1 /*
2  * This file is part of ltrace.
3  * Copyright (C) 2012,2013,2014 Petr Machata, Red Hat Inc.
4  * Copyright (C) 2004,2008,2009 Juan Cespedes
5  * Copyright (C) 2006 Paul Gilliam
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 of the
10  * License, or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20  * 02110-1301 USA
21  */
22 
23 #include <gelf.h>
24 #include <sys/ptrace.h>
25 #include <errno.h>
26 #include <inttypes.h>
27 #include <assert.h>
28 #include <stdbool.h>
29 #include <string.h>
30 
31 #include "proc.h"
32 #include "common.h"
33 #include "insn.h"
34 #include "library.h"
35 #include "breakpoint.h"
36 #include "linux-gnu/trace.h"
37 #include "backend.h"
38 
39 /* There are two PLT types on 32-bit PPC: old-style, BSS PLT, and
40  * new-style "secure" PLT.  We can tell one from the other by the
41  * flags on the .plt section.  If it's +X (executable), it's BSS PLT,
42  * otherwise it's secure.
43  *
44  * BSS PLT works the same way as most architectures: the .plt section
45  * contains trampolines and we put breakpoints to those.  If not
46  * prelinked, .plt contains zeroes, and dynamic linker fills in the
47  * initial set of trampolines, which means that we need to delay
48  * enabling breakpoints until after binary entry point is hit.
49  * Additionally, after first call, dynamic linker updates .plt with
50  * branch to resolved address.  That means that on first hit, we must
51  * do something similar to the PPC64 gambit described below.
52  *
53  * With secure PLT, the .plt section doesn't contain instructions but
54  * addresses.  The real PLT table is stored in .text.  Addresses of
55  * those PLT entries can be computed, and apart from the fact that
56  * they are in .text, they are ordinary PLT entries.
57  *
58  * 64-bit PPC is more involved.  Program linker creates for each
59  * library call a _stub_ symbol named xxxxxxxx.plt_call.<callee>
60  * (where xxxxxxxx is a hexadecimal number).  That stub does the call
61  * dispatch: it loads an address of a function to call from the
62  * section .plt, and branches.  PLT entries themselves are essentially
63  * a curried call to the resolver.  When the symbol is resolved, the
64  * resolver updates the value stored in .plt, and the next time
65  * around, the stub calls the library function directly.  So we make
66  * at most one trip (none if the binary is prelinked) through each PLT
67  * entry, and correspondingly that is useless as a breakpoint site.
68  *
69  * Note the three confusing terms: stubs (that play the role of PLT
70  * entries), PLT entries, .plt section.
71  *
72  * We first check symbol tables and see if we happen to have stub
73  * symbols available.  If yes we just put breakpoints to those, and
74  * treat them as usual breakpoints.  The only tricky part is realizing
75  * that there can be more than one breakpoint per symbol.
76  *
77  * The case that we don't have the stub symbols available is harder.
78  * The following scheme uses two kinds of PLT breakpoints: unresolved
79  * and resolved (to some address).  When the process starts (or when
80  * we attach), we distribute unresolved PLT breakpoints to the PLT
81  * entries (not stubs).  Then we look in .plt, and for each entry
82  * whose value is different than the corresponding PLT entry address,
83  * we assume it was already resolved, and convert the breakpoint to
84  * resolved.  We also rewrite the resolved value in .plt back to the
85  * PLT address.
86  *
87  * When a PLT entry hits a resolved breakpoint (which happens because
88  * we rewrite .plt with the original unresolved addresses), we move
89  * the instruction pointer to the corresponding address and continue
90  * the process as if nothing happened.
91  *
92  * When unresolved PLT entry is called for the first time, we need to
93  * catch the new value that the resolver will write to a .plt slot.
94  * We also need to prevent another thread from racing through and
95  * taking the branch without ltrace noticing.  So when unresolved PLT
96  * entry hits, we have to stop all threads.  We then single-step
97  * through the resolver, until the .plt slot changes.  When it does,
98  * we treat it the same way as above: convert the PLT breakpoint to
99  * resolved, and rewrite the .plt value back to PLT address.  We then
100  * start all threads again.
101  *
102  * As an optimization, we remember the address where the address was
103  * resolved, and put a breakpoint there.  The next time around (when
104  * the next PLT entry is to be resolved), instead of single-stepping
105  * through half the dynamic linker, we just let the thread run and hit
106  * this breakpoint.  When it hits, we know the PLT entry was resolved.
107  *
108  * Another twist comes from tracing slots corresponding to
109  * R_PPC64_JMP_IREL relocations.  These have no dedicated PLT entry.
110  * The calls are done directly from stubs, and the .plt entry
111  * (actually .iplt entry, these live in a special section) is resolved
112  * in advance before the binary starts.  Because there's no PLT entry,
113  * we put the PLT breakpoints directly to the IFUNC resolver code, and
114  * then would like them to behave like ordinary PLT slots, including
115  * catching the point where these get resolved to unresolve them.  So
116  * for the first call (which is the actual resolver call), we pretend
117  * that this breakpoint is artificial and has no associated symbol,
118  * and turn it on fully only after the first hit.  Ideally we would
119  * trace that first call as well, but then the stepper, which tries to
120  * catch the point where the slot is resolved, would hit the return
121  * breakpoint and that's not currently handled well.
122  *
123  * On PPC32 with secure PLT, the address of IFUNC symbols in main
124  * binary actually isn't of the resolver, but of a PLT slot.  We
125  * therefore have to locate the corresponding PLT relocation (which is
126  * of type R_PPC_IRELATIVE) and request that it be traced.  The addend
127  * of that relocation is an address of resolver, and we request
128  * tracing of the xyz.IFUNC symbol there.
129  *
130  * XXX TODO If we have hardware watch point, we might put a read watch
131  * on .plt slot, and discover the offenders this way.  I don't know
132  * the details, but I assume at most a handful (like, one or two, if
133  * available at all) addresses may be watched at a time, and thus this
134  * would be used as an amendment of the above rather than full-on
135  * solution to PLT tracing on PPC.
136  */
137 
138 #define PPC_PLT_STUB_SIZE 16
139 #define PPC64_PLT_STUB_SIZE 8 //xxx
140 
141 static inline int
host_powerpc64()142 host_powerpc64()
143 {
144 #ifdef __powerpc64__
145 	return 1;
146 #else
147 	return 0;
148 #endif
149 }
150 
151 static void
mark_as_resolved(struct library_symbol * libsym,GElf_Addr value)152 mark_as_resolved(struct library_symbol *libsym, GElf_Addr value)
153 {
154 	libsym->arch.type = PPC_PLT_RESOLVED;
155 	libsym->arch.resolved_value = value;
156 }
157 
158 static void
ppc32_delayed_symbol(struct library_symbol * libsym)159 ppc32_delayed_symbol(struct library_symbol *libsym)
160 {
161 	/* arch_dynlink_done is called on attach as well.  In that
162 	 * case some slots will have been resolved already.
