1 /*
2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3  Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4  develop this 3D driver.
5 
6  Permission is hereby granted, free of charge, to any person obtaining
7  a copy of this software and associated documentation files (the
8  "Software"), to deal in the Software without restriction, including
9  without limitation the rights to use, copy, modify, merge, publish,
10  distribute, sublicense, and/or sell copies of the Software, and to
11  permit persons to whom the Software is furnished to do so, subject to
12  the following conditions:
13 
14  The above copyright notice and this permission notice (including the
15  next paragraph) shall be included in all copies or substantial
16  portions of the Software.
17 
18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 
26  **********************************************************************/
27  /*
28   * Authors:
29   *   Keith Whitwell <keith@tungstengraphics.com>
30   */
31 
32 
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35 
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43 
44 /* Glossary:
45  *
46  * URB - uniform resource buffer.  A mid-sized buffer which is
47  * partitioned between the fixed function units and used for passing
48  * values (vertices, primitives, constants) between them.
49  *
50  * CURBE - constant URB entry.  An urb region (entry) used to hold
51  * constant values which the fixed function units can be instructed to
52  * preload into the GRF when spawning a thread.
53  *
54  * VUE - vertex URB entry.  An urb entry holding a vertex and usually
55  * a vertex header.  The header contains control information and
56  * things like primitive type, Begin/end flags and clip codes.
57  *
58  * PUE - primitive URB entry.  An urb entry produced by the setup (SF)
59  * unit holding rasterization and interpolation parameters.
60  *
61  * GRF - general register file.  One of several register files
62  * addressable by programmed threads.  The inputs (r0, payload, curbe,
63  * urb) of the thread are preloaded to this area before the thread is
64  * spawned.  The registers are individually 8 dwords wide and suitable
65  * for general usage.  Registers holding thread input values are not
66  * special and may be overwritten.
67  *
68  * MRF - message register file.  Threads communicate (and terminate)
69  * by sending messages.  Message parameters are placed in contiguous
70  * MRF registers.  All program output is via these messages.  URB
71  * entries are populated by sending a message to the shared URB
72  * function containing the new data, together with a control word,
73  * often an unmodified copy of R0.
74  *
75  * R0 - GRF register 0.  Typically holds control information used when
76  * sending messages to other threads.
77  *
78  * EU or GEN4 EU: The name of the programmable subsystem of the
79  * i965 hardware.  Threads are executed by the EU, the registers
80  * described above are part of the EU architecture.
81  *
82  * Fixed function units:
83  *
84  * CS - Command streamer.  Notional first unit, little software
85  * interaction.  Holds the URB entries used for constant data, ie the
86  * CURBEs.
87  *
88  * VF/VS - Vertex Fetch / Vertex Shader.  The fixed function part of
89  * this unit is responsible for pulling vertices out of vertex buffers
90  * in vram and injecting them into the processing pipe as VUEs.  If
91  * enabled, it first passes them to a VS thread which is a good place
92  * for the driver to implement any active vertex shader.
93  *
94  * GS - Geometry Shader.  This corresponds to a new DX10 concept.  If
95  * enabled, incoming strips etc are passed to GS threads in individual
96  * line/triangle/point units.  The GS thread may perform arbitary
97  * computation and emit whatever primtives with whatever vertices it
98  * chooses.  This makes GS an excellent place to implement GL's
99  * unfilled polygon modes, though of course it is capable of much
100  * more.  Additionally, GS is used to translate away primitives not
101  * handled by latter units, including Quads and Lineloops.
102  *
103  * CS - Clipper.  Mesa's clipping algorithms are imported to run on
104  * this unit.  The fixed function part performs cliptesting against
105  * the 6 fixed clipplanes and makes descisions on whether or not the
106  * incoming primitive needs to be passed to a thread for clipping.
107  * User clip planes are handled via cooperation with the VS thread.
108  *
109  * SF - Strips Fans or Setup: Triangles are prepared for
110  * rasterization.  Interpolation coefficients are calculated.
111  * Flatshading and two-side lighting usually performed here.
112  *
113  * WM - Windower.  Interpolation of vertex attributes performed here.
114  * Fragment shader implemented here.  SIMD aspects of EU taken full
115  * advantage of, as pixels are processed in blocks of 16.
116  *
117  * CC - Color Calculator.  No EU threads associated with this unit.
118  * Handles blending and (presumably) depth and stencil testing.
