CodeGenInstruction*> &NumberedInstructions) {
238
239 const std::string &Namespace = Target.getInstNamespace();
240 std::string OpNameNS = "OpName";
241 // Map of operand names to their enumeration value. This will be used to
242 // generate the OpName enum.
243 std::map<std::string, unsigned> Operands;
244 OpNameMapTy OperandMap;
245
246 initOperandMapData(NumberedInstructions, Namespace, Operands, OperandMap);
247
248 OS << "#ifdef GET_INSTRINFO_OPERAND_ENUM\n";
249 OS << "#undef GET_INSTRINFO_OPERAND_ENUM\n";
250 OS << "namespace llvm {\n";
251 OS << "namespace " << Namespace << " {\n";
252 OS << "namespace " << OpNameNS << " { \n";
253 OS << "enum {\n";
254 for (const auto &Op : Operands)
255 OS << " " << Op.first << " = " << Op.second << ",\n";
256
257 OS << "OPERAND_LAST";
258 OS << "\n};\n";
259 OS << "} // end namespace OpName\n";
260 OS << "} // end namespace " << Namespace << "\n";
261 OS << "} // end namespace llvm\n";
262 OS << "#endif //GET_INSTRINFO_OPERAND_ENUM\n";
263
264 OS << "#ifdef GET_INSTRINFO_NAMED_OPS\n";
265 OS << "#undef GET_INSTRINFO_NAMED_OPS\n";
266 OS << "namespace llvm {\n";
267 OS << "namespace " << Namespace << " {\n";
268 OS << "LLVM_READONLY\n";
269 OS << "int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) {\n";
270 if (!Operands.empty()) {
271 OS << " static const int16_t OperandMap [][" << Operands.size()
272 << "] = {\n";
273 for (const auto &Entry : OperandMap) {
274 const std::map<unsigned, unsigned> &OpList = Entry.first;
275 OS << "{";
276
277 // Emit a row of the OperandMap table
278 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
279 OS << (OpList.count(i) == 0 ? -1 : (int)OpList.find(i)->second) << ", ";
280
281 OS << "},\n";
282 }
283 OS << "};\n";
284
285 OS << " switch(Opcode) {\n";
286 unsigned TableIndex = 0;
287 for (const auto &Entry : OperandMap) {
288 for (const std::string &Name : Entry.second)
289 OS << " case " << Name << ":\n";
290
291 OS << " return OperandMap[" << TableIndex++ << "][NamedIdx];\n";
292 }
293 OS << " default: return -1;\n";
294 OS << " }\n";
295 } else {
296 // There are no operands, so no need to emit anything
297 OS << " return -1;\n";
298 }
299 OS << "}\n";
300 OS << "} // end namespace " << Namespace << "\n";
301 OS << "} // end namespace llvm\n";
302 OS << "#endif //GET_INSTRINFO_NAMED_OPS\n";
303
304 }
305
306 /// Generate an enum for all the operand types for this target, under the
307 /// llvm::TargetNamespace::OpTypes namespace.
308 /// Operand types are all definitions derived of the Operand Target.td class.
emitOperandTypesEnum(raw_ostream & OS,const CodeGenTarget & Target)309 void InstrInfoEmitter::emitOperandTypesEnum(raw_ostream &OS,
310 const CodeGenTarget &Target) {
311
312 const std::string &Namespace = Target.getInstNamespace();
313 std::vector<Record *> Operands = Records.getAllDerivedDefinitions("Operand");
314
315 OS << "\n#ifdef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
316 OS << "#undef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
317 OS << "namespace llvm {\n";
318 OS << "namespace " << Namespace << " {\n";
319 OS << "namespace OpTypes { \n";
320 OS << "enum OperandType {\n";
321
322 unsigned EnumVal = 0;
323 for (const Record *Op : Operands) {
324 if (!Op->isAnonymous())
325 OS << " " << Op->getName() << " = " << EnumVal << ",\n";
326 ++EnumVal;
327 }
328
329 OS << " OPERAND_TYPE_LIST_END" << "\n};\n";
330 OS << "} // end namespace OpTypes\n";
331 OS << "} // end namespace " << Namespace << "\n";
332 OS << "} // end namespace llvm\n";
333 OS << "#endif // GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
334 }
335
336 //===----------------------------------------------------------------------===//
337 // Main Output.
