1 /*
2 * This file is part of ltrace.
3 * Copyright (C) 2012,2013,2014 Petr Machata, Red Hat Inc.
4 * Copyright (C) 2004,2008,2009 Juan Cespedes
5 * Copyright (C) 2006 Paul Gilliam
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of the
10 * License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 */
22
23 #include <gelf.h>
24 #include <sys/ptrace.h>
25 #include <errno.h>
26 #include <inttypes.h>
27 #include <assert.h>
28 #include <stdbool.h>
29 #include <string.h>
30
31 #include "proc.h"
32 #include "common.h"
33 #include "insn.h"
34 #include "library.h"
35 #include "breakpoint.h"
36 #include "linux-gnu/trace.h"
37 #include "backend.h"
38
39 /* There are two PLT types on 32-bit PPC: old-style, BSS PLT, and
40 * new-style "secure" PLT. We can tell one from the other by the
41 * flags on the .plt section. If it's +X (executable), it's BSS PLT,
42 * otherwise it's secure.
43 *
44 * BSS PLT works the same way as most architectures: the .plt section
45 * contains trampolines and we put breakpoints to those. If not
46 * prelinked, .plt contains zeroes, and dynamic linker fills in the
47 * initial set of trampolines, which means that we need to delay
48 * enabling breakpoints until after binary entry point is hit.
49 * Additionally, after first call, dynamic linker updates .plt with
50 * branch to resolved address. That means that on first hit, we must
51 * do something similar to the PPC64 gambit described below.
52 *
53 * With secure PLT, the .plt section doesn't contain instructions but
54 * addresses. The real PLT table is stored in .text. Addresses of
55 * those PLT entries can be computed, and apart from the fact that
56 * they are in .text, they are ordinary PLT entries.
57 *
58 * 64-bit PPC is more involved. Program linker creates for each
59 * library call a _stub_ symbol named xxxxxxxx.plt_call.<callee>
60 * (where xxxxxxxx is a hexadecimal number). That stub does the call
61 * dispatch: it loads an address of a function to call from the
62 * section .plt, and branches. PLT entries themselves are essentially
63 * a curried call to the resolver. When the symbol is resolved, the
64 * resolver updates the value stored in .plt, and the next time
65 * around, the stub calls the library function directly. So we make
66 * at most one trip (none if the binary is prelinked) through each PLT
67 * entry, and correspondingly that is useless as a breakpoint site.
68 *
69 * Note the three confusing terms: stubs (that play the role of PLT
70 * entries), PLT entries, .plt section.
71 *
72 * We first check symbol tables and see if we happen to have stub
73 * symbols available. If yes we just put breakpoints to those, and
74 * treat them as usual breakpoints. The only tricky part is realizing
75 * that there can be more than one breakpoint per symbol.
76 *
77 * The case that we don't have the stub symbols available is harder.
78 * The following scheme uses two kinds of PLT breakpoints: unresolved
79 * and resolved (to some address). When the process starts (or when
80 * we attach), we distribute unresolved PLT breakpoints to the PLT
81 * entries (not stubs). Then we look in .plt, and for each entry
82 * whose value is different than the corresponding PLT entry address,
83 * we assume it was already resolved, and convert the breakpoint to
84 * resolved. We also rewrite the resolved value in .plt back to the
85 * PLT address.
86 *
87 * When a PLT entry hits a resolved breakpoint (which happens because
88 * we rewrite .plt with the original unresolved addresses), we move
89 * the instruction pointer to the corresponding address and continue
90 * the process as if nothing happened.
91 *
92 * When unresolved PLT entry is called for the first time, we need to
93 * catch the new value that the resolver will write to a .plt slot.
94 * We also need to prevent another thread from racing through and
95 * taking the branch without ltrace noticing. So when unresolved PLT
96 * entry hits, we have to stop all threads. We then single-step
97 * through the resolver, until the .plt slot changes. When it does,
98 * we treat it the same way as above: convert the PLT breakpoint to
99 * resolved, and rewrite the .plt value back to PLT address. We then
100 * start all threads again.
101 *
102 * As an optimization, we remember the address where the address was
103 * resolved, and put a breakpoint there. The next time around (when
104 * the next PLT entry is to be resolved), instead of single-stepping
105 * through half the dynamic linker, we just let the thread run and hit
106 * this breakpoint. When it hits, we know the PLT entry was resolved.
107 *
108 * Another twist comes from tracing slots corresponding to
109 * R_PPC64_JMP_IREL relocations. These have no dedicated PLT entry.
110 * The calls are done directly from stubs, and the .plt entry
111 * (actually .iplt entry, these live in a special section) is resolved
112 * in advance before the binary starts. Because there's no PLT entry,
113 * we put the PLT breakpoints directly to the IFUNC resolver code, and
114 * then would like them to behave like ordinary PLT slots, including
115 * catching the point where these get resolved to unresolve them. So
116 * for the first call (which is the actual resolver call), we pretend
117 * that this breakpoint is artificial and has no associated symbol,
118 * and turn it on fully only after the first hit. Ideally we would
119 * trace that first call as well, but then the stepper, which tries to
120 * catch the point where the slot is resolved, would hit the return
121 * breakpoint and that's not currently handled well.
122 *
123 * On PPC32 with secure PLT, the address of IFUNC symbols in main
124 * binary actually isn't of the resolver, but of a PLT slot. We
125 * therefore have to locate the corresponding PLT relocation (which is
126 * of type R_PPC_IRELATIVE) and request that it be traced. The addend
127 * of that relocation is an address of resolver, and we request
128 * tracing of the xyz.IFUNC symbol there.
129 *
130 * XXX TODO If we have hardware watch point, we might put a read watch
131 * on .plt slot, and discover the offenders this way. I don't know
132 * the details, but I assume at most a handful (like, one or two, if
133 * available at all) addresses may be watched at a time, and thus this
134 * would be used as an amendment of the above rather than full-on
135 * solution to PLT tracing on PPC.