163 	 * Unresolved PLT looks like this:
164 	 *
165 	 *    <sleep@plt>:	li      r11,0
166 	 *    <sleep@plt+4>:	b       "resolve"
167 	 *
168 	 * "resolve" is another address in PLTGOT (the same block that
169 	 * all the PLT slots are it).  When resolved, it looks either
170 	 * this way:
171 	 *
172 	 *    <sleep@plt>:	b       0xfea88d0 <sleep>
173 	 *
174 	 * Which is easy to detect.  It can also look this way:
175 	 *
176 	 *    <sleep@plt>:	li      r11,0
177 	 *    <sleep@plt+4>:	b       "dispatch"
178 	 *
179 	 * The "dispatch" address lies in PLTGOT as well.  In current
180 	 * GNU toolchain, "dispatch" address is the same as PLTGOT
181 	 * address.  We rely on this to figure out whether the address
182 	 * is resolved or not.  */
183 
184 	uint32_t insn1 = libsym->arch.resolved_value >> 32;
185 	uint32_t insn2 = (uint32_t) libsym->arch.resolved_value;
186 	if ((insn1 & BRANCH_MASK) == B_INSN
187 	    || ((insn2 & BRANCH_MASK) == B_INSN
188 		/* XXX double cast  */
189 		&& (ppc_branch_dest(libsym->enter_addr + 4, insn2)
190 		    == (arch_addr_t) (long) libsym->lib->arch.pltgot_addr)))
191 	{
192 		mark_as_resolved(libsym, libsym->arch.resolved_value);
193 	}
194 }
195 
196 void
arch_dynlink_done(struct process * proc)197 arch_dynlink_done(struct process *proc)
198 {
199 	/* We may need to activate delayed symbols.  */
200 	struct library_symbol *libsym = NULL;
201 	while ((libsym = proc_each_symbol(proc, libsym,
202 					  library_symbol_delayed_cb, NULL))) {
203 		if (proc_read_64(proc, libsym->enter_addr,
204 				 &libsym->arch.resolved_value) < 0) {
205 			fprintf(stderr,
206 				"couldn't read PLT value for %s(%p): %s\n",
207 				libsym->name, libsym->enter_addr,
208 				strerror(errno));
209 			return;
210 		}
211 
212 		if (proc->e_machine == EM_PPC)
213 			ppc32_delayed_symbol(libsym);
214 
215 		if (proc_activate_delayed_symbol(proc, libsym) < 0)
216 			return;
217 
218 		if (proc->e_machine == EM_PPC)
219 			/* XXX double cast  */
220 			libsym->arch.plt_slot_addr
221 				= (GElf_Addr) (uintptr_t) libsym->enter_addr;
222 	}
223 }
224 
225 static bool
reloc_is_irelative(int machine,GElf_Rela * rela)226 reloc_is_irelative(int machine, GElf_Rela *rela)
227 {
228 	bool irelative = false;
229 	if (machine == EM_PPC64) {
230 #ifdef R_PPC64_JMP_IREL
231 		irelative = GELF_R_TYPE(rela->r_info) == R_PPC64_JMP_IREL;
232 #endif
233 	} else {
234 		assert(machine == EM_PPC);
235 #ifdef R_PPC_IRELATIVE
236 		irelative = GELF_R_TYPE(rela->r_info) == R_PPC_IRELATIVE;
237 #endif
238 	}
239 	return irelative;
240 }
241 
242 GElf_Addr
arch_plt_sym_val(struct ltelf * lte,size_t ndx,GElf_Rela * rela)243 arch_plt_sym_val(struct ltelf *lte, size_t ndx, GElf_Rela *rela)
244 {
245 	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
246 		assert(lte->arch.plt_stub_vma != 0);
247 		return lte->arch.plt_stub_vma + PPC_PLT_STUB_SIZE * ndx;
248 
249 	} else if (lte->ehdr.e_machine == EM_PPC) {
250 		return rela->r_offset;
251 
252 	/* Beyond this point, we are on PPC64, but don't have stub
253 	 * symbols.  */
254 
255 	} else if (reloc_is_irelative(lte->ehdr.e_machine, rela)) {
256 
257 		/* Put JMP_IREL breakpoint to resolver, since there's
258 		 * no dedicated PLT entry.  */
259 
260 		assert(rela->r_addend != 0);
261 		/* XXX double cast */
262 		arch_addr_t res_addr = (arch_addr_t) (uintptr_t) rela->r_addend;
263 		if (arch_translate_address(lte, res_addr, &res_addr) < 0) {
264 			fprintf(stderr, "Couldn't OPD-translate IRELATIVE "
265 				"resolver address.\n");
266 			return 0;
267 		}
268 		/* XXX double cast */
269 		return (GElf_Addr) (uintptr_t) res_addr;
270 
271 	} else {
272 		/* We put brakpoints to PLT entries the same as the
273 		 * PPC32 secure PLT case does. */
274 		assert(lte->arch.plt_stub_vma != 0);
275 		return lte->arch.plt_stub_vma + PPC64_PLT_STUB_SIZE * ndx;
276 	}
277 }
278 
279 /* This entry point is called when ltelf is not available
280  * anymore--during runtime.  At that point we don't have to concern
281  * ourselves with bias, as the values in OPD have been resolved
282  * already.  */
283 int
arch_translate_address_dyn(struct process * proc,arch_addr_t addr,arch_addr_t * ret)284 arch_translate_address_dyn(struct process *proc,
285 			   arch_addr_t addr, arch_addr_t *ret)
286 {
287 	if (proc->e_machine == EM_PPC64) {
288 		uint64_t value;
289 		if (proc_read_64(proc, addr, &value) < 0) {
290 			fprintf(stderr,
291 				"dynamic .opd translation of %p: %s\n",
292 				addr, strerror(errno));
293 			return -1;
294 		}
295 		/* XXX The double cast should be removed when
296 		 * arch_addr_t becomes integral type.  */
297 		*ret = (arch_addr_t)(uintptr_t)value;
298 		return 0;
299 	}
300 
301 	*ret = addr;
302 	return 0;
303 }
304 
305 int
arch_translate_address(struct ltelf * lte,arch_addr_t addr,arch_addr_t * ret)306 arch_translate_address(struct ltelf *lte,
