1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "glsl/glsl_types.h"
30 #include "glsl/ir_optimization.h"
31 #include "glsl/ir_print_visitor.h"
32
33 /** @file brw_fs_schedule_instructions.cpp
34 *
35 * List scheduling of FS instructions.
36 *
37 * The basic model of the list scheduler is to take a basic block,
38 * compute a DAG of the dependencies (RAW ordering with latency, WAW
39 * ordering, WAR ordering), and make a list of the DAG heads.
40 * Heuristically pick a DAG head, then put all the children that are
41 * now DAG heads into the list of things to schedule.
42 *
43 * The heuristic is the important part. We're trying to be cheap,
44 * since actually computing the optimal scheduling is NP complete.
45 * What we do is track a "current clock". When we schedule a node, we
46 * update the earliest-unblocked clock time of its children, and
47 * increment the clock. Then, when trying to schedule, we just pick
48 * the earliest-unblocked instruction to schedule.
49 *
50 * Note that often there will be many things which could execute
51 * immediately, and there are a range of heuristic options to choose
52 * from in picking among those.
53 */
54
55 class schedule_node : public exec_node
56 {
57 public:
schedule_node(fs_inst * inst)58 schedule_node(fs_inst *inst)
59 {
60 this->inst = inst;
61 this->child_array_size = 0;
62 this->children = NULL;
63 this->child_latency = NULL;
64 this->child_count = 0;
65 this->parent_count = 0;
66 this->unblocked_time = 0;
67
68 int chans = 8;
69 int math_latency = 22;
70
71 switch (inst->opcode) {
72 case SHADER_OPCODE_RCP:
73 this->latency = 1 * chans * math_latency;
74 break;
75 case SHADER_OPCODE_RSQ:
76 this->latency = 2 * chans * math_latency;
77 break;
78 case SHADER_OPCODE_INT_QUOTIENT:
79 case SHADER_OPCODE_SQRT:
80 case SHADER_OPCODE_LOG2:
81 /* full precision log. partial is 2. */
82 this->latency = 3 * chans * math_latency;
83 break;
84 case SHADER_OPCODE_INT_REMAINDER:
85 case SHADER_OPCODE_EXP2:
86 /* full precision. partial is 3, same throughput. */
87 this->latency = 4 * chans * math_latency;
88 break;
89 case SHADER_OPCODE_POW:
90 this->latency = 8 * chans * math_latency;
91 break;
92 case SHADER_OPCODE_SIN:
93 case SHADER_OPCODE_COS:
94 /* minimum latency, max is 12 rounds. */
95 this->latency = 5 * chans * math_latency;
96 break;
97 default:
98 this->latency = 2;
99 break;
100 }
101 }
102
103 fs_inst *inst;
104 schedule_node **children;
105 int *child_latency;
106 int child_count;
107 int parent_count;
108 int child_array_size;
109 int unblocked_time;
110 int latency;
111 };
112
113 class instruction_scheduler {
114 public:
instruction_scheduler(fs_visitor * v,void * mem_ctx,int virtual_grf_count)115 instruction_scheduler(fs_visitor *v, void *mem_ctx, int virtual_grf_count)
116 {
117 this->v = v;
118 this->mem_ctx = ralloc_context(mem_ctx);
119 this->virtual_grf_count = virtual_grf_count;
120 this->instructions.make_empty();
121 this->instructions_to_schedule = 0;
122 }
123
~instruction_scheduler()124 ~instruction_scheduler()
125 {
126 ralloc_free(this->mem_ctx);
127 }
128 void add_barrier_deps(schedule_node *n);
129 void add_dep(schedule_node *before, schedule_node *after, int latency);
130 void add_dep(schedule_node *before, schedule_node *after);
131
132 void add_inst(fs_inst *inst);
133 void calculate_deps();
134 void schedule_instructions(fs_inst *next_block_header);
135
136 bool is_compressed(fs_inst *inst);
137
138 void *mem_ctx;
139
140 int instructions_to_schedule;
141 int virtual_grf_count;
142 exec_list instructions;
143 fs_visitor *v;
144 };
145
146 void
add_inst(fs_inst * inst)147 instruction_scheduler::add_inst(fs_inst *inst)
148 {
149 schedule_node *n = new(mem_ctx) schedule_node(inst);
150
151 assert(!inst->is_head_sentinel());
152 assert(!inst->is_tail_sentinel());
153
154 this->instructions_to_schedule++;
155
156 inst->remove();
157 instructions.push_tail(n);
158 }
159
160 /**
161 * Add a dependency between two instruction nodes.
162 *
163 * The @after node will be scheduled after @before. We will try to
164 * schedule it @latency cycles after @before, but no guarantees there.
165 */
166 void
add_dep(schedule_node * before,schedule_node * after,int latency)167 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
168 int latency)
169 {
170 if (!before || !after)
171 return;
172
173 assert(before != after);
174
175 for (int i = 0; i < before->child_count; i++) {
176 if (before->children[i] == after) {
177 before->child_latency[i] = MAX2(before->child_latency[i], latency);
178 return;
179 }
180 }
181
182 if (before->child_array_size <= before->child_count) {
183 if (before->child_array_size < 16)
184 before->child_array_size = 16;
185 else
186 before->child_array_size *= 2;
187
188 before->children = reralloc(mem_ctx, before->children,
189 schedule_node *,
190 before->child_array_size);
191 before->child_latency = reralloc(mem_ctx, before->child_latency,
192 int, before->child_array_size);
193 }
194
195 before->children[before->child_count] = after;
196 before->child_latency[before->child_count] = latency;
197 before->child_count++;
198 after->parent_count++;
199 }
200
201 void
add_dep(schedule_node * before,schedule_node * after)202 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
203 {
204 if (!before)
205 return;
206
207 add_dep(before, after, before->latency);
208 }
209
210 /**
211 * Sometimes we really want this node to execute after everything that
212 * was before it and before everything that followed it. This adds
213 * the deps to do so.