338 //===----------------------------------------------------------------------===//
339
340 // run - Emit the main instruction description records for the target...
run(raw_ostream & OS)341 void InstrInfoEmitter::run(raw_ostream &OS) {
342 emitSourceFileHeader("Target Instruction Enum Values", OS);
343 emitEnums(OS);
344
345 emitSourceFileHeader("Target Instruction Descriptors", OS);
346
347 OS << "\n#ifdef GET_INSTRINFO_MC_DESC\n";
348 OS << "#undef GET_INSTRINFO_MC_DESC\n";
349
350 OS << "namespace llvm {\n\n";
351
352 CodeGenTarget &Target = CDP.getTargetInfo();
353 const std::string &TargetName = Target.getName();
354 Record *InstrInfo = Target.getInstructionSet();
355
356 // Keep track of all of the def lists we have emitted already.
357 std::map<std::vector<Record*>, unsigned> EmittedLists;
358 unsigned ListNumber = 0;
359
360 // Emit all of the instruction's implicit uses and defs.
361 for (const CodeGenInstruction *II : Target.instructions()) {
362 Record *Inst = II->TheDef;
363 std::vector<Record*> Uses = Inst->getValueAsListOfDefs("Uses");
364 if (!Uses.empty()) {
365 unsigned &IL = EmittedLists[Uses];
366 if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS);
367 }
368 std::vector<Record*> Defs = Inst->getValueAsListOfDefs("Defs");
369 if (!Defs.empty()) {
370 unsigned &IL = EmittedLists[Defs];
371 if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS);
372 }
373 }
374
375 OperandInfoMapTy OperandInfoIDs;
376
377 // Emit all of the operand info records.
378 EmitOperandInfo(OS, OperandInfoIDs);
379
380 // Emit all of the MCInstrDesc records in their ENUM ordering.
381 //
382 OS << "\nextern const MCInstrDesc " << TargetName << "Insts[] = {\n";
383 const std::vector<const CodeGenInstruction*> &NumberedInstructions =
384 Target.getInstructionsByEnumValue();
385
386 SequenceToOffsetTable<std::string> InstrNames;
387 unsigned Num = 0;
388 for (const CodeGenInstruction *Inst : NumberedInstructions) {
389 // Keep a list of the instruction names.
390 InstrNames.add(Inst->TheDef->getName());
391 // Emit the record into the table.
392 emitRecord(*Inst, Num++, InstrInfo, EmittedLists, OperandInfoIDs, OS);
393 }
394 OS << "};\n\n";
395
396 // Emit the array of instruction names.
397 InstrNames.layout();
398 OS << "extern const char " << TargetName << "InstrNameData[] = {\n";
399 InstrNames.emit(OS, printChar);
400 OS << "};\n\n";
401
402 OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {";
403 Num = 0;
404 for (const CodeGenInstruction *Inst : NumberedInstructions) {
405 // Newline every eight entries.
406 if (Num % 8 == 0)
407 OS << "\n ";
408 OS << InstrNames.get(Inst->TheDef->getName()) << "U, ";
409 ++Num;
410 }
411
412 OS << "\n};\n\n";
413
414 // MCInstrInfo initialization routine.
415 OS << "static inline void Init" << TargetName
416 << "MCInstrInfo(MCInstrInfo *II) {\n";
417 OS << " II->InitMCInstrInfo(" << TargetName << "Insts, "
418 << TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, "
419 << NumberedInstructions.size() << ");\n}\n\n";
420
421 OS << "} // end llvm namespace \n";
422
423 OS << "#endif // GET_INSTRINFO_MC_DESC\n\n";
424
425 // Create a TargetInstrInfo subclass to hide the MC layer initialization.