136 */
137
138 #define PPC_PLT_STUB_SIZE 16
139 #define PPC64_PLT_STUB_SIZE 8 //xxx
140
141 static inline int
host_powerpc64()142 host_powerpc64()
143 {
144 #ifdef __powerpc64__
145 return 1;
146 #else
147 return 0;
148 #endif
149 }
150
151 static void
mark_as_resolved(struct library_symbol * libsym,GElf_Addr value)152 mark_as_resolved(struct library_symbol *libsym, GElf_Addr value)
153 {
154 libsym->arch.type = PPC_PLT_RESOLVED;
155 libsym->arch.resolved_value = value;
156 }
157
158 static void
ppc32_delayed_symbol(struct library_symbol * libsym)159 ppc32_delayed_symbol(struct library_symbol *libsym)
160 {
161 /* arch_dynlink_done is called on attach as well. In that
162 * case some slots will have been resolved already.
163 * Unresolved PLT looks like this:
164 *
165 * <sleep@plt>: li r11,0
166 * <sleep@plt+4>: b "resolve"
167 *
168 * "resolve" is another address in PLTGOT (the same block that
169 * all the PLT slots are it). When resolved, it looks either
170 * this way:
171 *
172 * <sleep@plt>: b 0xfea88d0 <sleep>
173 *
174 * Which is easy to detect. It can also look this way:
175 *
176 * <sleep@plt>: li r11,0
177 * <sleep@plt+4>: b "dispatch"
178 *
179 * The "dispatch" address lies in PLTGOT as well. In current
180 * GNU toolchain, "dispatch" address is the same as PLTGOT
181 * address. We rely on this to figure out whether the address
182 * is resolved or not. */
183
184 uint32_t insn1 = libsym->arch.resolved_value >> 32;
185 uint32_t insn2 = (uint32_t) libsym->arch.resolved_value;
186 if ((insn1 & BRANCH_MASK) == B_INSN
187 || ((insn2 & BRANCH_MASK) == B_INSN
188 /* XXX double cast */
189 && (ppc_branch_dest(libsym->enter_addr + 4, insn2)
190 == (arch_addr_t) (long) libsym->lib->arch.pltgot_addr)))
191 {
192 mark_as_resolved(libsym, libsym->arch.resolved_value);
193 }
194 }
195
196 void
arch_dynlink_done(struct process * proc)197 arch_dynlink_done(struct process *proc)
198 {
199 /* We may need to activate delayed symbols. */
200 struct library_symbol *libsym = NULL;
201 while ((libsym = proc_each_symbol(proc, libsym,
202 library_symbol_delayed_cb, NULL))) {
203 if (proc_read_64(proc, libsym->enter_addr,
204 &libsym->arch.resolved_value) < 0) {
205 fprintf(stderr,
206 "couldn't read PLT value for %s(%p): %s\n",
207 libsym->name, libsym->enter_addr,
208 strerror(errno));
209 return;
210 }
211
212 if (proc->e_machine == EM_PPC)
213 ppc32_delayed_symbol(libsym);
214
215 if (proc_activate_delayed_symbol(proc, libsym) < 0)
216 return;
217
218 if (proc->e_machine == EM_PPC)
219 /* XXX double cast */
220 libsym->arch.plt_slot_addr
221 = (GElf_Addr) (uintptr_t) libsym->enter_addr;
222 }
223 }
224
225 static bool
reloc_is_irelative(int machine,GElf_Rela * rela)226 reloc_is_irelative(int machine, GElf_Rela *rela)
227 {
228 bool irelative = false;
229 if (machine == EM_PPC64) {
230 #ifdef R_PPC64_JMP_IREL
231 irelative = GELF_R_TYPE(rela->r_info) == R_PPC64_JMP_IREL;
232 #endif
233 } else {
234 assert(machine == EM_PPC);
235 #ifdef R_PPC_IRELATIVE
236 irelative = GELF_R_TYPE(rela->r_info) == R_PPC_IRELATIVE;
237 #endif
238 }
239 return irelative;
240 }
241
242 GElf_Addr
arch_plt_sym_val(struct ltelf * lte,size_t ndx,GElf_Rela * rela)243 arch_plt_sym_val(struct ltelf *lte, size_t ndx, GElf_Rela *rela)
244 {
245 if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
246 assert(lte->arch.plt_stub_vma != 0);
247 return lte->arch.plt_stub_vma + PPC_PLT_STUB_SIZE * ndx;
248
249 } else if (lte->ehdr.e_machine == EM_PPC) {
250 return rela->r_offset;
251
252 /* Beyond this point, we are on PPC64, but don't have stub
253 * symbols. */
254
255 } else if (reloc_is_irelative(lte->ehdr.e_machine, rela)) {
256
257 /* Put JMP_IREL breakpoint to resolver, since there's
258 * no dedicated PLT entry. */
259
260 assert(rela->r_addend != 0);
261 /* XXX double cast */
262 arch_addr_t res_addr = (arch_addr_t) (uintptr_t) rela->r_addend;
263 if (arch_translate_address(lte, res_addr, &res_addr) < 0) {
264 fprintf(stderr, "Couldn't OPD-translate IRELATIVE "
265 "resolver address.\n");
266 return 0;
267 }
268 /* XXX double cast */
269 return (GElf_Addr) (uintptr_t) res_addr;
270
271 } else {
272 /* We put brakpoints to PLT entries the same as the
273 * PPC32 secure PLT case does. */
274 assert(lte->arch.plt_stub_vma != 0);
275 return lte->arch.plt_stub_vma + PPC64_PLT_STUB_SIZE * ndx;
276 }
277 }
278
279 /* This entry point is called when ltelf is not available
280 * anymore--during runtime. At that point we don't have to concern
281 * ourselves with bias, as the values in OPD have been resolved
282 * already. */
283 int
arch_translate_address_dyn(struct process * proc,arch_addr_t addr,arch_addr_t * ret)284 arch_translate_address_dyn(struct process *proc,