307 		       arch_addr_t addr, arch_addr_t *ret)
308 {
309 	if (lte->ehdr.e_machine == EM_PPC64) {
310 		/* XXX The double cast should be removed when
311 		 * arch_addr_t becomes integral type.  */
312 		GElf_Xword offset
313 			= (GElf_Addr)(uintptr_t)addr - lte->arch.opd_base;
314 		uint64_t value;
315 		if (elf_read_u64(lte->arch.opd_data, offset, &value) < 0) {
316 			fprintf(stderr, "static .opd translation of %p: %s\n",
317 				addr, elf_errmsg(-1));
318 			return -1;
319 		}
320 		*ret = (arch_addr_t)(uintptr_t)(value + lte->bias);
321 		return 0;
322 	}
323 
324 	*ret = addr;
325 	return 0;
326 }
327 
328 static int
load_opd_data(struct ltelf * lte,struct library * lib)329 load_opd_data(struct ltelf *lte, struct library *lib)
330 {
331 	Elf_Scn *sec;
332 	GElf_Shdr shdr;
333 	if (elf_get_section_named(lte, ".opd", &sec, &shdr) < 0
334 	    || sec == NULL) {
335 	fail:
336 		fprintf(stderr, "couldn't find .opd data\n");
337 		return -1;
338 	}
339 
340 	lte->arch.opd_data = elf_rawdata(sec, NULL);
341 	if (lte->arch.opd_data == NULL)
342 		goto fail;
343 
344 	lte->arch.opd_base = shdr.sh_addr + lte->bias;
345 	lte->arch.opd_size = shdr.sh_size;
346 
347 	return 0;
348 }
349 
350 void *
sym2addr(struct process * proc,struct library_symbol * sym)351 sym2addr(struct process *proc, struct library_symbol *sym)
352 {
353 	return sym->enter_addr;
354 }
355 
356 static GElf_Addr
get_glink_vma(struct ltelf * lte,GElf_Addr ppcgot,Elf_Data * plt_data)357 get_glink_vma(struct ltelf *lte, GElf_Addr ppcgot, Elf_Data *plt_data)
358 {
359 	Elf_Scn *ppcgot_sec = NULL;
360 	GElf_Shdr ppcgot_shdr;
361 	if (ppcgot != 0
362 	    && (elf_get_section_covering(lte, ppcgot,
363 					 &ppcgot_sec, &ppcgot_shdr) < 0
364 		|| ppcgot_sec == NULL))
365 		fprintf(stderr,
366 			"DT_PPC_GOT=%#"PRIx64", but no such section found\n",
367 			ppcgot);
368 
369 	if (ppcgot_sec != NULL) {
370 		Elf_Data *data = elf_loaddata(ppcgot_sec, &ppcgot_shdr);
371 		if (data == NULL || data->d_size < 8 ) {
372 			fprintf(stderr, "couldn't read GOT data\n");
373 		} else {
374 			// where PPCGOT begins in .got
375 			size_t offset = ppcgot - ppcgot_shdr.sh_addr;
376 			assert(offset % 4 == 0);
377 			uint32_t glink_vma;
378 			if (elf_read_u32(data, offset + 4, &glink_vma) < 0) {
379 				fprintf(stderr, "couldn't read glink VMA"
380 					" address at %zd@GOT\n", offset);
381 				return 0;
382 			}
383 			if (glink_vma != 0) {
384 				debug(1, "PPC GOT glink_vma address: %#" PRIx32,
385 				      glink_vma);
386 				return (GElf_Addr)glink_vma;
387 			}
388 		}
389 	}
390 
391 	if (plt_data != NULL) {
392 		uint32_t glink_vma;
393 		if (elf_read_u32(plt_data, 0, &glink_vma) < 0) {
394 			fprintf(stderr, "couldn't read glink VMA address\n");
395 			return 0;
396 		}
397 		debug(1, ".plt glink_vma address: %#" PRIx32, glink_vma);
398 		return (GElf_Addr)glink_vma;
399 	}
400 
401 	return 0;
402 }
403 
404 static int
nonzero_data(Elf_Data * data)405 nonzero_data(Elf_Data *data)
406 {
407 	/* We are not supposed to get here if there's no PLT.  */
408 	assert(data != NULL);
409 
410 	unsigned char *buf = data->d_buf;
411 	if (buf == NULL)
412 		return 0;
413 
414 	size_t i;
415 	for (i = 0; i < data->d_size; ++i)
416 		if (buf[i] != 0)
417 			return 1;
418 	return 0;
419 }
420 
421 static enum callback_status
reloc_copy_if_irelative(GElf_Rela * rela,void * data)422 reloc_copy_if_irelative(GElf_Rela *rela, void *data)
423 {
424 	struct ltelf *lte = data;
425 
426 	return CBS_STOP_IF(reloc_is_irelative(lte->ehdr.e_machine, rela)
427 			   && VECT_PUSHBACK(&lte->plt_relocs, rela) < 0);
428 }
429 
430 int
arch_elf_init(struct ltelf * lte,struct library * lib)431 arch_elf_init(struct ltelf *lte, struct library *lib)
432 {
433 	if (lte->ehdr.e_machine == EM_PPC64
434 	    && load_opd_data(lte, lib) < 0)
435 		return -1;
436 
437 	lte->arch.secure_plt = !(lte->plt_flags & SHF_EXECINSTR);
438 
439 	/* For PPC32 BSS, it is important whether the binary was
440 	 * prelinked.  If .plt section is NODATA, or if it contains
441 	 * zeroes, then this library is not prelinked, and we need to
442 	 * delay breakpoints.  */
443 	if (lte->ehdr.e_machine == EM_PPC && !lte->arch.secure_plt)
444 		lib->arch.bss_plt_prelinked = nonzero_data(lte->plt_data);
445 	else
446 		/* For cases where it's irrelevant, initialize the
447 		 * value to something conspicuous.  */
448 		lib->arch.bss_plt_prelinked = -1;
449 
450 	/* On PPC64 and PPC32 secure, IRELATIVE relocations actually
451 	 * relocate .iplt section, and as such are stored in .rela.dyn
452 	 * (where all non-PLT relocations are stored) instead of
453 	 * .rela.plt.  Add these to lte->plt_relocs.  */
454 
455 	GElf_Addr rela, relasz;
456 	Elf_Scn *rela_sec;
457 	GElf_Shdr rela_shdr;
458 	if ((lte->ehdr.e_machine == EM_PPC64 || lte->arch.secure_plt)
459 	    && elf_load_dynamic_entry(lte, DT_RELA, &rela) == 0
