1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "glsl/glsl_types.h"
30 #include "glsl/ir_optimization.h"
31 #include "glsl/ir_print_visitor.h"
32
33 static void
assign_reg(int * reg_hw_locations,fs_reg * reg,int reg_width)34 assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
35 {
36 if (reg->file == GRF) {
37 assert(reg->reg_offset >= 0);
38 reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
39 reg->reg_offset = 0;
40 }
41 }
42
43 void
assign_regs_trivial()44 fs_visitor::assign_regs_trivial()
45 {
46 int hw_reg_mapping[this->virtual_grf_count + 1];
47 int i;
48 int reg_width = c->dispatch_width / 8;
49
50 /* Note that compressed instructions require alignment to 2 registers. */
51 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
52 for (i = 1; i <= this->virtual_grf_count; i++) {
53 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
54 this->virtual_grf_sizes[i - 1] * reg_width);
55 }
56 this->grf_used = hw_reg_mapping[this->virtual_grf_count];
57
58 foreach_list(node, &this->instructions) {
59 fs_inst *inst = (fs_inst *)node;
60
61 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
62 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
63 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
64 assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
65 }
66
67 if (this->grf_used >= max_grf) {
68 fail("Ran out of regs on trivial allocator (%d/%d)\n",
69 this->grf_used, max_grf);
70 }
71
72 }
73
74 static void
brw_alloc_reg_set_for_classes(struct brw_context * brw,int * class_sizes,int class_count,int reg_width,int base_reg_count)75 brw_alloc_reg_set_for_classes(struct brw_context *brw,
76 int *class_sizes,
77 int class_count,
78 int reg_width,
79 int base_reg_count)
80 {
81 struct intel_context *intel = &brw->intel;
82
83 /* Compute the total number of registers across all classes. */
84 int ra_reg_count = 0;
85 for (int i = 0; i < class_count; i++) {
86 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
87 }
88
89 ralloc_free(brw->wm.ra_reg_to_grf);
90 brw->wm.ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count);
91 ralloc_free(brw->wm.regs);
92 brw->wm.regs = ra_alloc_reg_set(brw, ra_reg_count);
93 ralloc_free(brw->wm.classes);
94 brw->wm.classes = ralloc_array(brw, int, class_count + 1);
95
96 brw->wm.aligned_pairs_class = -1;
97
98 /* Now, add the registers to their classes, and add the conflicts
99 * between them and the base GRF registers (and also each other).
100 */
101 int reg = 0;
102 int pairs_base_reg = 0;
103 int pairs_reg_count = 0;
104 for (int i = 0; i < class_count; i++) {
105 int class_reg_count = base_reg_count - (class_sizes[i] - 1);
106 brw->wm.classes[i] = ra_alloc_reg_class(brw->wm.regs);
107
108 /* Save this off for the aligned pair class at the end. */
109 if (class_sizes[i] == 2) {
110 pairs_base_reg = reg;
111 pairs_reg_count = class_reg_count;
112 }
113
114 for (int j = 0; j < class_reg_count; j++) {
115 ra_class_add_reg(brw->wm.regs, brw->wm.classes[i], reg);
116
117 brw->wm.ra_reg_to_grf[reg] = j;
118
119 for (int base_reg = j;
120 base_reg < j + class_sizes[i];
121 base_reg++) {
122 ra_add_transitive_reg_conflict(brw->wm.regs, base_reg, reg);
123 }
124
125 reg++;
126 }
127 }
128 assert(reg == ra_reg_count);
129
130 /* Add a special class for aligned pairs, which we'll put delta_x/y
131 * in on gen5 so that we can do PLN.
132 */
133 if (brw->has_pln && reg_width == 1 && intel->gen < 6) {
134 brw->wm.aligned_pairs_class = ra_alloc_reg_class(brw->wm.regs);
135
136 for (int i = 0; i < pairs_reg_count; i++) {
137 if ((brw->wm.ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
138 ra_class_add_reg(brw->wm.regs, brw->wm.aligned_pairs_class,
139 pairs_base_reg + i);
140 }
141 }
142 class_count++;
143 }
144
145 ra_set_finalize(brw->wm.regs);
146 }
147
148 bool
assign_regs()149 fs_visitor::assign_regs()
150 {
151 /* Most of this allocation was written for a reg_width of 1
152 * (dispatch_width == 8). In extending to 16-wide, the code was
153 * left in place and it was converted to have the hardware
154 * registers it's allocating be contiguous physical pairs of regs
155 * for reg_width == 2.
156 */
157 int reg_width = c->dispatch_width / 8;
158 int hw_reg_mapping[this->virtual_grf_count];
159 int first_assigned_grf = ALIGN(this->first_non_payload_grf, reg_width);
160 int base_reg_count = (max_grf - first_assigned_grf) / reg_width;
161 int class_sizes[base_reg_count];
162 int class_count = 0;
163
164 calculate_live_intervals();
165
166 /* Set up the register classes.