119  */
120 
121 
122 #define BRW_MAX_CURBE                    (32*16)
123 
124 struct brw_context;
125 struct brw_instruction;
126 struct brw_vs_prog_key;
127 struct brw_wm_prog_key;
128 struct brw_wm_prog_data;
129 
130 enum brw_state_id {
131    BRW_STATE_URB_FENCE,
132    BRW_STATE_FRAGMENT_PROGRAM,
133    BRW_STATE_VERTEX_PROGRAM,
134    BRW_STATE_INPUT_DIMENSIONS,
135    BRW_STATE_CURBE_OFFSETS,
136    BRW_STATE_REDUCED_PRIMITIVE,
137    BRW_STATE_PRIMITIVE,
138    BRW_STATE_CONTEXT,
139    BRW_STATE_WM_INPUT_DIMENSIONS,
140    BRW_STATE_PSP,
141    BRW_STATE_SURFACES,
142    BRW_STATE_VS_BINDING_TABLE,
143    BRW_STATE_GS_BINDING_TABLE,
144    BRW_STATE_PS_BINDING_TABLE,
145    BRW_STATE_INDICES,
146    BRW_STATE_VERTICES,
147    BRW_STATE_BATCH,
148    BRW_STATE_NR_WM_SURFACES,
149    BRW_STATE_NR_VS_SURFACES,
150    BRW_STATE_INDEX_BUFFER,
151    BRW_STATE_VS_CONSTBUF,
152    BRW_STATE_PROGRAM_CACHE,
153    BRW_STATE_STATE_BASE_ADDRESS,
154    BRW_STATE_SOL_INDICES,
155 };
156 
157 #define BRW_NEW_URB_FENCE               (1 << BRW_STATE_URB_FENCE)
158 #define BRW_NEW_FRAGMENT_PROGRAM        (1 << BRW_STATE_FRAGMENT_PROGRAM)
159 #define BRW_NEW_VERTEX_PROGRAM          (1 << BRW_STATE_VERTEX_PROGRAM)
160 #define BRW_NEW_INPUT_DIMENSIONS        (1 << BRW_STATE_INPUT_DIMENSIONS)
161 #define BRW_NEW_CURBE_OFFSETS           (1 << BRW_STATE_CURBE_OFFSETS)
162 #define BRW_NEW_REDUCED_PRIMITIVE       (1 << BRW_STATE_REDUCED_PRIMITIVE)
163 #define BRW_NEW_PRIMITIVE               (1 << BRW_STATE_PRIMITIVE)
164 #define BRW_NEW_CONTEXT                 (1 << BRW_STATE_CONTEXT)
165 #define BRW_NEW_WM_INPUT_DIMENSIONS     (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
166 #define BRW_NEW_PSP                     (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES		(1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE	(1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE	(1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE	(1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES			(1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES		(1 << BRW_STATE_VERTICES)
173 /**
174  * Used for any batch entry with a relocated pointer that will be used
175  * by any 3D rendering.
176  */
177 #define BRW_NEW_BATCH                  (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER           (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF            (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE		(1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS	(1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_SOL_INDICES		(1 << BRW_STATE_SOL_INDICES)
184 
185 struct brw_state_flags {
186    /** State update flags signalled by mesa internals */
187    GLuint mesa;
188    /**
189     * State update flags signalled as the result of brw_tracked_state updates
190     */
191    GLuint brw;
192    /** State update flags signalled by brw_state_cache.c searches */
193    GLuint cache;
194 };
195 
196 #define AUB_TRACE_TYPE_MASK		0x0000ff00
197 #define AUB_TRACE_TYPE_NOTYPE		(0 << 8)
198 #define AUB_TRACE_TYPE_BATCH		(1 << 8)
199 #define AUB_TRACE_TYPE_VERTEX_BUFFER	(5 << 8)
200 #define AUB_TRACE_TYPE_2D_MAP		(6 << 8)
201 #define AUB_TRACE_TYPE_CUBE_MAP		(7 << 8)
202 #define AUB_TRACE_TYPE_VOLUME_MAP	(9 << 8)
203 #define AUB_TRACE_TYPE_1D_MAP		(10 << 8)
204 #define AUB_TRACE_TYPE_CONSTANT_BUFFER	(11 << 8)
205 #define AUB_TRACE_TYPE_CONSTANT_URB	(12 << 8)
206 #define AUB_TRACE_TYPE_INDEX_BUFFER	(13 << 8)
207 #define AUB_TRACE_TYPE_GENERAL		(14 << 8)
208 #define AUB_TRACE_TYPE_SURFACE		(15 << 8)
209 
210 /**
211  * state_struct_type enum values are encoded with the top 16 bits representing
212  * the type to be delivered to the .aub file, and the bottom 16 bits
213  * representing the subtype.  This macro performs the encoding.
214  */
215 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
216 
217 enum state_struct_type {
218    AUB_TRACE_VS_STATE =			ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
219    AUB_TRACE_GS_STATE =			ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
220    AUB_TRACE_CLIP_STATE =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
221    AUB_TRACE_SF_STATE =			ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
222    AUB_TRACE_WM_STATE =			ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
223    AUB_TRACE_CC_STATE =			ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
224    AUB_TRACE_CLIP_VP_STATE =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
225    AUB_TRACE_SF_VP_STATE =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
226    AUB_TRACE_CC_VP_STATE =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
227    AUB_TRACE_SAMPLER_STATE =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
228    AUB_TRACE_KERNEL_INSTRUCTIONS =	ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
229    AUB_TRACE_SCRATCH_SPACE =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
230    AUB_TRACE_SAMPLER_DEFAULT_COLOR =    ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
231 
232    AUB_TRACE_SCISSOR_STATE =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
233    AUB_TRACE_BLEND_STATE =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
234    AUB_TRACE_DEPTH_STENCIL_STATE =	ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
235 
236    AUB_TRACE_VERTEX_BUFFER =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
237    AUB_TRACE_BINDING_TABLE =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
238    AUB_TRACE_SURFACE_STATE =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
239    AUB_TRACE_VS_CONSTANTS =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
240    AUB_TRACE_WM_CONSTANTS =		ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
241 };
242 
243 /**
244  * Decode a state_struct_type value to determine the type that should be
245  * stored in the .aub file.
246  */
AUB_TRACE_TYPE(enum state_struct_type ss_type)247 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
248 {
249    return (ss_type & 0xFFFF0000) >> 16;
250 }
251 
252 /**
253  * Decode a state_struct_type value to determine the subtype that should be
254  * stored in the .aub file.