460 	    && elf_load_dynamic_entry(lte, DT_RELASZ, &relasz) == 0
461 	    && elf_get_section_covering(lte, rela, &rela_sec, &rela_shdr) == 0
462 	    && rela_sec != NULL) {
463 
464 		struct vect v;
465 		VECT_INIT(&v, GElf_Rela);
466 		int ret = elf_read_relocs(lte, rela_sec, &rela_shdr, &v);
467 		if (ret >= 0
468 		    && VECT_EACH(&v, GElf_Rela, NULL,
469 				 reloc_copy_if_irelative, lte) != NULL)
470 			ret = -1;
471 
472 		VECT_DESTROY(&v, GElf_Rela, NULL, NULL);
473 
474 		if (ret < 0)
475 			return ret;
476 	}
477 
478 	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
479 		GElf_Addr ppcgot;
480 		if (elf_load_dynamic_entry(lte, DT_PPC_GOT, &ppcgot) < 0) {
481 			fprintf(stderr, "couldn't find DT_PPC_GOT\n");
482 			return -1;
483 		}
484 		GElf_Addr glink_vma = get_glink_vma(lte, ppcgot, lte->plt_data);
485 
486 		size_t count = vect_size(&lte->plt_relocs);
487 		lte->arch.plt_stub_vma = glink_vma
488 			- (GElf_Addr) count * PPC_PLT_STUB_SIZE;
489 		debug(1, "stub_vma is %#" PRIx64, lte->arch.plt_stub_vma);
490 
491 	} else if (lte->ehdr.e_machine == EM_PPC64) {
492 		GElf_Addr glink_vma;
493 		if (elf_load_dynamic_entry(lte, DT_PPC64_GLINK,
494 					   &glink_vma) < 0) {
495 			fprintf(stderr, "couldn't find DT_PPC64_GLINK\n");
496 			return -1;
497 		}
498 
499 		/* The first glink stub starts at offset 32.  */
500 		lte->arch.plt_stub_vma = glink_vma + 32;
501 
502 	} else {
503 		/* By exhaustion--PPC32 BSS.  */
504 		if (elf_load_dynamic_entry(lte, DT_PLTGOT,
505 					   &lib->arch.pltgot_addr) < 0) {
506 			fprintf(stderr, "couldn't find DT_PLTGOT\n");
507 			return -1;
508 		}
509 	}
510 
511 	/* On PPC64, look for stub symbols in symbol table.  These are
512 	 * called: xxxxxxxx.plt_call.callee_name@version+addend.  */
513 	if (lte->ehdr.e_machine == EM_PPC64
514 	    && lte->symtab != NULL && lte->strtab != NULL) {
515 
516 		/* N.B. We can't simply skip the symbols that we fail
517 		 * to read or malloc.  There may be more than one stub
518 		 * per symbol name, and if we failed in one but
519 		 * succeeded in another, the PLT enabling code would
520 		 * have no way to tell that something is missing.  We
521 		 * could work around that, of course, but it doesn't
522 		 * seem worth the trouble.  So if anything fails, we
523 		 * just pretend that we don't have stub symbols at
524 		 * all, as if the binary is stripped.  */
525 
526 		size_t i;
527 		for (i = 0; i < lte->symtab_count; ++i) {
528 			GElf_Sym sym;
529 			if (gelf_getsym(lte->symtab, i, &sym) == NULL) {
530 				struct library_symbol *sym, *next;
531 			fail:
532 				for (sym = lte->arch.stubs; sym != NULL; ) {
533 					next = sym->next;
534 					library_symbol_destroy(sym);
535 					free(sym);
536 					sym = next;
537 				}
538 				lte->arch.stubs = NULL;
539 				break;
540 			}
541 
542 			const char *name = lte->strtab + sym.st_name;
543 
544 #define STUBN ".plt_call."
545 			if ((name = strstr(name, STUBN)) == NULL)
546 				continue;
547 			name += sizeof(STUBN) - 1;
548 #undef STUBN
549 
550 			size_t len;
551 			const char *ver = strchr(name, '@');
552 			if (ver != NULL) {
553 				len = ver - name;
554 
555 			} else {
556 				/* If there is "+" at all, check that
557 				 * the symbol name ends in "+0".  */
558 				const char *add = strrchr(name, '+');
559 				if (add != NULL) {
560 					assert(strcmp(add, "+0") == 0);
561 					len = add - name;
562 				} else {
563 					len = strlen(name);
564 				}
565 			}
566 
567 			char *sym_name = strndup(name, len);
568 			struct library_symbol *libsym = malloc(sizeof(*libsym));
569 			if (sym_name == NULL || libsym == NULL) {
570 			fail2:
571 				free(sym_name);
572 				free(libsym);
573 				goto fail;
574 			}
575 
576 			/* XXX The double cast should be removed when
577 			 * arch_addr_t becomes integral type.  */
578 			arch_addr_t addr = (arch_addr_t)
579 				(uintptr_t)sym.st_value + lte->bias;
580 			if (library_symbol_init(libsym, addr, sym_name, 1,
581 						LS_TOPLT_EXEC) < 0)
582 				goto fail2;
583 			libsym->arch.type = PPC64_PLT_STUB;
584 			libsym->next = lte->arch.stubs;
585 			lte->arch.stubs = libsym;
586 		}
587 	}
588 
589 	return 0;
590 }
591 
592 static int
read_plt_slot_value(struct process * proc,GElf_Addr addr,GElf_Addr * valp)593 read_plt_slot_value(struct process *proc, GElf_Addr addr, GElf_Addr *valp)
594 {
595 	/* On PPC64, we read from .plt, which contains 8 byte
596 	 * addresses.  On PPC32 we read from .plt, which contains 4
597 	 * byte instructions, but the PLT is two instructions, and
598 	 * either can change.  */
599 	uint64_t l;
600 	/* XXX double cast.  */
601 	if (proc_read_64(proc, (arch_addr_t)(uintptr_t)addr, &l) < 0) {
602 		fprintf(stderr, "ptrace .plt slot value @%#" PRIx64": %s\n",
603 			addr, strerror(errno));
604 		return -1;
605 	}
606 
607 	*valp = (GElf_Addr)l;
608 	return 0;
609 }
610 
