1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * constant of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, constant, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above constantright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR CONSTANTRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file opt_constant_propagation.cpp
26  *
27  * Tracks assignments of constants to channels of variables, and
28  * usage of those constant channels with direct usage of the constants.
29  *
30  * This can lead to constant folding and algebraic optimizations in
31  * those later expressions, while causing no increase in instruction
32  * count (due to constants being generally free to load from a
33  * constant push buffer or as instruction immediate values) and
34  * possibly reducing register pressure.
35  */
36 
37 #include "ir.h"
38 #include "ir_visitor.h"
39 #include "ir_rvalue_visitor.h"
40 #include "ir_basic_block.h"
41 #include "ir_optimization.h"
42 #include "glsl_types.h"
43 
44 namespace {
45 
46 class acp_entry : public exec_node
47 {
48 public:
acp_entry(ir_variable * var,unsigned write_mask,ir_constant * constant)49    acp_entry(ir_variable *var, unsigned write_mask, ir_constant *constant)
50    {
51       assert(var);
52       assert(constant);
53       this->var = var;
54       this->write_mask = write_mask;
55       this->constant = constant;
56       this->initial_values = write_mask;
57    }
58 
acp_entry(const acp_entry * src)59    acp_entry(const acp_entry *src)
60    {
61       this->var = src->var;
62       this->write_mask = src->write_mask;
63       this->constant = src->constant;
64       this->initial_values = src->initial_values;
65    }
66 
67    ir_variable *var;
68    ir_constant *constant;
69    unsigned write_mask;
70 
71    /** Mask of values initially available in the constant. */
72    unsigned initial_values;
73 };
74 
75 
76 class kill_entry : public exec_node
77 {
78 public:
kill_entry(ir_variable * var,unsigned write_mask)79    kill_entry(ir_variable *var, unsigned write_mask)
80    {
81       assert(var);
82       this->var = var;
83       this->write_mask = write_mask;
84    }
85 
86    ir_variable *var;
87    unsigned write_mask;
88 };
89 
90 class ir_constant_propagation_visitor : public ir_rvalue_visitor {
91 public:
ir_constant_propagation_visitor()92    ir_constant_propagation_visitor()
93    {
94       progress = false;
95       killed_all = false;
96       mem_ctx = ralloc_context(0);
97       this->acp = new(mem_ctx) exec_list;
98       this->kills = new(mem_ctx) exec_list;
99    }
~ir_constant_propagation_visitor()100    ~ir_constant_propagation_visitor()
101    {
102       ralloc_free(mem_ctx);
103    }
104 
105    virtual ir_visitor_status visit_enter(class ir_loop *);
106    virtual ir_visitor_status visit_enter(class ir_function_signature *);
107    virtual ir_visitor_status visit_enter(class ir_function *);
108    virtual ir_visitor_status visit_leave(class ir_assignment *);
109    virtual ir_visitor_status visit_enter(class ir_call *);
110    virtual ir_visitor_status visit_enter(class ir_if *);
111 
112    void add_constant(ir_assignment *ir);
113    void kill(ir_variable *ir, unsigned write_mask);
114    void handle_if_block(exec_list *instructions);
115    void handle_rvalue(ir_rvalue **rvalue);
116 
117    /** List of acp_entry: The available constants to propagate */
118    exec_list *acp;
119 
120    /**
121     * List of kill_entry: The masks of variables whose values were
122     * killed in this block.
123     */
124    exec_list *kills;
125 
126    bool progress;
127 
128    bool killed_all;
129 
130    void *mem_ctx;
131 };
132 
133 
134 void
handle_rvalue(ir_rvalue ** rvalue)135 ir_constant_propagation_visitor::handle_rvalue(ir_rvalue **rvalue)
136 {
137    if (this->in_assignee || !*rvalue)
138       return;
139 
140    const glsl_type *type = (*rvalue)->type;
141    if (!type->is_scalar() && !type->is_vector())
142       return;
143 
144    ir_swizzle *swiz = NULL;
145    ir_dereference_variable *deref = (*rvalue)->as_dereference_variable();
146    if (!deref) {
147       swiz = (*rvalue)->as_swizzle();
148       if (!swiz)
149 	 return;
150 
151       deref = swiz->val->as_dereference_variable();
152       if (!deref)
153 	 return;
154    }
155 
156    ir_constant_data data;
157    memset(&data, 0, sizeof(data));
158 
159    for (unsigned int i = 0; i < type->components(); i++) {
160       int channel;
161       acp_entry *found = NULL;
162 
163       if (swiz) {
164 	 switch (i) {
165 	 case 0: channel = swiz->mask.x; break;
166 	 case 1: channel = swiz->mask.y; break;
167 	 case 2: channel = swiz->mask.z; break;
168 	 case 3: channel = swiz->mask.w; break;
169 	 default: assert(!"shouldn't be reached"); channel = 0; break;
170 	 }
171       } else {
172 	 channel = i;
173       }
174 
175       foreach_iter(exec_list_iterator, iter, *this->acp) {
176 	 acp_entry *entry = (acp_entry *)iter.get();
177 	 if (entry->var == deref->var && entry->write_mask & (1 << channel)) {
178 	    found = entry;
179 	    break;
180 	 }
181       }
182 
183       if (!found)
184 	 return;
185 
186       int rhs_channel = 0;
187       for (int j = 0; j < 4; j++) {
188 	 if (j == channel)
189 	    break;
190 	 if (found->initial_values & (1 << j))
191 	    rhs_channel++;
192       }
193 
194       switch (type->base_type) {
195       case GLSL_TYPE_FLOAT:
196 	 data.f[i] = found->constant->value.f[rhs_channel];
197 	 break;
198       case GLSL_TYPE_INT:
199 	 data.i[i] = found->constant->value.i[rhs_channel];
200 	 break;
201       case GLSL_TYPE_UINT:
202 	 data.u[i] = found->constant->value.u[rhs_channel];
203 	 break;
204       case GLSL_TYPE_BOOL:
205 	 data.b[i] = found->constant->value.b[rhs_channel];
206 	 break;
207       default:
208 	 assert(!"not reached");
209 	 break;
210       }
211    }
212 
213    *rvalue = new(ralloc_parent(deref)) ir_constant(type, &data);
214    this->progress = true;
215 }
216 
217 ir_visitor_status
visit_enter(ir_function_signature * ir)218 ir_constant_propagation_visitor::visit_enter(ir_function_signature *ir)
219 {
220    /* Treat entry into a function signature as a completely separate
221     * block.  Any instructions at global scope will be shuffled into
222     * main() at link time, so they're irrelevant to us.