285 arch_addr_t addr, arch_addr_t *ret)
286 {
287 if (proc->e_machine == EM_PPC64) {
288 uint64_t value;
289 if (proc_read_64(proc, addr, &value) < 0) {
290 fprintf(stderr,
291 "dynamic .opd translation of %p: %s\n",
292 addr, strerror(errno));
293 return -1;
294 }
295 /* XXX The double cast should be removed when
296 * arch_addr_t becomes integral type. */
297 *ret = (arch_addr_t)(uintptr_t)value;
298 return 0;
299 }
300
301 *ret = addr;
302 return 0;
303 }
304
305 int
arch_translate_address(struct ltelf * lte,arch_addr_t addr,arch_addr_t * ret)306 arch_translate_address(struct ltelf *lte,
307 arch_addr_t addr, arch_addr_t *ret)
308 {
309 if (lte->ehdr.e_machine == EM_PPC64) {
310 /* XXX The double cast should be removed when
311 * arch_addr_t becomes integral type. */
312 GElf_Xword offset
313 = (GElf_Addr)(uintptr_t)addr - lte->arch.opd_base;
314 uint64_t value;
315 if (elf_read_u64(lte->arch.opd_data, offset, &value) < 0) {
316 fprintf(stderr, "static .opd translation of %p: %s\n",
317 addr, elf_errmsg(-1));
318 return -1;
319 }
320 *ret = (arch_addr_t)(uintptr_t)(value + lte->bias);
321 return 0;
322 }
323
324 *ret = addr;
325 return 0;
326 }
327
328 static int
load_opd_data(struct ltelf * lte,struct library * lib)329 load_opd_data(struct ltelf *lte, struct library *lib)
330 {
331 Elf_Scn *sec;
332 GElf_Shdr shdr;
333 if (elf_get_section_named(lte, ".opd", &sec, &shdr) < 0
334 || sec == NULL) {
335 fail:
336 fprintf(stderr, "couldn't find .opd data\n");
337 return -1;
338 }
339
340 lte->arch.opd_data = elf_rawdata(sec, NULL);
341 if (lte->arch.opd_data == NULL)
342 goto fail;
343
344 lte->arch.opd_base = shdr.sh_addr + lte->bias;
345 lte->arch.opd_size = shdr.sh_size;
346
347 return 0;
348 }
349
350 void *
sym2addr(struct process * proc,struct library_symbol * sym)351 sym2addr(struct process *proc, struct library_symbol *sym)
352 {
353 return sym->enter_addr;
354 }
355
356 static GElf_Addr
get_glink_vma(struct ltelf * lte,GElf_Addr ppcgot,Elf_Data * plt_data)357 get_glink_vma(struct ltelf *lte, GElf_Addr ppcgot, Elf_Data *plt_data)
358 {
359 Elf_Scn *ppcgot_sec = NULL;
360 GElf_Shdr ppcgot_shdr;
361 if (ppcgot != 0
362 && (elf_get_section_covering(lte, ppcgot,
363 &ppcgot_sec, &ppcgot_shdr) < 0
364 || ppcgot_sec == NULL))
365 fprintf(stderr,
366 "DT_PPC_GOT=%#"PRIx64", but no such section found\n",
367 ppcgot);
368
369 if (ppcgot_sec != NULL) {
370 Elf_Data *data = elf_loaddata(ppcgot_sec, &ppcgot_shdr);
371 if (data == NULL || data->d_size < 8 ) {
372 fprintf(stderr, "couldn't read GOT data\n");
373 } else {
374 // where PPCGOT begins in .got
375 size_t offset = ppcgot - ppcgot_shdr.sh_addr;
376 assert(offset % 4 == 0);
377 uint32_t glink_vma;
378 if (elf_read_u32(data, offset + 4, &glink_vma) < 0) {
379 fprintf(stderr, "couldn't read glink VMA"
380 " address at %zd@GOT\n", offset);
381 return 0;
382 }
383 if (glink_vma != 0) {
384 debug(1, "PPC GOT glink_vma address: %#" PRIx32,
385 glink_vma);
386 return (GElf_Addr)glink_vma;
387 }
388 }
389 }
390
391 if (plt_data != NULL) {
392 uint32_t glink_vma;
393 if (elf_read_u32(plt_data, 0, &glink_vma) < 0) {
394 fprintf(stderr, "couldn't read glink VMA address\n");
395 return 0;
396 }
397 debug(1, ".plt glink_vma address: %#" PRIx32, glink_vma);
398 return (GElf_Addr)glink_vma;
399 }
400
401 return 0;
402 }
403
404 static int
nonzero_data(Elf_Data * data)405 nonzero_data(Elf_Data *data)
406 {
407 /* We are not supposed to get here if there's no PLT. */
408 assert(data != NULL);
409
410 unsigned char *buf = data->d_buf;
411 if (buf == NULL)
412 return 0;
413
414 size_t i;
415 for (i = 0; i < data->d_size; ++i)
416 if (buf[i] != 0)
417 return 1;
418 return 0;
419 }
420
421 static enum callback_status
reloc_copy_if_irelative(GElf_Rela * rela,void * data)422 reloc_copy_if_irelative(GElf_Rela *rela, void *data)
423 {
424 struct ltelf *lte = data;
425
426 return CBS_STOP_IF(reloc_is_irelative(lte->ehdr.e_machine, rela)
427 && VECT_PUSHBACK(<e->plt_relocs, rela) < 0);
428 }
429
430 int
arch_elf_init(struct ltelf * lte,struct library * lib)431 arch_elf_init(struct ltelf *lte, struct library *lib)
432 {
433 if (lte->ehdr.e_machine == EM_PPC64
434 && load_opd_data(lte, lib) < 0)
435 return -1;
436
437 lte->arch.secure_plt = !(lte->plt_flags & SHF_EXECINSTR);
438
439 /* For PPC32 BSS, it is important whether the binary was
440 * prelinked. If .plt section is NODATA, or if it contains
441 * zeroes, then this library is not prelinked, and we need to
442 * delay breakpoints. */
443 if (lte->ehdr.e_machine == EM_PPC && !lte->arch.secure_plt)
444 lib->arch.bss_plt_prelinked = nonzero_data(lte->plt_data);
445 else
446 /* For cases where it's irrelevant, initialize the
447 * value to something conspicuous. */