611 static int
unresolve_plt_slot(struct process * proc,GElf_Addr addr,GElf_Addr value)612 unresolve_plt_slot(struct process *proc, GElf_Addr addr, GElf_Addr value)
613 {
614 	/* We only modify plt_entry[0], which holds the resolved
615 	 * address of the routine.  We keep the TOC and environment
616 	 * pointers intact.  Hence the only adjustment that we need to
617 	 * do is to IP.  */
618 	if (ptrace(PTRACE_POKETEXT, proc->pid, addr, value) < 0) {
619 		fprintf(stderr, "failed to unresolve .plt slot: %s\n",
620 			strerror(errno));
621 		return -1;
622 	}
623 	return 0;
624 }
625 
626 enum plt_status
arch_elf_add_func_entry(struct process * proc,struct ltelf * lte,const GElf_Sym * sym,arch_addr_t addr,const char * name,struct library_symbol ** ret)627 arch_elf_add_func_entry(struct process *proc, struct ltelf *lte,
628 			const GElf_Sym *sym,
629 			arch_addr_t addr, const char *name,
630 			struct library_symbol **ret)
631 {
632 	if (lte->ehdr.e_machine != EM_PPC || lte->ehdr.e_type == ET_DYN)
633 		return PLT_DEFAULT;
634 
635 	bool ifunc = false;
636 #ifdef STT_GNU_IFUNC
637 	ifunc = GELF_ST_TYPE(sym->st_info) == STT_GNU_IFUNC;
638 #endif
639 	if (! ifunc)
640 		return PLT_DEFAULT;
641 
642 	size_t len = vect_size(&lte->plt_relocs);
643 	size_t i;
644 	for (i = 0; i < len; ++i) {
645 		GElf_Rela *rela = VECT_ELEMENT(&lte->plt_relocs, GElf_Rela, i);
646 		if (sym->st_value == arch_plt_sym_val(lte, i, rela)) {
647 
648 			char *tmp_name = linux_append_IFUNC_to_name(name);
649 			struct library_symbol *libsym = malloc(sizeof *libsym);
650 
651 			/* XXX double cast.  */
652 			arch_addr_t resolver_addr
653 				= (arch_addr_t) (uintptr_t) rela->r_addend;
654 
655 			if (tmp_name == NULL || libsym == NULL
656 			    || 	library_symbol_init(libsym, resolver_addr,
657 						    tmp_name, 1,
658 						    LS_TOPLT_EXEC) < 0) {
659 			fail:
660 				free(tmp_name);
661 				free(libsym);
662 				return PLT_FAIL;
663 			}
664 
665 			if (elf_add_plt_entry(proc, lte, name, rela,
666 					      i, ret) < 0) {
667 				library_symbol_destroy(libsym);
668 				goto fail;
669 			}
670 
671 			libsym->proto = linux_IFUNC_prototype();
672 			libsym->next = *ret;
673 			*ret = libsym;
674 			return PLT_OK;
675 		}
676 	}
677 
678 	*ret = NULL;
679 	return PLT_OK;
680 }
681 
682 struct ppc_unresolve_data {
683 	struct ppc_unresolve_data *self; /* A canary.  */
684 	GElf_Addr plt_entry_addr;
685 	GElf_Addr plt_slot_addr;
686 	GElf_Addr plt_slot_value;
687 	bool is_irelative;
688 };
689 
690 enum plt_status
arch_elf_add_plt_entry(struct process * proc,struct ltelf * lte,const char * a_name,GElf_Rela * rela,size_t ndx,struct library_symbol ** ret)691 arch_elf_add_plt_entry(struct process *proc, struct ltelf *lte,
692 		       const char *a_name, GElf_Rela *rela, size_t ndx,
693 		       struct library_symbol **ret)
694 {
695 	bool is_irelative = reloc_is_irelative(lte->ehdr.e_machine, rela);
696 	char *name;
697 	if (! is_irelative) {
698 		name = strdup(a_name);
699 	} else {
700 		GElf_Addr addr = lte->ehdr.e_machine == EM_PPC64
701 			? (GElf_Addr) rela->r_addend
702 			: arch_plt_sym_val(lte, ndx, rela);
703 		name = linux_elf_find_irelative_name(lte, addr);
704 	}
705 
706 	if (name == NULL) {
707 	fail:
708 		free(name);
709 		return PLT_FAIL;
710 	}
711 
712 	struct library_symbol *chain = NULL;
713 	if (lte->ehdr.e_machine == EM_PPC) {
714 		if (default_elf_add_plt_entry(proc, lte, name, rela, ndx,
715 					      &chain) < 0)
716 			goto fail;
717 
718 		if (! lte->arch.secure_plt) {
719 			/* On PPC32 with BSS PLT, delay the symbol
720 			 * until dynamic linker is done.  */
721 			assert(!chain->delayed);
722 			chain->delayed = 1;
723 		}
724 
725 	ok:
726 		*ret = chain;
727 		free(name);
728 		return PLT_OK;
729 	}
730 
731 	/* PPC64.  If we have stubs, we return a chain of breakpoint
732 	 * sites, one for each stub that corresponds to this PLT
733 	 * entry.  */
734 	struct library_symbol **symp;
735 	for (symp = &lte->arch.stubs; *symp != NULL; ) {
736 		struct library_symbol *sym = *symp;
737 		if (strcmp(sym->name, name) != 0) {
738 			symp = &(*symp)->next;
739 			continue;
740 		}
741 
742 		/* Re-chain the symbol from stubs to CHAIN.  */
743 		*symp = sym->next;
744 		sym->next = chain;
745 		chain = sym;
746 	}
747 
748 	if (chain != NULL)
749 		goto ok;
750 
751 	/* We don't have stub symbols.  Find corresponding .plt slot,
752 	 * and check whether it contains the corresponding PLT address
753 	 * (or 0 if the dynamic linker hasn't run yet).  N.B. we don't
754 	 * want read this from ELF file, but from process image.  That
755 	 * makes a difference if we are attaching to a running
756 	 * process.  */
757 
758 	GElf_Addr plt_entry_addr = arch_plt_sym_val(lte, ndx, rela);
759 	GElf_Addr plt_slot_addr = rela->r_offset;
760 
761 	assert(plt_slot_addr >= lte->plt_addr