426 OS << "\n#ifdef GET_INSTRINFO_HEADER\n";
427 OS << "#undef GET_INSTRINFO_HEADER\n";
428
429 std::string ClassName = TargetName + "GenInstrInfo";
430 OS << "namespace llvm {\n";
431 OS << "struct " << ClassName << " : public TargetInstrInfo {\n"
432 << " explicit " << ClassName
433 << "(int CFSetupOpcode = -1, int CFDestroyOpcode = -1, int CatchRetOpcode = -1);\n"
434 << " ~" << ClassName << "() override {}\n"
435 << "};\n";
436 OS << "} // end llvm namespace \n";
437
438 OS << "#endif // GET_INSTRINFO_HEADER\n\n";
439
440 OS << "\n#ifdef GET_INSTRINFO_CTOR_DTOR\n";
441 OS << "#undef GET_INSTRINFO_CTOR_DTOR\n";
442
443 OS << "namespace llvm {\n";
444 OS << "extern const MCInstrDesc " << TargetName << "Insts[];\n";
445 OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n";
446 OS << "extern const char " << TargetName << "InstrNameData[];\n";
447 OS << ClassName << "::" << ClassName
448 << "(int CFSetupOpcode, int CFDestroyOpcode, int CatchRetOpcode)\n"
449 << " : TargetInstrInfo(CFSetupOpcode, CFDestroyOpcode, CatchRetOpcode) {\n"
450 << " InitMCInstrInfo(" << TargetName << "Insts, " << TargetName
451 << "InstrNameIndices, " << TargetName << "InstrNameData, "
452 << NumberedInstructions.size() << ");\n}\n";
453 OS << "} // end llvm namespace \n";
454
455 OS << "#endif // GET_INSTRINFO_CTOR_DTOR\n\n";
456
457 emitOperandNameMappings(OS, Target, NumberedInstructions);
458
459 emitOperandTypesEnum(OS, Target);
460 }
461
emitRecord(const CodeGenInstruction & Inst,unsigned Num,Record * InstrInfo,std::map<std::vector<Record * >,unsigned> & EmittedLists,const OperandInfoMapTy & OpInfo,raw_ostream & OS)462 void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num,
463 Record *InstrInfo,
464 std::map<std::vector<Record*>, unsigned> &EmittedLists,
465 const OperandInfoMapTy &OpInfo,
466 raw_ostream &OS) {
467 int MinOperands = 0;
468 if (!Inst.Operands.empty())
469 // Each logical operand can be multiple MI operands.
470 MinOperands = Inst.Operands.back().MIOperandNo +
471 Inst.Operands.back().MINumOperands;
472
473 OS << " { ";
474 OS << Num << ",\t" << MinOperands << ",\t"
475 << Inst.Operands.NumDefs << ",\t"
476 << Inst.TheDef->getValueAsInt("Size") << ",\t"
477 << SchedModels.getSchedClassIdx(Inst) << ",\t0";
478
479 // Emit all of the target independent flags...
480 if (Inst.isPseudo) OS << "|(1ULL<<MCID::Pseudo)";
481 if (Inst.isReturn) OS << "|(1ULL<<MCID::Return)";
482 if (Inst.isBranch) OS << "|(1ULL<<MCID::Branch)";
483 if (Inst.isIndirectBranch) OS << "|(1ULL<<MCID::IndirectBranch)";
484 if (Inst.isCompare) OS << "|(1ULL<<MCID::Compare)";
485 if (Inst.isMoveImm) OS << "|(1ULL<<MCID::MoveImm)";
486 if (Inst.isBitcast) OS << "|(1ULL<<MCID::Bitcast)";
487 if (Inst.isSelect) OS << "|(1ULL<<MCID::Select)";
488 if (Inst.isBarrier) OS << "|(1ULL<<MCID::Barrier)";
489 if (Inst.hasDelaySlot) OS << "|(1ULL<<MCID::DelaySlot)";
490 if (Inst.isCall) OS << "|(1ULL<<MCID::Call)";
491 if (Inst.canFoldAsLoad) OS << "|(1ULL<<MCID::FoldableAsLoad)";
492 if (Inst.mayLoad) OS << "|(1ULL<<MCID::MayLoad)";
493 if (Inst.mayStore) OS << "|(1ULL<<MCID::MayStore)";
494 if (Inst.isPredicable) OS << "|(1ULL<<MCID::Predicable)";
495 if (Inst.isConvertibleToThreeAddress) OS << "|(1ULL<<MCID::ConvertibleTo3Addr)";
496 if (Inst.isCommutable) OS << "|(1ULL<<MCID::Commutable)";
497 if (Inst.isTerminator) OS << "|(1ULL<<MCID::Terminator)";
498 if (Inst.isReMaterializable) OS << "|(1ULL<<MCID::Rematerializable)";
499 if (Inst.isNotDuplicable) OS << "|(1ULL<<MCID::NotDuplicable)";
500 if (Inst.Operands.hasOptionalDef) OS << "|(1ULL<<MCID::HasOptionalDef)";
501 if (Inst.usesCustomInserter) OS << "|(1ULL<<MCID::UsesCustomInserter)";
502 if (Inst.hasPostISelHook) OS << "|(1ULL<<MCID::HasPostISelHook)";
503 if (Inst.Operands.isVariadic)OS << "|(1ULL<<MCID::Variadic)";
504 if (Inst.hasSideEffects) OS << "|(1ULL<<MCID::UnmodeledSideEffects)";
505 if (Inst.isAsCheapAsAMove) OS << "|(1ULL<<MCID::CheapAsAMove)";
506 if (Inst.hasExtraSrcRegAllocReq) OS << "|(1ULL<<MCID::ExtraSrcRegAllocReq)";
507 if (Inst.hasExtraDefRegAllocReq) OS << "|(1ULL<<MCID::ExtraDefRegAllocReq)";
508 if (Inst.isRegSequence) OS << "|(1ULL<<MCID::RegSequence)";
509 if (Inst.isExtractSubreg) OS << "|(1ULL<<MCID::ExtractSubreg)";
510 if (Inst.isInsertSubreg) OS << "|(1ULL<<MCID::InsertSubreg)";
511 if (Inst.isConvergent) OS << "|(1ULL<<MCID::Convergent)";
512
513 // Emit all of the target-specific flags...