448 lib->arch.bss_plt_prelinked = -1;
449
450 /* On PPC64 and PPC32 secure, IRELATIVE relocations actually
451 * relocate .iplt section, and as such are stored in .rela.dyn
452 * (where all non-PLT relocations are stored) instead of
453 * .rela.plt. Add these to lte->plt_relocs. */
454
455 GElf_Addr rela, relasz;
456 Elf_Scn *rela_sec;
457 GElf_Shdr rela_shdr;
458 if ((lte->ehdr.e_machine == EM_PPC64 || lte->arch.secure_plt)
459 && elf_load_dynamic_entry(lte, DT_RELA, &rela) == 0
460 && elf_load_dynamic_entry(lte, DT_RELASZ, &relasz) == 0
461 && elf_get_section_covering(lte, rela, &rela_sec, &rela_shdr) == 0
462 && rela_sec != NULL) {
463
464 struct vect v;
465 VECT_INIT(&v, GElf_Rela);
466 int ret = elf_read_relocs(lte, rela_sec, &rela_shdr, &v);
467 if (ret >= 0
468 && VECT_EACH(&v, GElf_Rela, NULL,
469 reloc_copy_if_irelative, lte) != NULL)
470 ret = -1;
471
472 VECT_DESTROY(&v, GElf_Rela, NULL, NULL);
473
474 if (ret < 0)
475 return ret;
476 }
477
478 if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
479 GElf_Addr ppcgot;
480 if (elf_load_dynamic_entry(lte, DT_PPC_GOT, &ppcgot) < 0) {
481 fprintf(stderr, "couldn't find DT_PPC_GOT\n");
482 return -1;
483 }
484 GElf_Addr glink_vma = get_glink_vma(lte, ppcgot, lte->plt_data);
485
486 size_t count = vect_size(<e->plt_relocs);
487 lte->arch.plt_stub_vma = glink_vma
488 - (GElf_Addr) count * PPC_PLT_STUB_SIZE;
489 debug(1, "stub_vma is %#" PRIx64, lte->arch.plt_stub_vma);
490
491 } else if (lte->ehdr.e_machine == EM_PPC64) {
492 GElf_Addr glink_vma;
493 if (elf_load_dynamic_entry(lte, DT_PPC64_GLINK,
494 &glink_vma) < 0) {
495 fprintf(stderr, "couldn't find DT_PPC64_GLINK\n");
496 return -1;
497 }
498
499 /* The first glink stub starts at offset 32. */
500 lte->arch.plt_stub_vma = glink_vma + 32;
501
502 } else {
503 /* By exhaustion--PPC32 BSS. */
504 if (elf_load_dynamic_entry(lte, DT_PLTGOT,
505 &lib->arch.pltgot_addr) < 0) {
506 fprintf(stderr, "couldn't find DT_PLTGOT\n");
507 return -1;
508 }
509 }
510
511 /* On PPC64, look for stub symbols in symbol table. These are
512 * called: xxxxxxxx.plt_call.callee_name@version+addend. */
513 if (lte->ehdr.e_machine == EM_PPC64
514 && lte->symtab != NULL && lte->strtab != NULL) {
515
516 /* N.B. We can't simply skip the symbols that we fail
517 * to read or malloc. There may be more than one stub
518 * per symbol name, and if we failed in one but
519 * succeeded in another, the PLT enabling code would
520 * have no way to tell that something is missing. We
521 * could work around that, of course, but it doesn't
522 * seem worth the trouble. So if anything fails, we
523 * just pretend that we don't have stub symbols at
524 * all, as if the binary is stripped. */
525
526 size_t i;
527 for (i = 0; i < lte->symtab_count; ++i) {
528 GElf_Sym sym;
529 if (gelf_getsym(lte->symtab, i, &sym) == NULL) {
530 struct library_symbol *sym, *next;
531 fail:
532 for (sym = lte->arch.stubs; sym != NULL; ) {
533 next = sym->next;
534 library_symbol_destroy(sym);
535 free(sym);
536 sym = next;
537 }
538 lte->arch.stubs = NULL;
539 break;
540 }
541
542 const char *name = lte->strtab + sym.st_name;
543
544 #define STUBN ".plt_call."
545 if ((name = strstr(name, STUBN)) == NULL)
546 continue;
547 name += sizeof(STUBN) - 1;
548 #undef STUBN
549
550 size_t len;
551 const char *ver = strchr(name, '@');
552 if (ver != NULL) {
553 len = ver - name;
554
555 } else {
556 /* If there is "+" at all, check that
557 * the symbol name ends in "+0". */
558 const char *add = strrchr(name, '+');
559 if (add != NULL) {
560 assert(strcmp(add, "+0") == 0);
561 len = add - name;
562 } else {
563 len = strlen(name);
564 }
565 }
566
567 char *sym_name = strndup(name, len);
568 struct library_symbol *libsym = malloc(sizeof(*libsym));
569 if (sym_name == NULL || libsym == NULL) {
570 fail2:
571 free(sym_name);
572 free(libsym);
573 goto fail;
574 }
575
576 /* XXX The double cast should be removed when
577 * arch_addr_t becomes integral type. */
578 arch_addr_t addr = (arch_addr_t)
579 (uintptr_t)sym.st_value + lte->bias;
580 if (library_symbol_init(libsym, addr, sym_name, 1,
581 LS_TOPLT_EXEC) < 0)
582 goto fail2;
583 libsym->arch.type = PPC64_PLT_STUB;
584 libsym->next = lte->arch.stubs;
585 lte->arch.stubs = libsym;
586 }
587 }
588
589 return 0;
590 }
591
592 static int
read_plt_slot_value(struct process * proc,GElf_Addr addr,GElf_Addr * valp)593 read_plt_slot_value(struct process *proc, GElf_Addr addr, GElf_Addr *valp)
594 {
595 /* On PPC64, we read from .plt, which contains 8 byte
596 * addresses. On PPC32 we read from .plt, which contains 4
597 * byte instructions, but the PLT is two instructions, and
598 * either can change. */
599 uint64_t l;
600 /* XXX double cast. */