167 *
168 * The base registers store a scalar value. For texture samples,
169 * we get virtual GRFs composed of 4 contiguous hw register. For
170 * structures and arrays, we store them as contiguous larger things
171 * than that, though we should be able to do better most of the
172 * time.
173 */
174 class_sizes[class_count++] = 1;
175 if (brw->has_pln && intel->gen < 6) {
176 /* Always set up the (unaligned) pairs for gen5, so we can find
177 * them for making the aligned pair class.
178 */
179 class_sizes[class_count++] = 2;
180 }
181 for (int r = 0; r < this->virtual_grf_count; r++) {
182 int i;
183
184 for (i = 0; i < class_count; i++) {
185 if (class_sizes[i] == this->virtual_grf_sizes[r])
186 break;
187 }
188 if (i == class_count) {
189 if (this->virtual_grf_sizes[r] >= base_reg_count) {
190 fail("Object too large to register allocate.\n");
191 }
192
193 class_sizes[class_count++] = this->virtual_grf_sizes[r];
194 }
195 }
196
197 brw_alloc_reg_set_for_classes(brw, class_sizes, class_count,
198 reg_width, base_reg_count);
199
200 struct ra_graph *g = ra_alloc_interference_graph(brw->wm.regs,
201 this->virtual_grf_count);
202
203 for (int i = 0; i < this->virtual_grf_count; i++) {
204 for (int c = 0; c < class_count; c++) {
205 if (class_sizes[c] == this->virtual_grf_sizes[i]) {
206 /* Special case: on pre-GEN6 hardware that supports PLN, the
207 * second operand of a PLN instruction needs to be an
208 * even-numbered register, so we have a special register class
209 * wm_aligned_pairs_class to handle this case. pre-GEN6 always
210 * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
211 * second operand of a PLN instruction (since it doesn't support
212 * any other interpolation modes). So all we need to do is find
213 * that register and set it to the appropriate class.
214 */
215 if (brw->wm.aligned_pairs_class >= 0 &&
216 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
217 ra_set_node_class(g, i, brw->wm.aligned_pairs_class);
218 } else {
219 ra_set_node_class(g, i, brw->wm.classes[c]);
220 }
221 break;
222 }
223 }
224
225 for (int j = 0; j < i; j++) {
226 if (virtual_grf_interferes(i, j)) {
227 ra_add_node_interference(g, i, j);
228 }
229 }
230 }
231
232 if (!ra_allocate_no_spills(g)) {
233 /* Failed to allocate registers. Spill a reg, and the caller will
234 * loop back into here to try again.
235 */
236 int reg = choose_spill_reg(g);
237
238 if (reg == -1) {
239 fail("no register to spill\n");
240 } else if (c->dispatch_width == 16) {
241 fail("Failure to register allocate. Reduce number of live scalar "
242 "values to avoid this.");
243 } else {
244 spill_reg(reg);
245 }
246
247
248 ralloc_free(g);
249
250 return false;
251 }
252
253 /* Get the chosen virtual registers for each node, and map virtual
254 * regs in the register classes back down to real hardware reg
255 * numbers.
256 */
257 this->grf_used = first_assigned_grf;
258 for (int i = 0; i < this->virtual_grf_count; i++) {
259 int reg = ra_get_node_reg(g, i);
260
261 hw_reg_mapping[i] = (first_assigned_grf +
262 brw->wm.ra_reg_to_grf[reg] * reg_width);
263 this->grf_used = MAX2(this->grf_used,
264 hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
265 reg_width);
266 }
267
268 foreach_list(node, &this->instructions) {
269 fs_inst *inst = (fs_inst *)node;
270
271 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
272 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
273 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
274 assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
275 }
276
277 ralloc_free(g);
278
279 return true;
280 }
281
282 void
emit_unspill(fs_inst * inst,fs_reg dst,uint32_t spill_offset)283 fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset)
284 {
285 fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL, dst);
286 unspill_inst->offset = spill_offset;
287 unspill_inst->ir = inst->ir;
288 unspill_inst->annotation = inst->annotation;
289
290 /* Choose a MRF that won't conflict with an MRF that's live across the
291 * spill. Nothing else will make it up to MRF 14/15.
292 */
293 unspill_inst->base_mrf = 14;
294 unspill_inst->mlen = 1; /* header contains offset */
295 inst->insert_before(unspill_inst);
296 }
297
298 int
choose_spill_reg(struct ra_graph * g)299 fs_visitor::choose_spill_reg(struct ra_graph *g)
300 {
301 float loop_scale = 1.0;
302 float spill_costs[this->virtual_grf_count];
303 bool no_spill[this->virtual_grf_count];
304
305 for (int i = 0; i < this->virtual_grf_count; i++) {
306 spill_costs[i] = 0.0;
307 no_spill[i] = false;
308 }
309
310 /* Calculate costs for spilling nodes. Call it a cost of 1 per
311 * spill/unspill we'll have to do, and guess that the insides of
312 * loops run 10 times.