255  */
AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)256 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
257 {
258    return ss_type & 0xFFFF;
259 }
260 
261 /** Subclass of Mesa vertex program */
262 struct brw_vertex_program {
263    struct gl_vertex_program program;
264    GLuint id;
265    bool use_const_buffer;
266 };
267 
268 
269 /** Subclass of Mesa fragment program */
270 struct brw_fragment_program {
271    struct gl_fragment_program program;
272    GLuint id;  /**< serial no. to identify frag progs, never re-used */
273 };
274 
275 struct brw_shader {
276    struct gl_shader base;
277 
278    bool compiled_once;
279 
280    /** Shader IR transformed for native compile, at link time. */
281    struct exec_list *ir;
282 };
283 
284 struct brw_shader_program {
285    struct gl_shader_program base;
286 };
287 
288 /* Data about a particular attempt to compile a program.  Note that
289  * there can be many of these, each in a different GL state
290  * corresponding to a different brw_wm_prog_key struct, with different
291  * compiled programs:
292  */
293 struct brw_wm_prog_data {
294    GLuint curb_read_length;
295    GLuint urb_read_length;
296 
297    GLuint first_curbe_grf;
298    GLuint first_curbe_grf_16;
299    GLuint reg_blocks;
300    GLuint reg_blocks_16;
301    GLuint total_scratch;
302 
303    GLuint nr_params;       /**< number of float params/constants */
304    GLuint nr_pull_params;
305    bool error;
306    bool dual_src_blend;
307    int dispatch_width;
308    uint32_t prog_offset_16;
309 
310    /**
311     * Mask of which interpolation modes are required by the fragment shader.
312     * Used in hardware setup on gen6+.
313     */
314    uint32_t barycentric_interp_modes;
315 
316    /* Pointer to tracked values (only valid once
317     * _mesa_load_state_parameters has been called at runtime).
318     */
319    const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
320    const float *pull_param[MAX_UNIFORMS * 4];
321 };
322 
323 /**
324  * Enum representing the i965-specific vertex results that don't correspond
325  * exactly to any element of gl_vert_result.  The values of this enum are
326  * assigned such that they don't conflict with gl_vert_result.
327  */
328 typedef enum
329 {
330    BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
331    BRW_VERT_RESULT_HPOS_DUPLICATE,
332    BRW_VERT_RESULT_PAD,
333    /*
334     * It's actually not a vert_result but just a _mark_ to let sf aware that
335     * he need do something special to handle gl_PointCoord builtin variable
336     * correctly. see compile_sf_prog() for more info.
337     */
338    BRW_VERT_RESULT_PNTC,
339    BRW_VERT_RESULT_MAX
340 } brw_vert_result;
341 
342 
343 /**
344  * Data structure recording the relationship between the gl_vert_result enum
345  * and "slots" within the vertex URB entry (VUE).  A "slot" is defined as a
346  * single octaword within the VUE (128 bits).
347  *
348  * Note that each BRW register contains 256 bits (2 octawords), so when
349  * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
350  * consecutive VUE slots.  When accessing the VUE in URB_INTERLEAVED mode (as
351  * in a vertex shader), each register corresponds to a single VUE slot, since
352  * it contains data for two separate vertices.
353  */
354 struct brw_vue_map {
355    /**
356     * Map from gl_vert_result value to VUE slot.  For gl_vert_results that are
357     * not stored in a slot (because they are not written, or because
358     * additional processing is applied before storing them in the VUE), the
359     * value is -1.
360     */
361    int vert_result_to_slot[BRW_VERT_RESULT_MAX];
362 
363    /**
364     * Map from VUE slot to gl_vert_result value.  For slots that do not
365     * directly correspond to a gl_vert_result, the value comes from
366     * brw_vert_result.
367     *
368     * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
369     * simplifies code that uses the value stored in slot_to_vert_result to
370     * create a bit mask).
371     */
372    int slot_to_vert_result[BRW_VERT_RESULT_MAX];
373 
374    /**
375     * Total number of VUE slots in use
376     */
377    int num_slots;
378 };
379 
380 /**
381  * Convert a VUE slot number into a byte offset within the VUE.
382  */
brw_vue_slot_to_offset(GLuint slot)383 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
384 {
385    return 16*slot;
386 }
387 
388 /**
389  * Convert a vert_result into a byte offset within the VUE.
390  */
brw_vert_result_to_offset(struct brw_vue_map * vue_map,GLuint vert_result)391 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
392                                                GLuint vert_result)
393 {
394    return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
395 }
396 
397 
398 struct brw_sf_prog_data {
399    GLuint urb_read_length;
400    GLuint total_grf;
401 
402    /* Each vertex may have upto 12 attributes, 4 components each,
403     * except WPOS which requires only 2.  (11*4 + 2) == 44 ==> 11
404     * rows.
405     *
406     * Actually we use 4 for each, so call it 12 rows.
407     */
408    GLuint urb_entry_size;
409 };
410 
411 struct brw_clip_prog_data {
412    GLuint curb_read_length;	/* user planes? */
413    GLuint clip_mode;
414    GLuint urb_read_length;
415    GLuint total_grf;
416 };
417 
418 struct brw_gs_prog_data {
419    GLuint urb_read_length;
420    GLuint total_grf;
421 
422    /**
423     * Gen6 transform feedback: Amount by which the streaming vertex buffer
424     * indices should be incremented each time the GS is invoked.
425     */
426    unsigned svbi_postincrement_value;
427 };
428 
429 struct brw_vs_prog_data {
430    struct brw_vue_map vue_map;
431 
432    GLuint curb_read_length;
433    GLuint urb_read_length;
434    GLuint total_grf;
435    GLbitfield64 outputs_written;
436    GLuint nr_params;       /**< number of float params/constants */
437    GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
438    GLuint total_scratch;
439 
440    GLbitfield64 inputs_read;
441 
442    /* Used for calculating urb partitions:
443     */
444    GLuint urb_entry_size;
445 
446    const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
447    const float *pull_param[MAX_UNIFORMS * 4];
448 
449    bool uses_new_param_layout;
450    bool uses_vertexid;
451    bool userclip;
452 
453    int num_surfaces;
454 };
455 
456 
457 /* Size == 0 if output either not written, or always [0,0,0,1]
458  */
459 struct brw_vs_ouput_sizes {
460    GLubyte output_size[VERT_RESULT_MAX];
461 };
462 
463 
464 /** Number of texture sampler units */
465 #define BRW_MAX_TEX_UNIT 16
466 
467 /** Max number of render targets in a shader */
468 #define BRW_MAX_DRAW_BUFFERS 8
469 
470 /**
471  * Max number of binding table entries used for stream output.