601 if (proc_read_64(proc, (arch_addr_t)(uintptr_t)addr, &l) < 0) {
602 fprintf(stderr, "ptrace .plt slot value @%#" PRIx64": %s\n",
603 addr, strerror(errno));
604 return -1;
605 }
606
607 *valp = (GElf_Addr)l;
608 return 0;
609 }
610
611 static int
unresolve_plt_slot(struct process * proc,GElf_Addr addr,GElf_Addr value)612 unresolve_plt_slot(struct process *proc, GElf_Addr addr, GElf_Addr value)
613 {
614 /* We only modify plt_entry[0], which holds the resolved
615 * address of the routine. We keep the TOC and environment
616 * pointers intact. Hence the only adjustment that we need to
617 * do is to IP. */
618 if (ptrace(PTRACE_POKETEXT, proc->pid, addr, value) < 0) {
619 fprintf(stderr, "failed to unresolve .plt slot: %s\n",
620 strerror(errno));
621 return -1;
622 }
623 return 0;
624 }
625
626 enum plt_status
arch_elf_add_func_entry(struct process * proc,struct ltelf * lte,const GElf_Sym * sym,arch_addr_t addr,const char * name,struct library_symbol ** ret)627 arch_elf_add_func_entry(struct process *proc, struct ltelf *lte,
628 const GElf_Sym *sym,
629 arch_addr_t addr, const char *name,
630 struct library_symbol **ret)
631 {
632 if (lte->ehdr.e_machine != EM_PPC || lte->ehdr.e_type == ET_DYN)
633 return PLT_DEFAULT;
634
635 bool ifunc = false;
636 #ifdef STT_GNU_IFUNC
637 ifunc = GELF_ST_TYPE(sym->st_info) == STT_GNU_IFUNC;
638 #endif
639 if (! ifunc)
640 return PLT_DEFAULT;
641
642 size_t len = vect_size(<e->plt_relocs);
643 size_t i;
644 for (i = 0; i < len; ++i) {
645 GElf_Rela *rela = VECT_ELEMENT(<e->plt_relocs, GElf_Rela, i);
646 if (sym->st_value == arch_plt_sym_val(lte, i, rela)) {
647
648 char *tmp_name = linux_append_IFUNC_to_name(name);
649 struct library_symbol *libsym = malloc(sizeof *libsym);
650
651 /* XXX double cast. */
652 arch_addr_t resolver_addr
653 = (arch_addr_t) (uintptr_t) rela->r_addend;
654
655 if (tmp_name == NULL || libsym == NULL
656 || library_symbol_init(libsym, resolver_addr,
657 tmp_name, 1,
658 LS_TOPLT_EXEC) < 0) {
659 fail:
660 free(tmp_name);
661 free(libsym);
662 return PLT_FAIL;
663 }
664
665 if (elf_add_plt_entry(proc, lte, name, rela,
666 i, ret) < 0) {
667 library_symbol_destroy(libsym);
668 goto fail;
669 }
670
671 libsym->proto = linux_IFUNC_prototype();
672 libsym->next = *ret;
673 *ret = libsym;
674 return PLT_OK;
675 }
676 }
677
678 *ret = NULL;
679 return PLT_OK;
680 }
681
682 struct ppc_unresolve_data {
683 struct ppc_unresolve_data *self; /* A canary. */
684 GElf_Addr plt_entry_addr;
685 GElf_Addr plt_slot_addr;
686 GElf_Addr plt_slot_value;
687 bool is_irelative;
688 };
689
690 enum plt_status
arch_elf_add_plt_entry(struct process * proc,struct ltelf * lte,const char * a_name,GElf_Rela * rela,size_t ndx,struct library_symbol ** ret)691 arch_elf_add_plt_entry(struct process *proc, struct ltelf *lte,
692 const char *a_name, GElf_Rela *rela, size_t ndx,
693 struct library_symbol **ret)
694 {
695 bool is_irelative = reloc_is_irelative(lte->ehdr.e_machine, rela);
696 char *name;
697 if (! is_irelative) {
698 name = strdup(a_name);
699 } else {
700 GElf_Addr addr = lte->ehdr.e_machine == EM_PPC64
701 ? (GElf_Addr) rela->r_addend
702 : arch_plt_sym_val(lte, ndx, rela);
703 name = linux_elf_find_irelative_name(lte, addr);
704 }
705
706 if (name == NULL) {
707 fail:
708 free(name);
709 return PLT_FAIL;
710 }
711
712 struct library_symbol *chain = NULL;
713 if (lte->ehdr.e_machine == EM_PPC) {
714 if (default_elf_add_plt_entry(proc, lte, name, rela, ndx,
715 &chain) < 0)
716 goto fail;
717
718 if (! lte->arch.secure_plt) {
719 /* On PPC32 with BSS PLT, delay the symbol
720 * until dynamic linker is done. */
721 assert(!chain->delayed);
722 chain->delayed = 1;
723 }
724
725 ok:
726 *ret = chain;
727 free(name);
728 return PLT_OK;
729 }
730
731 /* PPC64. If we have stubs, we return a chain of breakpoint
732 * sites, one for each stub that corresponds to this PLT
733 * entry. */
734 struct library_symbol **symp;
735 for (symp = <e->arch.stubs; *symp != NULL; ) {
736 struct library_symbol *sym = *symp;
737 if (strcmp(sym->name, name) != 0) {
738 symp = &(*symp)->next;
739 continue;
740 }
741
742 /* Re-chain the symbol from stubs to CHAIN. */
743 *symp = sym->next;
744 sym->next = chain;
745 chain = sym;
746 }
747
748 if (chain != NULL)
749 goto ok;
750
751 /* We don't have stub symbols. Find corresponding .plt slot,
752 * and check whether it contains the corresponding PLT address
753 * (or 0 if the dynamic linker hasn't run yet). N.B. we don't
754 * want read this from ELF file, but from process image. That
755 * makes a difference if we are attaching to a running
756 * process. */
757
758 GElf_Addr plt_entry_addr = arch_plt_sym_val(lte, ndx, rela);
759 GElf_Addr plt_slot_addr = rela->r_offset;
760