762 	       || plt_slot_addr < lte->plt_addr + lte->plt_size);
763 
764 	GElf_Addr plt_slot_value;
765 	if (read_plt_slot_value(proc, plt_slot_addr, &plt_slot_value) < 0)
766 		goto fail;
767 
768 	struct library_symbol *libsym = malloc(sizeof(*libsym));
769 	if (libsym == NULL) {
770 		fprintf(stderr, "allocation for .plt slot: %s\n",
771 			strerror(errno));
772 	fail2:
773 		free(libsym);
774 		goto fail;
775 	}
776 
777 	/* XXX The double cast should be removed when
778 	 * arch_addr_t becomes integral type.  */
779 	if (library_symbol_init(libsym,
780 				(arch_addr_t) (uintptr_t) plt_entry_addr,
781 				name, 1, LS_TOPLT_EXEC) < 0)
782 		goto fail2;
783 	libsym->arch.plt_slot_addr = plt_slot_addr;
784 
785 	if (! is_irelative
786 	    && (plt_slot_value == plt_entry_addr || plt_slot_value == 0)) {
787 		libsym->arch.type = PPC_PLT_UNRESOLVED;
788 		libsym->arch.resolved_value = plt_entry_addr;
789 	} else {
790 		/* Mark the symbol for later unresolving.  We may not
791 		 * do this right away, as this is called by ltrace
792 		 * core for all symbols, and only later filtered.  We
793 		 * only unresolve the symbol before the breakpoint is
794 		 * enabled.  */
795 
796 		libsym->arch.type = PPC_PLT_NEED_UNRESOLVE;
797 		libsym->arch.data = malloc(sizeof *libsym->arch.data);
798 		if (libsym->arch.data == NULL)
799 			goto fail2;
800 
801 		libsym->arch.data->self = libsym->arch.data;
802 		libsym->arch.data->plt_entry_addr = plt_entry_addr;
803 		libsym->arch.data->plt_slot_addr = plt_slot_addr;
804 		libsym->arch.data->plt_slot_value = plt_slot_value;
805 		libsym->arch.data->is_irelative = is_irelative;
806 	}
807 
808 	*ret = libsym;
809 	return PLT_OK;
810 }
811 
812 void
arch_elf_destroy(struct ltelf * lte)813 arch_elf_destroy(struct ltelf *lte)
814 {
815 	struct library_symbol *sym;
816 	for (sym = lte->arch.stubs; sym != NULL; ) {
817 		struct library_symbol *next = sym->next;
818 		library_symbol_destroy(sym);
819 		free(sym);
820 		sym = next;
821 	}
822 }
823 
824 static void
dl_plt_update_bp_on_hit(struct breakpoint * bp,struct process * proc)825 dl_plt_update_bp_on_hit(struct breakpoint *bp, struct process *proc)
826 {
827 	debug(DEBUG_PROCESS, "pid=%d dl_plt_update_bp_on_hit %s(%p)",
828 	      proc->pid, breakpoint_name(bp), bp->addr);
829 	struct process_stopping_handler *self = proc->arch.handler;
830 	assert(self != NULL);
831 
832 	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
833 	GElf_Addr value;
834 	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
835 		return;
836 
837 	/* On PPC64, we rewrite the slot value.  */
838 	if (proc->e_machine == EM_PPC64)
839 		unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
840 				   libsym->arch.resolved_value);
841 	/* We mark the breakpoint as resolved on both arches.  */
842 	mark_as_resolved(libsym, value);
843 
844 	/* cb_on_all_stopped looks if HANDLER is set to NULL as a way
845 	 * to check that this was run.  It's an error if it
846 	 * wasn't.  */
847 	proc->arch.handler = NULL;
848 
849 	breakpoint_turn_off(bp, proc);
850 }
851 
852 static void
cb_on_all_stopped(struct process_stopping_handler * self)853 cb_on_all_stopped(struct process_stopping_handler *self)
854 {
855 	/* Put that in for dl_plt_update_bp_on_hit to see.  */
856 	assert(self->task_enabling_breakpoint->arch.handler == NULL);
857 	self->task_enabling_breakpoint->arch.handler = self;
858 
859 	linux_ptrace_disable_and_continue(self);
860 }
861 
862 static enum callback_status
cb_keep_stepping_p(struct process_stopping_handler * self)863 cb_keep_stepping_p(struct process_stopping_handler *self)
864 {
865 	struct process *proc = self->task_enabling_breakpoint;
866 	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
867 
868 	GElf_Addr value;
869 	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
870 		return CBS_FAIL;
871 
872 	/* In UNRESOLVED state, the RESOLVED_VALUE in fact contains
873 	 * the PLT entry value.  */
874 	if (value == libsym->arch.resolved_value)
875 		return CBS_CONT;
876 
877 	debug(DEBUG_PROCESS, "pid=%d PLT got resolved to value %#"PRIx64,
878 	      proc->pid, value);
879 
880 	/* The .plt slot got resolved!  We can migrate the breakpoint
881 	 * to RESOLVED and stop single-stepping.  */
882 	if (proc->e_machine == EM_PPC64
883 	    && unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
884 				  libsym->arch.resolved_value) < 0)
885 		return CBS_FAIL;
886 
887 	/* Resolving on PPC64 consists of overwriting a doubleword in
888 	 * .plt.  That doubleword is than read back by a stub, and
889 	 * jumped on.  Hopefully we can assume that double word update
890 	 * is done on a single place only, as it contains a final
891 	 * address.  We still need to look around for any sync
892 	 * instruction, but essentially it is safe to optimize away
893 	 * the single stepping next time and install a post-update
894 	 * breakpoint.