472  *
473  * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
474  * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
475  *
476  * On Gen6, the size of transform feedback data is limited not by the number
477  * of components but by the number of binding table entries we set aside.  We
478  * use one binding table entry for a float, one entry for a vector, and one
479  * entry per matrix column.  Since the only way we can communicate our
480  * transform feedback capabilities to the client is via
481  * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
482  * worst case, in which all the varyings are floats, so we use up one binding
483  * table entry per component.  Therefore we need to set aside at least 64
484  * binding table entries for use by transform feedback.
485  *
486  * Note: since we don't currently pack varyings, it is currently impossible
487  * for the client to actually use up all of these binding table entries--if
488  * all of their varyings were floats, they would run out of varying slots and
489  * fail to link.  But that's a bug, so it seems prudent to go ahead and
490  * allocate the number of binding table entries we will need once the bug is
491  * fixed.
492  */
493 #define BRW_MAX_SOL_BINDINGS 64
494 
495 /** Maximum number of actual buffers used for stream output */
496 #define BRW_MAX_SOL_BUFFERS 4
497 
498 #define BRW_MAX_WM_UBOS              12
499 #define BRW_MAX_VS_UBOS              12
500 
501 /**
502  * Helpers to create Surface Binding Table indexes for draw buffers,
503  * textures, and constant buffers.
504  *
505  * Shader threads access surfaces via numeric handles, rather than directly
506  * using pointers.  The binding table maps these numeric handles to the
507  * address of the actual buffer.
508  *
509  * For example, a shader might ask to sample from "surface 7."  In this case,
510  * bind[7] would contain a pointer to a texture.
511  *
512  * Currently, our WM binding tables are (arbitrarily) programmed as follows:
513  *
514  *    +-------------------------------+
515  *    |   0 | Draw buffer 0           |
516  *    |   . |     .                   |
517  *    |   : |     :                   |
518  *    |   7 | Draw buffer 7           |
519  *    |-----|-------------------------|
520  *    |   8 | WM Pull Constant Buffer |
521  *    |-----|-------------------------|
522  *    |   9 | Texture 0               |
523  *    |   . |     .                   |
524  *    |   : |     :                   |
525  *    |  24 | Texture 15              |
526  *    |-----|-------------------------|
527  *    |  25 | UBO 0                   |
528  *    |   . |     .                   |
529  *    |   : |     :                   |
530  *    |  36 | UBO 11                  |
531  *    +-------------------------------+
532  *
533  * Our VS binding tables are programmed as follows:
534  *
535  *    +-----+-------------------------+
536  *    |   0 | VS Pull Constant Buffer |
537  *    +-----+-------------------------+
538  *    |   1 | Texture 0               |
539  *    |   . |     .                   |
540  *    |   : |     :                   |
541  *    |  16 | Texture 15              |
542  *    +-----+-------------------------+
543  *    |  17 | UBO 0                   |
544  *    |   . |     .                   |
545  *    |   : |     :                   |
546  *    |  28 | UBO 11                  |
547  *    +-------------------------------+
548  *
549  * Our (gen6) GS binding tables are programmed as follows:
550  *
551  *    +-----+-------------------------+
552  *    |   0 | SOL Binding 0           |
553  *    |   . |     .                   |
554  *    |   : |     :                   |
555  *    |  63 | SOL Binding 63          |
556  *    +-----+-------------------------+
557  *
558  * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
559  * the identity function or things will break.  We do want to keep draw buffers
560  * first so we can use headerless render target writes for RT 0.
561  */
562 #define SURF_INDEX_DRAW(d)           (d)
563 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
564 #define SURF_INDEX_TEXTURE(t)        (BRW_MAX_DRAW_BUFFERS + 2 + (t))
565 #define SURF_INDEX_WM_UBO(u)         (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
566 
567 /** Maximum size of the binding table. */
568 #define BRW_MAX_WM_SURFACES          SURF_INDEX_WM_UBO(BRW_MAX_WM_UBOS)
569 
570 #define SURF_INDEX_VERT_CONST_BUFFER (0)
571 #define SURF_INDEX_VS_TEXTURE(t)     (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
572 #define SURF_INDEX_VS_UBO(u)         (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
573 #define BRW_MAX_VS_SURFACES          SURF_INDEX_VS_UBO(BRW_MAX_VS_UBOS)
574 
575 #define SURF_INDEX_SOL_BINDING(t)    ((t))
576 #define BRW_MAX_GS_SURFACES          SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
577 
578 enum brw_cache_id {
579    BRW_BLEND_STATE,
580    BRW_DEPTH_STENCIL_STATE,
581    BRW_COLOR_CALC_STATE,
582    BRW_CC_VP,
583    BRW_CC_UNIT,
584    BRW_WM_PROG,
585    BRW_BLORP_BLIT_PROG,
586    BRW_SAMPLER,
587    BRW_WM_UNIT,
588    BRW_SF_PROG,
589    BRW_SF_VP,
590    BRW_SF_UNIT, /* scissor state on gen6 */
591    BRW_VS_UNIT,
592    BRW_VS_PROG,
593    BRW_GS_UNIT,
594    BRW_GS_PROG,
595    BRW_CLIP_VP,
596    BRW_CLIP_UNIT,
597    BRW_CLIP_PROG,
598 
599    BRW_MAX_CACHE
600 };
601 
602 struct brw_cache_item {
603    /**
604     * Effectively part of the key, cache_id identifies what kind of state
605     * buffer is involved, and also which brw->state.dirty.cache flag should
606     * be set when this cache item is chosen.