761 assert(plt_slot_addr >= lte->plt_addr
762 || plt_slot_addr < lte->plt_addr + lte->plt_size);
763
764 GElf_Addr plt_slot_value;
765 if (read_plt_slot_value(proc, plt_slot_addr, &plt_slot_value) < 0)
766 goto fail;
767
768 struct library_symbol *libsym = malloc(sizeof(*libsym));
769 if (libsym == NULL) {
770 fprintf(stderr, "allocation for .plt slot: %s\n",
771 strerror(errno));
772 fail2:
773 free(libsym);
774 goto fail;
775 }
776
777 /* XXX The double cast should be removed when
778 * arch_addr_t becomes integral type. */
779 if (library_symbol_init(libsym,
780 (arch_addr_t) (uintptr_t) plt_entry_addr,
781 name, 1, LS_TOPLT_EXEC) < 0)
782 goto fail2;
783 libsym->arch.plt_slot_addr = plt_slot_addr;
784
785 if (! is_irelative
786 && (plt_slot_value == plt_entry_addr || plt_slot_value == 0)) {
787 libsym->arch.type = PPC_PLT_UNRESOLVED;
788 libsym->arch.resolved_value = plt_entry_addr;
789 } else {
790 /* Mark the symbol for later unresolving. We may not
791 * do this right away, as this is called by ltrace
792 * core for all symbols, and only later filtered. We
793 * only unresolve the symbol before the breakpoint is
794 * enabled. */
795
796 libsym->arch.type = PPC_PLT_NEED_UNRESOLVE;
797 libsym->arch.data = malloc(sizeof *libsym->arch.data);
798 if (libsym->arch.data == NULL)
799 goto fail2;
800
801 libsym->arch.data->self = libsym->arch.data;
802 libsym->arch.data->plt_entry_addr = plt_entry_addr;
803 libsym->arch.data->plt_slot_addr = plt_slot_addr;
804 libsym->arch.data->plt_slot_value = plt_slot_value;
805 libsym->arch.data->is_irelative = is_irelative;
806 }
807
808 *ret = libsym;
809 return PLT_OK;
810 }
811
812 void
arch_elf_destroy(struct ltelf * lte)813 arch_elf_destroy(struct ltelf *lte)
814 {
815 struct library_symbol *sym;
816 for (sym = lte->arch.stubs; sym != NULL; ) {
817 struct library_symbol *next = sym->next;
818 library_symbol_destroy(sym);
819 free(sym);
820 sym = next;
821 }
822 }
823
824 static void
dl_plt_update_bp_on_hit(struct breakpoint * bp,struct process * proc)825 dl_plt_update_bp_on_hit(struct breakpoint *bp, struct process *proc)
826 {
827 debug(DEBUG_PROCESS, "pid=%d dl_plt_update_bp_on_hit %s(%p)",
828 proc->pid, breakpoint_name(bp), bp->addr);
829 struct process_stopping_handler *self = proc->arch.handler;
830 assert(self != NULL);
831
832 struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
833 GElf_Addr value;
834 if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
835 return;
836
837 /* On PPC64, we rewrite the slot value. */
838 if (proc->e_machine == EM_PPC64)
839 unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
840 libsym->arch.resolved_value);
841 /* We mark the breakpoint as resolved on both arches. */
842 mark_as_resolved(libsym, value);
843
844 /* cb_on_all_stopped looks if HANDLER is set to NULL as a way
845 * to check that this was run. It's an error if it
846 * wasn't. */
847 proc->arch.handler = NULL;
848
849 breakpoint_turn_off(bp, proc);
850 }
851
852 static void
cb_on_all_stopped(struct process_stopping_handler * self)853 cb_on_all_stopped(struct process_stopping_handler *self)
854 {
855 /* Put that in for dl_plt_update_bp_on_hit to see. */
856 assert(self->task_enabling_breakpoint->arch.handler == NULL);
857 self->task_enabling_breakpoint->arch.handler = self;
858
859 linux_ptrace_disable_and_continue(self);
860 }
861
862 static enum callback_status
cb_keep_stepping_p(struct process_stopping_handler * self)863 cb_keep_stepping_p(struct process_stopping_handler *self)
864 {
865 struct process *proc = self->task_enabling_breakpoint;
866 struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
867
868 GElf_Addr value;
869 if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
870 return CBS_FAIL;
871
872 /* In UNRESOLVED state, the RESOLVED_VALUE in fact contains
873 * the PLT entry value. */
874 if (value == libsym->arch.resolved_value)
875 return CBS_CONT;
876
877 debug(DEBUG_PROCESS, "pid=%d PLT got resolved to value %#"PRIx64,
878 proc->pid, value);
879
880 /* The .plt slot got resolved! We can migrate the breakpoint
881 * to RESOLVED and stop single-stepping. */
882 if (proc->e_machine == EM_PPC64
883 && unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
884 libsym->arch.resolved_value) < 0)
885 return CBS_FAIL;
886
887 /* Resolving on PPC64 consists of overwriting a doubleword in
888 * .plt. That doubleword is than read back by a stub, and
889 * jumped on. Hopefully we can assume that double word update
890 * is done on a single place only, as it contains a final
891 * address. We still need to look around for any sync
892 * instruction, but essentially it is safe to optimize away
893 * the single stepping next time and install a post-update
894 * breakpoint.