223     */
224    exec_list *orig_acp = this->acp;
225    exec_list *orig_kills = this->kills;
226    bool orig_killed_all = this->killed_all;
227 
228    this->acp = new(mem_ctx) exec_list;
229    this->kills = new(mem_ctx) exec_list;
230    this->killed_all = false;
231 
232    visit_list_elements(this, &ir->body);
233 
234    this->kills = orig_kills;
235    this->acp = orig_acp;
236    this->killed_all = orig_killed_all;
237 
238    return visit_continue_with_parent;
239 }
240 
241 ir_visitor_status
visit_leave(ir_assignment * ir)242 ir_constant_propagation_visitor::visit_leave(ir_assignment *ir)
243 {
244    if (this->in_assignee)
245       return visit_continue;
246 
247    unsigned kill_mask = ir->write_mask;
248    if (ir->lhs->as_dereference_array()) {
249       /* The LHS of the assignment uses an array indexing operator (e.g. v[i]
250        * = ...;).  Since we only try to constant propagate vectors and
251        * scalars, this means that either (a) array indexing is being used to
252        * select a vector component, or (b) the variable in question is neither
253        * a scalar or a vector, so we don't care about it.  In the former case,
254        * we want to kill the whole vector, since in general we can't predict
255        * which vector component will be selected by array indexing.  In the
256        * latter case, it doesn't matter what we do, so go ahead and kill the
257        * whole variable anyway.
258        *
259        * Note that if the array index is constant (e.g. v[2] = ...;), we could
260        * in principle be smarter, but we don't need to, because a future
261        * optimization pass will convert it to a simple assignment with the
262        * correct mask.
263        */
264       kill_mask = ~0;
265    }
266    kill(ir->lhs->variable_referenced(), kill_mask);
267 
268    add_constant(ir);
269 
270    return visit_continue;
271 }
272 
273 ir_visitor_status
visit_enter(ir_function * ir)274 ir_constant_propagation_visitor::visit_enter(ir_function *ir)
275 {
276    (void) ir;
277    return visit_continue;
278 }
279 
280 ir_visitor_status
visit_enter(ir_call * ir)281 ir_constant_propagation_visitor::visit_enter(ir_call *ir)
282 {
283    /* Do constant propagation on call parameters, but skip any out params */
284    exec_list_iterator sig_param_iter = ir->callee->parameters.iterator();
285    foreach_iter(exec_list_iterator, iter, ir->actual_parameters) {
286       ir_variable *sig_param = (ir_variable *)sig_param_iter.get();
287       ir_rvalue *param = (ir_rvalue *)iter.get();
288       if (sig_param->mode != ir_var_out && sig_param->mode != ir_var_inout) {
289 	 ir_rvalue *new_param = param;
290 	 handle_rvalue(&new_param);
291          if (new_param != param)
292 	    param->replace_with(new_param);
293 	 else
294 	    param->accept(this);
295       }
296       sig_param_iter.next();
297    }
298 
299    /* Since we're unlinked, we don't (necssarily) know the side effects of
300     * this call.  So kill all copies.