313 */
314 foreach_list(node, &this->instructions) {
315 fs_inst *inst = (fs_inst *)node;
316
317 for (unsigned int i = 0; i < 3; i++) {
318 if (inst->src[i].file == GRF) {
319 spill_costs[inst->src[i].reg] += loop_scale;
320
321 /* Register spilling logic assumes full-width registers; smeared
322 * registers have a width of 1 so if we try to spill them we'll
323 * generate invalid assembly. This shouldn't be a problem because
324 * smeared registers are only used as short-term temporaries when
325 * loading pull constants, so spilling them is unlikely to reduce
326 * register pressure anyhow.
327 */
328 if (inst->src[i].smear >= 0) {
329 no_spill[inst->src[i].reg] = true;
330 }
331 }
332 }
333
334 if (inst->dst.file == GRF) {
335 spill_costs[inst->dst.reg] += inst->regs_written() * loop_scale;
336
337 if (inst->dst.smear >= 0) {
338 no_spill[inst->dst.reg] = true;
339 }
340 }
341
342 switch (inst->opcode) {
343
344 case BRW_OPCODE_DO:
345 loop_scale *= 10;
346 break;
347
348 case BRW_OPCODE_WHILE:
349 loop_scale /= 10;
350 break;
351
352 case FS_OPCODE_SPILL:
353 if (inst->src[0].file == GRF)
354 no_spill[inst->src[0].reg] = true;
355 break;
356
357 case FS_OPCODE_UNSPILL:
358 if (inst->dst.file == GRF)
359 no_spill[inst->dst.reg] = true;
360 break;
361
362 default:
363 break;
364 }
365 }
366
367 for (int i = 0; i < this->virtual_grf_count; i++) {
368 if (!no_spill[i])
369 ra_set_node_spill_cost(g, i, spill_costs[i]);
370 }
371
372 return ra_get_best_spill_node(g);
373 }
374
375 void
spill_reg(int spill_reg)376 fs_visitor::spill_reg(int spill_reg)
377 {
378 int size = virtual_grf_sizes[spill_reg];
379 unsigned int spill_offset = c->last_scratch;
380 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
381 c->last_scratch += size * REG_SIZE;
382
383 /* Generate spill/unspill instructions for the objects being
384 * spilled. Right now, we spill or unspill the whole thing to a
385 * virtual grf of the same size. For most instructions, though, we
386 * could just spill/unspill the GRF being accessed.
387 */
388 foreach_list(node, &this->instructions) {
389 fs_inst *inst = (fs_inst *)node;
390
391 for (unsigned int i = 0; i < 3; i++) {
392 if (inst->src[i].file == GRF &&
393 inst->src[i].reg == spill_reg) {
394 inst->src[i].reg = virtual_grf_alloc(1);
395 emit_unspill(inst, inst->src[i],
396 spill_offset + REG_SIZE * inst->src[i].reg_offset);
397 }
398 }
399
400 if (inst->dst.file == GRF &&
401 inst->dst.reg == spill_reg) {
402 int subset_spill_offset = (spill_offset +
403 REG_SIZE * inst->dst.reg_offset);
404 inst->dst.reg = virtual_grf_alloc(inst->regs_written());
405 inst->dst.reg_offset = 0;
406
407 /* If our write is going to affect just part of the
408 * inst->regs_written(), then we need to unspill the destination
409 * since we write back out all of the regs_written().
410 */
411 if (inst->predicated || inst->force_uncompressed || inst->force_sechalf) {
412 fs_reg unspill_reg = inst->dst;
413 for (int chan = 0; chan < inst->regs_written(); chan++) {
414 emit_unspill(inst, unspill_reg,
415 subset_spill_offset + REG_SIZE * chan);
416 unspill_reg.reg_offset++;
417 }
418 }
419
420 fs_reg spill_src = inst->dst;
421 spill_src.reg_offset = 0;
422 spill_src.abs = false;
423 spill_src.negate = false;
424 spill_src.smear = -1;
425
426 for (int chan = 0; chan < inst->regs_written(); chan++) {
427 fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL,
428 reg_null_f, spill_src);
429 spill_src.reg_offset++;
430 spill_inst->offset = subset_spill_offset + chan * REG_SIZE;
431 spill_inst->ir = inst->ir;
432 spill_inst->annotation = inst->annotation;
433 spill_inst->base_mrf = 14;
434 spill_inst->mlen = 2; /* header, value */
435 inst->insert_after(spill_inst);
436 }
437 }
438 }
439
440 this->live_intervals_valid = false;
441 }
442