607     */
608    enum brw_cache_id cache_id;
609    /** 32-bit hash of the key data */
610    GLuint hash;
611    GLuint key_size;		/* for variable-sized keys */
612    GLuint aux_size;
613    const void *key;
614 
615    uint32_t offset;
616    uint32_t size;
617 
618    struct brw_cache_item *next;
619 };
620 
621 
622 
623 struct brw_cache {
624    struct brw_context *brw;
625 
626    struct brw_cache_item **items;
627    drm_intel_bo *bo;
628    GLuint size, n_items;
629 
630    uint32_t next_offset;
631    bool bo_used_by_gpu;
632 };
633 
634 
635 /* Considered adding a member to this struct to document which flags
636  * an update might raise so that ordering of the state atoms can be
637  * checked or derived at runtime.  Dropped the idea in favor of having
638  * a debug mode where the state is monitored for flags which are
639  * raised that have already been tested against.
640  */
641 struct brw_tracked_state {
642    struct brw_state_flags dirty;
643    void (*emit)( struct brw_context *brw );
644 };
645 
646 /* Flags for brw->state.cache.
647  */
648 #define CACHE_NEW_BLEND_STATE            (1<<BRW_BLEND_STATE)
649 #define CACHE_NEW_DEPTH_STENCIL_STATE    (1<<BRW_DEPTH_STENCIL_STATE)
650 #define CACHE_NEW_COLOR_CALC_STATE       (1<<BRW_COLOR_CALC_STATE)
651 #define CACHE_NEW_CC_VP                  (1<<BRW_CC_VP)
652 #define CACHE_NEW_CC_UNIT                (1<<BRW_CC_UNIT)
653 #define CACHE_NEW_WM_PROG                (1<<BRW_WM_PROG)
654 #define CACHE_NEW_SAMPLER                (1<<BRW_SAMPLER)
655 #define CACHE_NEW_WM_UNIT                (1<<BRW_WM_UNIT)
656 #define CACHE_NEW_SF_PROG                (1<<BRW_SF_PROG)
657 #define CACHE_NEW_SF_VP                  (1<<BRW_SF_VP)
658 #define CACHE_NEW_SF_UNIT                (1<<BRW_SF_UNIT)
659 #define CACHE_NEW_VS_UNIT                (1<<BRW_VS_UNIT)
660 #define CACHE_NEW_VS_PROG                (1<<BRW_VS_PROG)
661 #define CACHE_NEW_GS_UNIT                (1<<BRW_GS_UNIT)
662 #define CACHE_NEW_GS_PROG                (1<<BRW_GS_PROG)
663 #define CACHE_NEW_CLIP_VP                (1<<BRW_CLIP_VP)
664 #define CACHE_NEW_CLIP_UNIT              (1<<BRW_CLIP_UNIT)
665 #define CACHE_NEW_CLIP_PROG              (1<<BRW_CLIP_PROG)
666 
667 struct brw_cached_batch_item {
668    struct header *header;
669    GLuint sz;
670    struct brw_cached_batch_item *next;
671 };
672 
673 
674 
675 /* Protect against a future where VERT_ATTRIB_MAX > 32.  Wouldn't life
676  * be easier if C allowed arrays of packed elements?
677  */
678 #define ATTRIB_BIT_DWORDS  ((VERT_ATTRIB_MAX+31)/32)
679 
680 struct brw_vertex_buffer {
681    /** Buffer object containing the uploaded vertex data */
682    drm_intel_bo *bo;
683    uint32_t offset;
684    /** Byte stride between elements in the uploaded array */
685    GLuint stride;
686    GLuint step_rate;
687 };
688 struct brw_vertex_element {
689    const struct gl_client_array *glarray;
690 
691    int buffer;
692 
693    /** The corresponding Mesa vertex attribute */
694    gl_vert_attrib attrib;
695    /** Size of a complete element */
696    GLuint element_size;
697    /** Offset of the first element within the buffer object */
698    unsigned int offset;
699 };
700 
701 
702 
703 struct brw_vertex_info {
704    GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
705 };
706 
707 struct brw_query_object {
708    struct gl_query_object Base;
709 
710    /** Last query BO associated with this query. */
711    drm_intel_bo *bo;
712    /** First index in bo with query data for this object. */
713    int first_index;
714    /** Last index in bo with query data for this object. */
715    int last_index;
716 };
717 
718 
719 /**
720  * brw_context is derived from intel_context.
721  */
722 struct brw_context
723 {
724    struct intel_context intel;  /**< base class, must be first field */
725    GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
726 
727    bool emit_state_always;
728    bool has_surface_tile_offset;
729    bool has_compr4;
730    bool has_negative_rhw_bug;
731    bool has_aa_line_parameters;
732    bool has_pln;
733    bool precompile;
734 
735    /**
736     * Some versions of Gen hardware don't do centroid interpolation correctly
737     * on unlit pixels, causing incorrect values for derivatives near triangle
738     * edges.  Enabling this flag causes the fragment shader to use
739     * non-centroid interpolation for unlit pixels, at the expense of two extra
740     * fragment shader instructions.