514 BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags");
515 if (!TSF)
516 PrintFatalError("no TSFlags?");
517 uint64_t Value = 0;
518 for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) {
519 if (BitInit *Bit = dyn_cast<BitInit>(TSF->getBit(i)))
520 Value |= uint64_t(Bit->getValue()) << i;
521 else
522 PrintFatalError("Invalid TSFlags bit in " + Inst.TheDef->getName());
523 }
524 OS << ", 0x";
525 OS.write_hex(Value);
526 OS << "ULL, ";
527
528 // Emit the implicit uses and defs lists...
529 std::vector<Record*> UseList = Inst.TheDef->getValueAsListOfDefs("Uses");
530 if (UseList.empty())
531 OS << "nullptr, ";
532 else
533 OS << "ImplicitList" << EmittedLists[UseList] << ", ";
534
535 std::vector<Record*> DefList = Inst.TheDef->getValueAsListOfDefs("Defs");
536 if (DefList.empty())
537 OS << "nullptr, ";
538 else
539 OS << "ImplicitList" << EmittedLists[DefList] << ", ";
540
541 // Emit the operand info.
542 std::vector<std::string> OperandInfo = GetOperandInfo(Inst);
543 if (OperandInfo.empty())
544 OS << "nullptr";
545 else
546 OS << "OperandInfo" << OpInfo.find(OperandInfo)->second;
547
548 CodeGenTarget &Target = CDP.getTargetInfo();
549 if (Inst.HasComplexDeprecationPredicate)
550 // Emit a function pointer to the complex predicate method.
551 OS << ", -1 "
552 << ",&get" << Inst.DeprecatedReason << "DeprecationInfo";
553 else if (!Inst.DeprecatedReason.empty())
554 // Emit the Subtarget feature.
555 OS << ", " << Target.getInstNamespace() << "::" << Inst.DeprecatedReason
556 << " ,nullptr";
557 else
558 // Instruction isn't deprecated.
559 OS << ", -1 ,nullptr";
560
561 OS << " }, // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n";
562 }
563
564 // emitEnums - Print out enum values for all of the instructions.
emitEnums(raw_ostream & OS)565 void InstrInfoEmitter::emitEnums(raw_ostream &OS) {
566
567 OS << "\n#ifdef GET_INSTRINFO_ENUM\n";
568 OS << "#undef GET_INSTRINFO_ENUM\n";
569
570 OS << "namespace llvm {\n\n";
571
572 CodeGenTarget Target(Records);
573
574 // We must emit the PHI opcode first...
575 std::string Namespace = Target.getInstNamespace();
576
577 if (Namespace.empty())
578 PrintFatalError("No instructions defined!");
579
580 const std::vector<const CodeGenInstruction*> &NumberedInstructions =
581 Target.getInstructionsByEnumValue();
582
583 OS << "namespace " << Namespace << " {\n";
584 OS << " enum {\n";
585 unsigned Num = 0;
586 for (const CodeGenInstruction *Inst : NumberedInstructions)
587 OS << " " << Inst->TheDef->getName() << "\t= " << Num++ << ",\n";
588 OS << " INSTRUCTION_LIST_END = " << NumberedInstructions.size() << "\n";
589 OS << " };\n\n";
590 OS << "namespace Sched {\n";
591 OS << " enum {\n";
592 Num = 0;
593 for (const auto &Class : SchedModels.explicit_classes())
594 OS << " " << Class.Name << "\t= " << Num++ << ",\n";
595 OS << " SCHED_LIST_END = " << SchedModels.numInstrSchedClasses() << "\n";
596 OS << " };\n";
597 OS << "} // end Sched namespace\n";
598 OS << "} // end " << Namespace << " namespace\n";
599 OS << "} // end llvm namespace \n";
600
601 OS << "#endif // GET_INSTRINFO_ENUM\n\n";
602 }
603
604 namespace llvm {
605
EmitInstrInfo(RecordKeeper & RK,raw_ostream & OS)606 void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) {
607 InstrInfoEmitter(RK).run(OS);
608 EmitMapTable(RK, OS);
609 }
610
611 } // end llvm namespace
612