301     */
302    acp->make_empty();
303    this->killed_all = true;
304 
305    return visit_continue_with_parent;
306 }
307 
308 void
handle_if_block(exec_list * instructions)309 ir_constant_propagation_visitor::handle_if_block(exec_list *instructions)
310 {
311    exec_list *orig_acp = this->acp;
312    exec_list *orig_kills = this->kills;
313    bool orig_killed_all = this->killed_all;
314 
315    this->acp = new(mem_ctx) exec_list;
316    this->kills = new(mem_ctx) exec_list;
317    this->killed_all = false;
318 
319    /* Populate the initial acp with a constant of the original */
320    foreach_iter(exec_list_iterator, iter, *orig_acp) {
321       acp_entry *a = (acp_entry *)iter.get();
322       this->acp->push_tail(new(this->mem_ctx) acp_entry(a));
323    }
324 
325    visit_list_elements(this, instructions);
326 
327    if (this->killed_all) {
328       orig_acp->make_empty();
329    }
330 
331    exec_list *new_kills = this->kills;
332    this->kills = orig_kills;
333    this->acp = orig_acp;
334    this->killed_all = this->killed_all || orig_killed_all;
335 
336    foreach_iter(exec_list_iterator, iter, *new_kills) {
337       kill_entry *k = (kill_entry *)iter.get();
338       kill(k->var, k->write_mask);
339    }
340 }
341 
342 ir_visitor_status
visit_enter(ir_if * ir)343 ir_constant_propagation_visitor::visit_enter(ir_if *ir)
344 {
345    ir->condition->accept(this);
346    handle_rvalue(&ir->condition);
347 
348    handle_if_block(&ir->then_instructions);
349    handle_if_block(&ir->else_instructions);
350 
351    /* handle_if_block() already descended into the children. */
352    return visit_continue_with_parent;
353 }
354 
355 ir_visitor_status
visit_enter(ir_loop * ir)356 ir_constant_propagation_visitor::visit_enter(ir_loop *ir)
357 {
358    exec_list *orig_acp = this->acp;
359    exec_list *orig_kills = this->kills;
360    bool orig_killed_all = this->killed_all;
361 
362    /* FINISHME: For now, the initial acp for loops is totally empty.
363     * We could go through once, then go through again with the acp
364     * cloned minus the killed entries after the first run through.
365     */
366    this->acp = new(mem_ctx) exec_list;
367    this->kills = new(mem_ctx) exec_list;
368    this->killed_all = false;
369 
370    visit_list_elements(this, &ir->body_instructions);
371 
372    if (this->killed_all) {
373       orig_acp->make_empty();
374    }
375 
376    exec_list *new_kills = this->kills;
377    this->kills = orig_kills;
378    this->acp = orig_acp;
379    this->killed_all = this->killed_all || orig_killed_all;
380 
381    foreach_iter(exec_list_iterator, iter, *new_kills) {
382       kill_entry *k = (kill_entry *)iter.get();
383       kill(k->var, k->write_mask);
384    }
385 
386    /* already descended into the children. */
387    return visit_continue_with_parent;
388 }
389 
390 void
kill(ir_variable * var,unsigned write_mask)391 ir_constant_propagation_visitor::kill(ir_variable *var, unsigned write_mask)
392 {
393    assert(var != NULL);
394 
395    /* We don't track non-vectors. */
396    if (!var->type->is_vector() && !var->type->is_scalar())
397       return;
398 
399    /* Remove any entries currently in the ACP for this kill. */
400    foreach_iter(exec_list_iterator, iter, *this->acp) {
401       acp_entry *entry = (acp_entry *)iter.get();
402 
403       if (entry->var == var) {
404 	 entry->write_mask &= ~write_mask;
405 	 if (entry->write_mask == 0)
406 	    entry->remove();
407       }
408    }
409 
410    /* Add this writemask of the variable to the list of killed
411     * variables in this block.
412     */
413    foreach_iter(exec_list_iterator, iter, *this->kills) {
414       kill_entry *entry = (kill_entry *)iter.get();
415 
416       if (entry->var == var) {
417 	 entry->write_mask |= write_mask;
418 	 return;
419       }
420    }
421    /* Not already in the list.  Make new entry. */
422    this->kills->push_tail(new(this->mem_ctx) kill_entry(var, write_mask));
423 }
424 
425 /**
426  * Adds an entry to the available constant list if it's a plain assignment
427  * of a variable to a variable.
428  */
429 void
add_constant(ir_assignment * ir)430 ir_constant_propagation_visitor::add_constant(ir_assignment *ir)
431 {
432    acp_entry *entry;
433 
434    if (ir->condition)
435       return;
436 
437    if (!ir->write_mask)
438       return;
439 
440    ir_dereference_variable *deref = ir->lhs->as_dereference_variable();
441    ir_constant *constant = ir->rhs->as_constant();
442 
443    if (!deref || !constant)
444       return;
445 
446    /* Only do constant propagation on vectors.  Constant matrices,
447     * arrays, or structures would require more work elsewhere.
448     */
449    if (!deref->var->type->is_vector() && !deref->var->type->is_scalar())
450       return;
451 
452    entry = new(this->mem_ctx) acp_entry(deref->var, ir->write_mask, constant);
453    this->acp->push_tail(entry);
454 }
455 
456 } /* unnamed namespace */
457 
458 /**
459  * Does a constant propagation pass on the code present in the instruction stream.
460  */
461 bool
do_constant_propagation(exec_list * instructions)462 do_constant_propagation(exec_list *instructions)
463 {
464    ir_constant_propagation_visitor v;
465 
466    visit_list_elements(&v, instructions);
467 
468    return v.progress;
469 }
470