895 	 *
896 	 * The situation on PPC32 BSS is more complicated.  The
897 	 * dynamic linker here updates potentially several
898 	 * instructions (XXX currently we assume two) and the rules
899 	 * are more complicated.  Sometimes it's enough to adjust just
900 	 * one of the addresses--the logic for generating optimal
901 	 * dispatch depends on relative addresses of the .plt entry
902 	 * and the jump destination.  We can't assume that the some
903 	 * instruction block does the update every time.  So on PPC32,
904 	 * we turn the optimization off and just step through it each
905 	 * time.  */
906 	if (proc->e_machine == EM_PPC)
907 		goto done;
908 
909 	/* Install breakpoint to the address where the change takes
910 	 * place.  If we fail, then that just means that we'll have to
911 	 * singlestep the next time around as well.  */
912 	struct process *leader = proc->leader;
913 	if (leader == NULL || leader->arch.dl_plt_update_bp != NULL)
914 		goto done;
915 
916 	/* We need to install to the next instruction.  ADDR points to
917 	 * a store instruction, so moving the breakpoint one
918 	 * instruction forward is safe.  */
919 	arch_addr_t addr = get_instruction_pointer(proc) + 4;
920 	leader->arch.dl_plt_update_bp = insert_breakpoint_at(proc, addr, NULL);
921 	if (leader->arch.dl_plt_update_bp == NULL)
922 		goto done;
923 
924 	static struct bp_callbacks dl_plt_update_cbs = {
925 		.on_hit = dl_plt_update_bp_on_hit,
926 	};
927 	leader->arch.dl_plt_update_bp->cbs = &dl_plt_update_cbs;
928 
929 	/* Turn it off for now.  We will turn it on again when we hit
930 	 * the PLT entry that needs this.  */
931 	breakpoint_turn_off(leader->arch.dl_plt_update_bp, proc);
932 
933 done:
934 	mark_as_resolved(libsym, value);
935 
936 	return CBS_STOP;
937 }
938 
939 static void
jump_to_entry_point(struct process * proc,struct breakpoint * bp)940 jump_to_entry_point(struct process *proc, struct breakpoint *bp)
941 {
942 	/* XXX The double cast should be removed when
943 	 * arch_addr_t becomes integral type.  */
944 	arch_addr_t rv = (arch_addr_t)
945 		(uintptr_t)bp->libsym->arch.resolved_value;
946 	set_instruction_pointer(proc, rv);
947 }
948 
949 static void
ppc_plt_bp_continue(struct breakpoint * bp,struct process * proc)950 ppc_plt_bp_continue(struct breakpoint *bp, struct process *proc)
951 {
952 	/* If this is a first call through IREL breakpoint, enable the
953 	 * symbol so that it doesn't look like an artificial
954 	 * breakpoint anymore.  */
955 	if (bp->libsym == NULL) {
956 		assert(bp->arch.irel_libsym != NULL);
957 		bp->libsym = bp->arch.irel_libsym;
958 		bp->arch.irel_libsym = NULL;
959 	}
960 
961 	switch (bp->libsym->arch.type) {
962 		struct process *leader;
963 		void (*on_all_stopped)(struct process_stopping_handler *);
964 		enum callback_status (*keep_stepping_p)
965 			(struct process_stopping_handler *);
966 
967 	case PPC_DEFAULT:
968 		assert(proc->e_machine == EM_PPC);
969 		assert(bp->libsym != NULL);
970 		assert(bp->libsym->lib->arch.bss_plt_prelinked == 0);
971 		/* Fall through.  */
972 
973 	case PPC_PLT_IRELATIVE:
974 	case PPC_PLT_UNRESOLVED:
975 		on_all_stopped = NULL;
976 		keep_stepping_p = NULL;
977 		leader = proc->leader;
978 
979 		if (leader != NULL && leader->arch.dl_plt_update_bp != NULL
980 		    && breakpoint_turn_on(leader->arch.dl_plt_update_bp,
981 					  proc) >= 0)
982 			on_all_stopped = cb_on_all_stopped;
983 		else
984 			keep_stepping_p = cb_keep_stepping_p;
985 
986 		if (process_install_stopping_handler
987 		    (proc, bp, on_all_stopped, keep_stepping_p, NULL) < 0) {
988 			fprintf(stderr,	"ppc_plt_bp_continue: "
989 				"couldn't install event handler\n");
990 			continue_after_breakpoint(proc, bp);
991 		}
992 		return;
993 
994 	case PPC_PLT_RESOLVED:
995 		if (proc->e_machine == EM_PPC) {
996 			continue_after_breakpoint(proc, bp);
997 			return;
998 		}
999 
1000 		jump_to_entry_point(proc, bp);
1001 		continue_process(proc->pid);
1002 		return;
1003 
1004 	case PPC64_PLT_STUB:
1005 	case PPC_PLT_NEED_UNRESOLVE:
1006 		/* These should never hit here.  */
1007 		break;
1008 	}
1009 
1010 	assert(bp->libsym->arch.type != bp->libsym->arch.type);
1011 	abort();
1012 }
1013 
1014 /* When a process is in a PLT stub, it may have already read the data
1015  * in .plt that we changed.  If we detach now, it will jump to PLT
1016  * entry and continue to the dynamic linker, where it will SIGSEGV,
1017  * because zeroth .plt slot is not filled in prelinked binaries, and
1018  * the dynamic linker needs that data.  Moreover, the process may
1019  * actually have hit the breakpoint already.  This functions tries to
1020  * detect both cases and do any fix-ups necessary to mend this
1021  * situation.  */
1022 static enum callback_status
detach_task_cb(struct process * task,void * data)1023 detach_task_cb(struct process *task, void *data)
1024 {
1025 	struct breakpoint *bp = data;
1026 
1027 	if (get_instruction_pointer(task) == bp->addr) {
1028 		debug(DEBUG_PROCESS, "%d at %p, which is PLT slot",
1029 		      task->pid, bp->addr);
1030 		jump_to_entry_point(task, bp);
1031 		return CBS_CONT;
1032 	}
1033 
1034 	/* XXX There's still a window of several instructions where we
1035 	 * might catch the task inside a stub such that it has already
1036 	 * read destination address from .plt, but hasn't jumped yet,
1037 	 * thus avoiding the breakpoint.  */
1038 
1039 	return CBS_CONT;
1040 }
1041 
1042 static void
ppc_plt_bp_retract(struct breakpoint * bp,struct process * proc)1043 ppc_plt_bp_retract(struct breakpoint *bp, struct process *proc)
1044 {
1045 	/* On PPC64, we rewrite .plt with PLT entry addresses.  This
1046 	 * needs to be undone.  Unfortunately, the program may have
1047 	 * made decisions based on that value */
1048 	if (proc->e_machine == EM_PPC64
1049 	    && bp->libsym != NULL
1050 	    && bp->libsym->arch.type == PPC_PLT_RESOLVED) {
1051 		each_task(proc->leader, NULL, detach_task_cb, bp);
1052 		unresolve_plt_slot(proc, bp->libsym->arch.plt_slot_addr,