741     */
742    bool needs_unlit_centroid_workaround;
743 
744    struct {
745       struct brw_state_flags dirty;
746    } state;
747 
748    struct brw_cache cache;
749    struct brw_cached_batch_item *cached_batch_items;
750 
751    struct {
752       struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
753       struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
754       struct {
755 	      uint32_t handle;
756 	      uint32_t offset;
757 	      uint32_t stride;
758 	      uint32_t step_rate;
759       } current_buffers[VERT_ATTRIB_MAX];
760 
761       struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
762       GLuint nr_enabled;
763       GLuint nr_buffers, nr_current_buffers;
764 
765       /* Summary of size and varying of active arrays, so we can check
766        * for changes to this state:
767        */
768       struct brw_vertex_info info;
769       unsigned int min_index, max_index;
770 
771       /* Offset from start of vertex buffer so we can avoid redefining
772        * the same VB packed over and over again.
773        */
774       unsigned int start_vertex_bias;
775    } vb;
776 
777    struct {
778       /**
779        * Index buffer for this draw_prims call.
780        *
781        * Updates are signaled by BRW_NEW_INDICES.
782        */
783       const struct _mesa_index_buffer *ib;
784 
785       /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
786       drm_intel_bo *bo;
787       GLuint type;
788 
789       /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
790        * avoid re-uploading the IB packet over and over if we're actually
791        * referencing the same index buffer.
792        */
793       unsigned int start_vertex_offset;
794    } ib;
795 
796    /* Active vertex program:
797     */
798    const struct gl_vertex_program *vertex_program;
799    const struct gl_fragment_program *fragment_program;
800 
801    /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
802    uint32_t CMD_VF_STATISTICS;
803    /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
804    uint32_t CMD_PIPELINE_SELECT;
805 
806    /**
807     * Platform specific constants containing the maximum number of threads
808     * for each pipeline stage.
809     */
810    int max_vs_threads;
811    int max_gs_threads;
812    int max_wm_threads;
813 
814    /* BRW_NEW_URB_ALLOCATIONS:
815     */
816    struct {
817       GLuint vsize;		/* vertex size plus header in urb registers */
818       GLuint csize;		/* constant buffer size in urb registers */
819       GLuint sfsize;		/* setup data size in urb registers */
820 
821       bool constrained;
822 
823       GLuint max_vs_entries;	/* Maximum number of VS entries */
824       GLuint max_gs_entries;	/* Maximum number of GS entries */
825 
826       GLuint nr_vs_entries;
827       GLuint nr_gs_entries;
828       GLuint nr_clip_entries;
829       GLuint nr_sf_entries;
830       GLuint nr_cs_entries;
831 
832       /* gen6:
833        * The length of each URB entry owned by the VS (or GS), as
834        * a number of 1024-bit (128-byte) rows.  Should be >= 1.
835        *
836        * gen7: Same meaning, but in 512-bit (64-byte) rows.
837        */
838       GLuint vs_size;
839       GLuint gs_size;
840 
841       GLuint vs_start;
842       GLuint gs_start;
843       GLuint clip_start;
844       GLuint sf_start;
845       GLuint cs_start;
846       GLuint size; /* Hardware URB size, in KB. */
847 
848       /* gen6: True if the most recently sent _3DSTATE_URB message allocated
849        * URB space for the GS.
850        */
851       bool gen6_gs_previously_active;
852    } urb;
853 
854 
855    /* BRW_NEW_CURBE_OFFSETS:
856     */
857    struct {
858       GLuint wm_start;  /**< pos of first wm const in CURBE buffer */
859       GLuint wm_size;   /**< number of float[4] consts, multiple of 16 */
860       GLuint clip_start;
861       GLuint clip_size;
862       GLuint vs_start;
863       GLuint vs_size;
864       GLuint total_size;
865 
866       drm_intel_bo *curbe_bo;
867       /** Offset within curbe_bo of space for current curbe entry */
868       GLuint curbe_offset;
869       /** Offset within curbe_bo of space for next curbe entry */
870       GLuint curbe_next_offset;
871 
872       /**
873        * Copy of the last set of CURBEs uploaded.  Frequently we'll end up
874        * in brw_curbe.c with the same set of constant data to be uploaded,
875        * so we'd rather not upload new constants in that case (it can cause
876        * a pipeline bubble since only up to 4 can be pipelined at a time).
877        */
878       GLfloat *last_buf;
879       /**
880        * Allocation for where to calculate the next set of CURBEs.
881        * It's a hot enough path that malloc/free of that data matters.
882        */
883       GLfloat *next_buf;
884       GLuint last_bufsz;
885    } curbe;
886 
887    /** SAMPLER_STATE count and offset */
888    struct {
889       GLuint count;
890       uint32_t offset;
891    } sampler;
892 
893    struct {
894       struct brw_vs_prog_data *prog_data;
895       int8_t *constant_map; /* variable array following prog_data */
896 
897       drm_intel_bo *scratch_bo;
898       drm_intel_bo *const_bo;
899       /** Offset in the program cache to the VS program */
900       uint32_t prog_offset;
901       uint32_t state_offset;
902 
903       uint32_t push_const_offset; /* Offset in the batchbuffer */
904       int push_const_size; /* in 256-bit register increments */
905 
906       /** @{ register allocator */
907 
908       struct ra_regs *regs;
909 
910       /**
911        * Array of the ra classes for the unaligned contiguous register
912        * block sizes used.
913        */
914       int *classes;
915 
916       /**
917        * Mapping for register-allocated objects in *regs to the first
918        * GRF for that object.