895 *
896 * The situation on PPC32 BSS is more complicated. The
897 * dynamic linker here updates potentially several
898 * instructions (XXX currently we assume two) and the rules
899 * are more complicated. Sometimes it's enough to adjust just
900 * one of the addresses--the logic for generating optimal
901 * dispatch depends on relative addresses of the .plt entry
902 * and the jump destination. We can't assume that the some
903 * instruction block does the update every time. So on PPC32,
904 * we turn the optimization off and just step through it each
905 * time. */
906 if (proc->e_machine == EM_PPC)
907 goto done;
908
909 /* Install breakpoint to the address where the change takes
910 * place. If we fail, then that just means that we'll have to
911 * singlestep the next time around as well. */
912 struct process *leader = proc->leader;
913 if (leader == NULL || leader->arch.dl_plt_update_bp != NULL)
914 goto done;
915
916 /* We need to install to the next instruction. ADDR points to
917 * a store instruction, so moving the breakpoint one
918 * instruction forward is safe. */
919 arch_addr_t addr = get_instruction_pointer(proc) + 4;
920 leader->arch.dl_plt_update_bp = insert_breakpoint_at(proc, addr, NULL);
921 if (leader->arch.dl_plt_update_bp == NULL)
922 goto done;
923
924 static struct bp_callbacks dl_plt_update_cbs = {
925 .on_hit = dl_plt_update_bp_on_hit,
926 };
927 leader->arch.dl_plt_update_bp->cbs = &dl_plt_update_cbs;
928
929 /* Turn it off for now. We will turn it on again when we hit
930 * the PLT entry that needs this. */
931 breakpoint_turn_off(leader->arch.dl_plt_update_bp, proc);
932
933 done:
934 mark_as_resolved(libsym, value);
935
936 return CBS_STOP;
937 }
938
939 static void
jump_to_entry_point(struct process * proc,struct breakpoint * bp)940 jump_to_entry_point(struct process *proc, struct breakpoint *bp)
941 {
942 /* XXX The double cast should be removed when
943 * arch_addr_t becomes integral type. */
944 arch_addr_t rv = (arch_addr_t)
945 (uintptr_t)bp->libsym->arch.resolved_value;
946 set_instruction_pointer(proc, rv);
947 }
948
949 static void
ppc_plt_bp_continue(struct breakpoint * bp,struct process * proc)950 ppc_plt_bp_continue(struct breakpoint *bp, struct process *proc)
951 {
952 /* If this is a first call through IREL breakpoint, enable the
953 * symbol so that it doesn't look like an artificial
954 * breakpoint anymore. */
955 if (bp->libsym == NULL) {
956 assert(bp->arch.irel_libsym != NULL);
957 bp->libsym = bp->arch.irel_libsym;
958 bp->arch.irel_libsym = NULL;
959 }
960
961 switch (bp->libsym->arch.type) {
962 struct process *leader;
963 void (*on_all_stopped)(struct process_stopping_handler *);
964 enum callback_status (*keep_stepping_p)
965 (struct process_stopping_handler *);
966
967 case PPC_DEFAULT:
968 assert(proc->e_machine == EM_PPC);
969 assert(bp->libsym != NULL);
970 assert(bp->libsym->lib->arch.bss_plt_prelinked == 0);
971 /* Fall through. */
972
973 case PPC_PLT_IRELATIVE:
974 case PPC_PLT_UNRESOLVED:
975 on_all_stopped = NULL;
976 keep_stepping_p = NULL;
977 leader = proc->leader;
978
979 if (leader != NULL && leader->arch.dl_plt_update_bp != NULL
980 && breakpoint_turn_on(leader->arch.dl_plt_update_bp,
981 proc) >= 0)
982 on_all_stopped = cb_on_all_stopped;
983 else
984 keep_stepping_p = cb_keep_stepping_p;
985
986 if (process_install_stopping_handler
987 (proc, bp, on_all_stopped, keep_stepping_p, NULL) < 0) {
988 fprintf(stderr, "ppc_plt_bp_continue: "
989 "couldn't install event handler\n");
990 continue_after_breakpoint(proc, bp);
991 }
992 return;
993
994 case PPC_PLT_RESOLVED:
995 if (proc->e_machine == EM_PPC) {
996 continue_after_breakpoint(proc, bp);
997 return;
998 }
999
1000 jump_to_entry_point(proc, bp);
1001 continue_process(proc->pid);
1002 return;
1003
1004 case PPC64_PLT_STUB:
1005 case PPC_PLT_NEED_UNRESOLVE:
1006 /* These should never hit here. */
1007 break;
1008 }
1009
1010 assert(bp->libsym->arch.type != bp->libsym->arch.type);
1011 abort();
1012 }
1013
1014 /* When a process is in a PLT stub, it may have already read the data
1015 * in .plt that we changed. If we detach now, it will jump to PLT
1016 * entry and continue to the dynamic linker, where it will SIGSEGV,
1017 * because zeroth .plt slot is not filled in prelinked binaries, and
1018 * the dynamic linker needs that data. Moreover, the process may
1019 * actually have hit the breakpoint already. This functions tries to
1020 * detect both cases and do any fix-ups necessary to mend this
1021 * situation. */
1022 static enum callback_status
detach_task_cb(struct process * task,void * data)1023 detach_task_cb(struct process *task, void *data)
1024 {
1025 struct breakpoint *bp = data;
1026
1027 if (get_instruction_pointer(task) == bp->addr) {
1028 debug(DEBUG_PROCESS, "%d at %p, which is PLT slot",
1029 task->pid, bp->addr);
1030 jump_to_entry_point(task, bp);
1031 return CBS_CONT;
1032 }
1033
1034 /* XXX There's still a window of several instructions where we
1035 * might catch the task inside a stub such that it has already
1036 * read destination address from .plt, but hasn't jumped yet,
1037 * thus avoiding the breakpoint. */
1038
1039 return CBS_CONT;
1040 }
1041
1042 static void
ppc_plt_bp_retract(struct breakpoint * bp,struct process * proc)1043 ppc_plt_bp_retract(struct breakpoint *bp, struct process *proc)
1044 {
1045 /* On PPC64, we rewrite .plt with PLT entry addresses. This
1046 * needs to be undone. Unfortunately, the program may have
1047 * made decisions based on that value */
1048 if (proc->e_machine == EM_PPC64
1049 && bp->libsym != NULL
1050 && bp->libsym->arch.type == PPC_PLT_RESOLVED) {
1051 each_task(proc->leader, NULL, detach_task_cb, bp);
1052 unresolve_plt_slot(proc, bp->libsym->arch.plt_slot_addr,