1053 				   bp->libsym->arch.resolved_value);
1054 	}
1055 }
1056 
1057 static void
ppc_plt_bp_install(struct breakpoint * bp,struct process * proc)1058 ppc_plt_bp_install(struct breakpoint *bp, struct process *proc)
1059 {
1060 	/* This should not be an artificial breakpoint.  */
1061 	struct library_symbol *libsym = bp->libsym;
1062 	if (libsym == NULL)
1063 		libsym = bp->arch.irel_libsym;
1064 	assert(libsym != NULL);
1065 
1066 	if (libsym->arch.type == PPC_PLT_NEED_UNRESOLVE) {
1067 		/* Unresolve the .plt slot.  If the binary was
1068 		 * prelinked, this makes the code invalid, because in
1069 		 * case of prelinked binary, the dynamic linker
1070 		 * doesn't update .plt[0] and .plt[1] with addresses
1071 		 * of the resover.  But we don't care, we will never
1072 		 * need to enter the resolver.  That just means that
1073 		 * we have to un-un-resolve this back before we
1074 		 * detach.  */
1075 
1076 		struct ppc_unresolve_data *data = libsym->arch.data;
1077 		libsym->arch.data = NULL;
1078 		assert(data->self == data);
1079 
1080 		GElf_Addr plt_slot_addr = data->plt_slot_addr;
1081 		GElf_Addr plt_slot_value = data->plt_slot_value;
1082 		GElf_Addr plt_entry_addr = data->plt_entry_addr;
1083 
1084 		if (unresolve_plt_slot(proc, plt_slot_addr,
1085 				       plt_entry_addr) == 0) {
1086 			if (! data->is_irelative) {
1087 				mark_as_resolved(libsym, plt_slot_value);
1088 			} else {
1089 				libsym->arch.type = PPC_PLT_IRELATIVE;
1090 				libsym->arch.resolved_value = plt_entry_addr;
1091 			}
1092 		} else {
1093 			fprintf(stderr, "Couldn't unresolve %s@%p.  Not tracing"
1094 				" this symbol.\n",
1095 				breakpoint_name(bp), bp->addr);
1096 			proc_remove_breakpoint(proc, bp);
1097 		}
1098 
1099 		free(data);
1100 	}
1101 }
1102 
1103 int
arch_library_init(struct library * lib)1104 arch_library_init(struct library *lib)
1105 {
1106 	return 0;
1107 }
1108 
1109 void
arch_library_destroy(struct library * lib)1110 arch_library_destroy(struct library *lib)
1111 {
1112 }
1113 
1114 int
arch_library_clone(struct library * retp,struct library * lib)1115 arch_library_clone(struct library *retp, struct library *lib)
1116 {
1117 	return 0;
1118 }
1119 
1120 int
arch_library_symbol_init(struct library_symbol * libsym)1121 arch_library_symbol_init(struct library_symbol *libsym)
1122 {
1123 	/* We set type explicitly in the code above, where we have the
1124 	 * necessary context.  This is for calls from ltrace-elf.c and
1125 	 * such.  */
1126 	libsym->arch.type = PPC_DEFAULT;
1127 	return 0;
1128 }
1129 
1130 void
arch_library_symbol_destroy(struct library_symbol * libsym)1131 arch_library_symbol_destroy(struct library_symbol *libsym)
1132 {
1133 	if (libsym->arch.type == PPC_PLT_NEED_UNRESOLVE) {
1134 		assert(libsym->arch.data->self == libsym->arch.data);
1135 		free(libsym->arch.data);
1136 		libsym->arch.data = NULL;
1137 	}
1138 }
1139 
1140 int
arch_library_symbol_clone(struct library_symbol * retp,struct library_symbol * libsym)1141 arch_library_symbol_clone(struct library_symbol *retp,
1142 			  struct library_symbol *libsym)
1143 {
1144 	retp->arch = libsym->arch;
1145 	return 0;
1146 }
1147 
1148 /* For some symbol types, we need to set up custom callbacks.  XXX we
1149  * don't need PROC here, we can store the data in BP if it is of
1150  * interest to us.  */
1151 int
arch_breakpoint_init(struct process * proc,struct breakpoint * bp)1152 arch_breakpoint_init(struct process *proc, struct breakpoint *bp)
1153 {
1154 	bp->arch.irel_libsym = NULL;
1155 
1156 	/* Artificial and entry-point breakpoints are plain.  */
1157 	if (bp->libsym == NULL || bp->libsym->plt_type != LS_TOPLT_EXEC)
1158 		return 0;
1159 
1160 	/* On PPC, secure PLT and prelinked BSS PLT are plain.  */
1161 	if (proc->e_machine == EM_PPC
1162 	    && bp->libsym->lib->arch.bss_plt_prelinked != 0)
1163 		return 0;
1164 
1165 	/* On PPC64, stub PLT breakpoints are plain.  */
1166 	if (proc->e_machine == EM_PPC64
1167 	    && bp->libsym->arch.type == PPC64_PLT_STUB)
1168 		return 0;
1169 
1170 	static struct bp_callbacks cbs = {
1171 		.on_continue = ppc_plt_bp_continue,
1172 		.on_retract = ppc_plt_bp_retract,
1173 		.on_install = ppc_plt_bp_install,
1174 	};
1175 	breakpoint_set_callbacks(bp, &cbs);
1176 
1177 	/* For JMP_IREL breakpoints, make the breakpoint look
1178 	 * artificial by hiding the symbol.  */
1179 	if (bp->libsym->arch.type == PPC_PLT_IRELATIVE) {
1180 		bp->arch.irel_libsym = bp->libsym;
1181 		bp->libsym = NULL;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 void
arch_breakpoint_destroy(struct breakpoint * bp)1188 arch_breakpoint_destroy(struct breakpoint *bp)
1189 {
1190 }
1191 
1192 int
arch_breakpoint_clone(struct breakpoint * retp,struct breakpoint * sbp)1193 arch_breakpoint_clone(struct breakpoint *retp, struct breakpoint *sbp)
1194 {
1195 	retp->arch = sbp->arch;
1196 	return 0;
1197 }
1198 
1199 int
arch_process_init(struct process * proc)1200 arch_process_init(struct process *proc)
1201 {
1202 	proc->arch.dl_plt_update_bp = NULL;
1203 	proc->arch.handler = NULL;
1204 	return 0;
1205 }
1206 
1207 void
arch_process_destroy(struct process * proc)1208 arch_process_destroy(struct process *proc)
1209 {
1210 }
1211 
1212 int
arch_process_clone(struct process * retp,struct process * proc)1213 arch_process_clone(struct process *retp, struct process *proc)
1214 {
1215 	retp->arch = proc->arch;
1216 
1217 	if (retp->arch.dl_plt_update_bp != NULL) {
1218 		/* Point it to the corresponding breakpoint in RETP.
1219 		 * It must be there, this part of PROC has already
1220 		 * been cloned to RETP.  */
1221 		retp->arch.dl_plt_update_bp
1222 			= address2bpstruct(retp,
1223 					   retp->arch.dl_plt_update_bp->addr);
1224 
1225 		assert(retp->arch.dl_plt_update_bp != NULL);
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 int
arch_process_exec(struct process * proc)1232 arch_process_exec(struct process *proc)
1233 {
1234 	return arch_process_init(proc);
1235 }
1236