919       */
920       uint8_t *ra_reg_to_grf;
921       /** @} */
922 
923       uint32_t bind_bo_offset;
924       uint32_t surf_offset[BRW_MAX_VS_SURFACES];
925    } vs;
926 
927    struct {
928       struct brw_gs_prog_data *prog_data;
929 
930       bool prog_active;
931       /** Offset in the program cache to the CLIP program pre-gen6 */
932       uint32_t prog_offset;
933       uint32_t state_offset;
934 
935       uint32_t bind_bo_offset;
936       uint32_t surf_offset[BRW_MAX_GS_SURFACES];
937    } gs;
938 
939    struct {
940       struct brw_clip_prog_data *prog_data;
941 
942       /** Offset in the program cache to the CLIP program pre-gen6 */
943       uint32_t prog_offset;
944 
945       /* Offset in the batch to the CLIP state on pre-gen6. */
946       uint32_t state_offset;
947 
948       /* As of gen6, this is the offset in the batch to the CLIP VP,
949        * instead of vp_bo.
950        */
951       uint32_t vp_offset;
952    } clip;
953 
954 
955    struct {
956       struct brw_sf_prog_data *prog_data;
957 
958       /** Offset in the program cache to the CLIP program pre-gen6 */
959       uint32_t prog_offset;
960       uint32_t state_offset;
961       uint32_t vp_offset;
962    } sf;
963 
964    struct {
965       struct brw_wm_prog_data *prog_data;
966       struct brw_wm_compile *compile_data;
967 
968       /** Input sizes, calculated from active vertex program.
969        * One bit per fragment program input attribute.
970        */
971       GLbitfield input_size_masks[4];
972 
973       /** offsets in the batch to sampler default colors (texture border color)
974        */
975       uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
976 
977       GLuint render_surf;
978 
979       drm_intel_bo *scratch_bo;
980 
981       /**
982        * Buffer object used in place of multisampled null render targets on
983        * Gen6.  See brw_update_null_renderbuffer_surface().
984        */
985       drm_intel_bo *multisampled_null_render_target_bo;
986 
987       /** Offset in the program cache to the WM program */
988       uint32_t prog_offset;
989 
990       uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
991 
992       drm_intel_bo *const_bo; /* pull constant buffer. */
993       /**
994        * This is offset in the batch to the push constants on gen6.
995        *
996        * Pre-gen6, push constants live in the CURBE.
997        */
998       uint32_t push_const_offset;
999 
1000       /** Binding table of pointers to surf_bo entries */
1001       uint32_t bind_bo_offset;
1002       uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1003 
1004       /** @{ register allocator */
1005 
1006       struct ra_regs *regs;
1007 
1008       /** Array of the ra classes for the unaligned contiguous
1009        * register block sizes used.
1010        */
1011       int *classes;
1012 
1013       /**
1014        * Mapping for register-allocated objects in *regs to the first
1015        * GRF for that object.
1016       */
1017       uint8_t *ra_reg_to_grf;
1018 
1019       /**
1020        * ra class for the aligned pairs we use for PLN, which doesn't
1021        * appear in *classes.
1022        */
1023       int aligned_pairs_class;
1024 
1025       /** @} */
1026    } wm;
1027 
1028 
1029    struct {
1030       uint32_t state_offset;
1031       uint32_t blend_state_offset;
1032       uint32_t depth_stencil_state_offset;
1033       uint32_t vp_offset;
1034    } cc;
1035 
1036    struct {
1037       struct brw_query_object *obj;
1038       drm_intel_bo *bo;
1039       int index;
1040       bool active;
1041    } query;
1042    /* Used to give every program string a unique id
1043     */
1044    GLuint program_id;
1045 
1046    int num_atoms;
1047    const struct brw_tracked_state **atoms;
1048 
1049    /* If (INTEL_DEBUG & DEBUG_BATCH) */
1050    struct {
1051       uint32_t offset;
1052       uint32_t size;
1053       enum state_struct_type type;
1054    } *state_batch_list;
1055    int state_batch_count;
1056 
1057    struct brw_sol_state {
1058       uint32_t svbi_0_starting_index;
1059       uint32_t svbi_0_max_index;
1060       uint32_t offset_0_batch_start;
1061       uint32_t primitives_generated;
1062       uint32_t primitives_written;
1063       bool counting_primitives_generated;
1064       bool counting_primitives_written;
1065    } sol;
1066 
1067    uint32_t render_target_format[MESA_FORMAT_COUNT];
1068    bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1069 
1070    /* PrimitiveRestart */
1071    struct {
1072       bool in_progress;
1073       bool enable_cut_index;
1074    } prim_restart;
1075 
1076    uint32_t num_instances;
1077 };
1078 
1079 
1080 
1081 #define BRW_PACKCOLOR8888(r,g,b,a)  ((r<<24) | (g<<16) | (b<<8) | a)
1082 
1083 struct brw_instruction_info {
1084     char    *name;
1085     int	    nsrc;
1086     int	    ndst;
1087     bool is_arith;
1088 };
1089 extern const struct brw_instruction_info brw_opcodes[128];
1090 
1091 /*======================================================================
1092  * brw_vtbl.c
1093  */
1094 void brwInitVtbl( struct brw_context *brw );
1095 
1096 /*======================================================================
1097  * brw_context.c
1098  */
1099 bool brwCreateContext(int api,
1100 		      const struct gl_config *mesaVis,
1101 		      __DRIcontext *driContextPriv,
1102                       unsigned major_version,
1103                       unsigned minor_version,
1104                       uint32_t flags,
1105                       unsigned *error,
1106 		      void *sharedContextPrivate);
1107 
1108 /*======================================================================
1109  * brw_queryobj.c
1110  */
1111 void brw_init_queryobj_functions(struct dd_function_table *functions);