1053 bp->libsym->arch.resolved_value);
1054 }
1055 }
1056
1057 static void
ppc_plt_bp_install(struct breakpoint * bp,struct process * proc)1058 ppc_plt_bp_install(struct breakpoint *bp, struct process *proc)
1059 {
1060 /* This should not be an artificial breakpoint. */
1061 struct library_symbol *libsym = bp->libsym;
1062 if (libsym == NULL)
1063 libsym = bp->arch.irel_libsym;
1064 assert(libsym != NULL);
1065
1066 if (libsym->arch.type == PPC_PLT_NEED_UNRESOLVE) {
1067 /* Unresolve the .plt slot. If the binary was
1068 * prelinked, this makes the code invalid, because in
1069 * case of prelinked binary, the dynamic linker
1070 * doesn't update .plt[0] and .plt[1] with addresses
1071 * of the resover. But we don't care, we will never
1072 * need to enter the resolver. That just means that
1073 * we have to un-un-resolve this back before we
1074 * detach. */
1075
1076 struct ppc_unresolve_data *data = libsym->arch.data;
1077 libsym->arch.data = NULL;
1078 assert(data->self == data);
1079
1080 GElf_Addr plt_slot_addr = data->plt_slot_addr;
1081 GElf_Addr plt_slot_value = data->plt_slot_value;
1082 GElf_Addr plt_entry_addr = data->plt_entry_addr;
1083
1084 if (unresolve_plt_slot(proc, plt_slot_addr,
1085 plt_entry_addr) == 0) {
1086 if (! data->is_irelative) {
1087 mark_as_resolved(libsym, plt_slot_value);
1088 } else {
1089 libsym->arch.type = PPC_PLT_IRELATIVE;
1090 libsym->arch.resolved_value = plt_entry_addr;
1091 }
1092 } else {
1093 fprintf(stderr, "Couldn't unresolve %s@%p. Not tracing"
1094 " this symbol.\n",
1095 breakpoint_name(bp), bp->addr);
1096 proc_remove_breakpoint(proc, bp);
1097 }
1098
1099 free(data);
1100 }
1101 }
1102
1103 int
arch_library_init(struct library * lib)1104 arch_library_init(struct library *lib)
1105 {
1106 return 0;
1107 }
1108
1109 void
arch_library_destroy(struct library * lib)1110 arch_library_destroy(struct library *lib)
1111 {
1112 }
1113
1114 int
arch_library_clone(struct library * retp,struct library * lib)1115 arch_library_clone(struct library *retp, struct library *lib)
1116 {
1117 return 0;
1118 }
1119
1120 int
arch_library_symbol_init(struct library_symbol * libsym)1121 arch_library_symbol_init(struct library_symbol *libsym)
1122 {
1123 /* We set type explicitly in the code above, where we have the
1124 * necessary context. This is for calls from ltrace-elf.c and
1125 * such. */
1126 libsym->arch.type = PPC_DEFAULT;
1127 return 0;
1128 }
1129
1130 void
arch_library_symbol_destroy(struct library_symbol * libsym)1131 arch_library_symbol_destroy(struct library_symbol *libsym)
1132 {
1133 if (libsym->arch.type == PPC_PLT_NEED_UNRESOLVE) {
1134 assert(libsym->arch.data->self == libsym->arch.data);
1135 free(libsym->arch.data);
1136 libsym->arch.data = NULL;
1137 }
1138 }
1139
1140 int
arch_library_symbol_clone(struct library_symbol * retp,struct library_symbol * libsym)1141 arch_library_symbol_clone(struct library_symbol *retp,
1142 struct library_symbol *libsym)
1143 {
1144 retp->arch = libsym->arch;
1145 return 0;
1146 }
1147
1148 /* For some symbol types, we need to set up custom callbacks. XXX we
1149 * don't need PROC here, we can store the data in BP if it is of
1150 * interest to us. */
1151 int
arch_breakpoint_init(struct process * proc,struct breakpoint * bp)1152 arch_breakpoint_init(struct process *proc, struct breakpoint *bp)
1153 {
1154 bp->arch.irel_libsym = NULL;
1155
1156 /* Artificial and entry-point breakpoints are plain. */
1157 if (bp->libsym == NULL || bp->libsym->plt_type != LS_TOPLT_EXEC)
1158 return 0;
1159
1160 /* On PPC, secure PLT and prelinked BSS PLT are plain. */
1161 if (proc->e_machine == EM_PPC
1162 && bp->libsym->lib->arch.bss_plt_prelinked != 0)
1163 return 0;
1164
1165 /* On PPC64, stub PLT breakpoints are plain. */
1166 if (proc->e_machine == EM_PPC64
1167 && bp->libsym->arch.type == PPC64_PLT_STUB)
1168 return 0;
1169
1170 static struct bp_callbacks cbs = {
1171 .on_continue = ppc_plt_bp_continue,
1172 .on_retract = ppc_plt_bp_retract,
1173 .on_install = ppc_plt_bp_install,
1174 };
1175 breakpoint_set_callbacks(bp, &cbs);
1176
1177 /* For JMP_IREL breakpoints, make the breakpoint look
1178 * artificial by hiding the symbol. */
1179 if (bp->libsym->arch.type == PPC_PLT_IRELATIVE) {
1180 bp->arch.irel_libsym = bp->libsym;
1181 bp->libsym = NULL;
1182 }
1183
1184 return 0;
1185 }
1186
1187 void
arch_breakpoint_destroy(struct breakpoint * bp)1188 arch_breakpoint_destroy(struct breakpoint *bp)
1189 {
1190 }
1191
1192 int
arch_breakpoint_clone(struct breakpoint * retp,struct breakpoint * sbp)1193 arch_breakpoint_clone(struct breakpoint *retp, struct breakpoint *sbp)
1194 {
1195 retp->arch = sbp->arch;
1196 return 0;
1197 }
1198
1199 int
arch_process_init(struct process * proc)1200 arch_process_init(struct process *proc)
1201 {
1202 proc->arch.dl_plt_update_bp = NULL;
1203 proc->arch.handler = NULL;
1204 return 0;
1205 }
1206
1207 void
arch_process_destroy(struct process * proc)1208 arch_process_destroy(struct process *proc)
1209 {
1210 }
1211
1212 int
arch_process_clone(struct process * retp,struct process * proc)1213 arch_process_clone(struct process *retp, struct process *proc)
1214 {
1215 retp->arch = proc->arch;
1216
1217 if (retp->arch.dl_plt_update_bp != NULL) {
1218 /* Point it to the corresponding breakpoint in RETP.
1219 * It must be there, this part of PROC has already
1220 * been cloned to RETP. */
1221 retp->arch.dl_plt_update_bp
1222 = address2bpstruct(retp,
1223 retp->arch.dl_plt_update_bp->addr);
1224
1225 assert(retp->arch.dl_plt_update_bp != NULL);
1226 }
1227
1228 return 0;
1229 }
1230
1231 int
arch_process_exec(struct process * proc)1232 arch_process_exec(struct process *proc)
1233 {
1234 return arch_process_init(proc);
1235 }
1236