1112 void brw_prepare_query_begin(struct brw_context *brw);
1113 void brw_emit_query_begin(struct brw_context *brw);
1114 void brw_emit_query_end(struct brw_context *brw);
1115 
1116 /*======================================================================
1117  * brw_state_dump.c
1118  */
1119 void brw_debug_batch(struct intel_context *intel);
1120 void brw_annotate_aub(struct intel_context *intel);
1121 
1122 /*======================================================================
1123  * brw_tex.c
1124  */
1125 void brw_validate_textures( struct brw_context *brw );
1126 
1127 
1128 /*======================================================================
1129  * brw_program.c
1130  */
1131 void brwInitFragProgFuncs( struct dd_function_table *functions );
1132 
1133 int brw_get_scratch_size(int size);
1134 void brw_get_scratch_bo(struct intel_context *intel,
1135 			drm_intel_bo **scratch_bo, int size);
1136 
1137 
1138 /* brw_urb.c
1139  */
1140 void brw_upload_urb_fence(struct brw_context *brw);
1141 
1142 /* brw_curbe.c
1143  */
1144 void brw_upload_cs_urb_state(struct brw_context *brw);
1145 
1146 /* brw_disasm.c */
1147 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1148 
1149 /* brw_vs.c */
1150 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1151 
1152 /* brw_wm_surface_state.c */
1153 void brw_init_surface_formats(struct brw_context *brw);
1154 void
1155 brw_update_sol_surface(struct brw_context *brw,
1156                        struct gl_buffer_object *buffer_obj,
1157                        uint32_t *out_offset, unsigned num_vector_components,
1158                        unsigned stride_dwords, unsigned offset_dwords);
1159 void brw_upload_ubo_surfaces(struct brw_context *brw,
1160 			     struct gl_shader *shader,
1161 			     uint32_t *surf_offsets);
1162 
1163 /* gen6_sol.c */
1164 void
1165 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1166 			     struct gl_transform_feedback_object *obj);
1167 void
1168 brw_end_transform_feedback(struct gl_context *ctx,
1169                            struct gl_transform_feedback_object *obj);
1170 
1171 /* gen7_sol_state.c */
1172 void
1173 gen7_end_transform_feedback(struct gl_context *ctx,
1174 			    struct gl_transform_feedback_object *obj);
1175 
1176 /* brw_blorp_blit.cpp */
1177 GLbitfield
1178 brw_blorp_framebuffer(struct intel_context *intel,
1179                       GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1180                       GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1181                       GLbitfield mask, GLenum filter);
1182 
1183 /* gen6_multisample_state.c */
1184 void
1185 gen6_emit_3dstate_multisample(struct brw_context *brw,
1186                               unsigned num_samples);
1187 void
1188 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1189                               unsigned num_samples, float coverage,
1190                               bool coverage_invert);
1191 
1192 /* gen7_urb.c */
1193 void
1194 gen7_allocate_push_constants(struct brw_context *brw);
1195 
1196 void
1197 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1198                     GLuint vs_size, GLuint vs_start);
1199 
1200 
1201 
1202 /*======================================================================
1203  * Inline conversion functions.  These are better-typed than the
1204  * macros used previously:
1205  */
1206 static INLINE struct brw_context *
brw_context(struct gl_context * ctx)1207 brw_context( struct gl_context *ctx )
1208 {
1209    return (struct brw_context *)ctx;
1210 }
1211 
1212 static INLINE struct brw_vertex_program *
brw_vertex_program(struct gl_vertex_program * p)1213 brw_vertex_program(struct gl_vertex_program *p)
1214 {
1215    return (struct brw_vertex_program *) p;
1216 }
1217 
1218 static INLINE const struct brw_vertex_program *
brw_vertex_program_const(const struct gl_vertex_program * p)1219 brw_vertex_program_const(const struct gl_vertex_program *p)
1220 {
1221    return (const struct brw_vertex_program *) p;
1222 }
1223 
1224 static INLINE struct brw_fragment_program *
brw_fragment_program(struct gl_fragment_program * p)1225 brw_fragment_program(struct gl_fragment_program *p)
1226 {
1227    return (struct brw_fragment_program *) p;
1228 }
1229 
1230 static INLINE const struct brw_fragment_program *
brw_fragment_program_const(const struct gl_fragment_program * p)1231 brw_fragment_program_const(const struct gl_fragment_program *p)
1232 {
1233    return (const struct brw_fragment_program *) p;
1234 }
1235 
1236 /**
1237  * Pre-gen6, the register file of the EUs was shared between threads,
1238  * and each thread used some subset allocated on a 16-register block
1239  * granularity.  The unit states wanted these block counts.
1240  */
1241 static inline int
brw_register_blocks(int reg_count)1242 brw_register_blocks(int reg_count)
1243 {
1244    return ALIGN(reg_count, 16) / 16 - 1;
1245 }
1246 
1247 static inline uint32_t
brw_program_reloc(struct brw_context * brw,uint32_t state_offset,uint32_t prog_offset)1248 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1249 		  uint32_t prog_offset)
1250 {
1251    struct intel_context *intel = &brw->intel;
1252 
1253    if (intel->gen >= 5) {
1254       /* Using state base address. */
1255       return prog_offset;
1256    }
1257 
1258    drm_intel_bo_emit_reloc(intel->batch.bo,
1259 			   state_offset,
1260 			   brw->cache.bo,
1261 			   prog_offset,
1262 			   I915_GEM_DOMAIN_INSTRUCTION, 0);
1263 
1264    return brw->cache.bo->offset + prog_offset;
1265 }
1266 
1267 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1268 bool brw_lower_texture_gradients(struct exec_list *instructions);
1269 
1270 #ifdef __cplusplus
1271 }
1272 #endif
1273 
1274 #endif
1275