214 */
215 void
add_barrier_deps(schedule_node * n)216 instruction_scheduler::add_barrier_deps(schedule_node *n)
217 {
218 schedule_node *prev = (schedule_node *)n->prev;
219 schedule_node *next = (schedule_node *)n->next;
220
221 if (prev) {
222 while (!prev->is_head_sentinel()) {
223 add_dep(prev, n, 0);
224 prev = (schedule_node *)prev->prev;
225 }
226 }
227
228 if (next) {
229 while (!next->is_tail_sentinel()) {
230 add_dep(n, next, 0);
231 next = (schedule_node *)next->next;
232 }
233 }
234 }
235
236 /* instruction scheduling needs to be aware of when an MRF write
237 * actually writes 2 MRFs.
238 */
239 bool
is_compressed(fs_inst * inst)240 instruction_scheduler::is_compressed(fs_inst *inst)
241 {
242 return (v->c->dispatch_width == 16 &&
243 !inst->force_uncompressed &&
244 !inst->force_sechalf);
245 }
246
247 void
calculate_deps()248 instruction_scheduler::calculate_deps()
249 {
250 schedule_node *last_grf_write[virtual_grf_count];
251 schedule_node *last_mrf_write[BRW_MAX_MRF];
252 schedule_node *last_conditional_mod = NULL;
253 /* Fixed HW registers are assumed to be separate from the virtual
254 * GRFs, so they can be tracked separately. We don't really write
255 * to fixed GRFs much, so don't bother tracking them on a more
256 * granular level.
257 */
258 schedule_node *last_fixed_grf_write = NULL;
259
260 /* The last instruction always needs to still be the last
261 * instruction. Either it's flow control (IF, ELSE, ENDIF, DO,
262 * WHILE) and scheduling other things after it would disturb the
263 * basic block, or it's FB_WRITE and we should do a better job at
264 * dead code elimination anyway.
265 */
266 schedule_node *last = (schedule_node *)instructions.get_tail();
267 add_barrier_deps(last);
268
269 memset(last_grf_write, 0, sizeof(last_grf_write));
270 memset(last_mrf_write, 0, sizeof(last_mrf_write));
271
272 /* top-to-bottom dependencies: RAW and WAW. */
273 foreach_list(node, &instructions) {
274 schedule_node *n = (schedule_node *)node;
275 fs_inst *inst = n->inst;
276
277 /* read-after-write deps. */
278 for (int i = 0; i < 3; i++) {
279 if (inst->src[i].file == GRF) {
280 add_dep(last_grf_write[inst->src[i].reg], n);
281 } else if (inst->src[i].file == FIXED_HW_REG &&
282 (inst->src[i].fixed_hw_reg.file ==
283 BRW_GENERAL_REGISTER_FILE)) {
284 add_dep(last_fixed_grf_write, n);
285 } else if (inst->src[i].file != BAD_FILE &&
286 inst->src[i].file != IMM &&
287 inst->src[i].file != UNIFORM) {
288 assert(inst->src[i].file != MRF);
289 add_barrier_deps(n);
290 }
291 }
292
293 for (int i = 0; i < inst->mlen; i++) {
294 /* It looks like the MRF regs are released in the send
295 * instruction once it's sent, not when the result comes
296 * back.
297 */
298 add_dep(last_mrf_write[inst->base_mrf + i], n);
299 }
300
301 if (inst->predicated) {
302 assert(last_conditional_mod);
303 add_dep(last_conditional_mod, n);
304 }
305
306 /* write-after-write deps. */
307 if (inst->dst.file == GRF) {
308 add_dep(last_grf_write[inst->dst.reg], n);
309 last_grf_write[inst->dst.reg] = n;
310 } else if (inst->dst.file == MRF) {
311 int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
312
313 add_dep(last_mrf_write[reg], n);
314 last_mrf_write[reg] = n;
315 if (is_compressed(inst)) {
316 if (inst->dst.reg & BRW_MRF_COMPR4)
317 reg += 4;
318 else
319 reg++;
320 add_dep(last_mrf_write[reg], n);
321 last_mrf_write[reg] = n;
322 }
323 } else if (inst->dst.file == FIXED_HW_REG &&
324 inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
325 last_fixed_grf_write = n;
326 } else if (inst->dst.file != BAD_FILE) {
327 add_barrier_deps(n);
328 }
329
330 if (inst->mlen > 0) {
331 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
332 add_dep(last_mrf_write[inst->base_mrf + i], n);
333 last_mrf_write[inst->base_mrf + i] = n;
334 }
335 }
336
337 /* Treat FS_OPCODE_MOV_DISPATCH_TO_FLAGS as though it had a
338 * conditional_mod, because it sets the flag register.
339 */
340 if (inst->conditional_mod ||
341 inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
342 add_dep(last_conditional_mod, n, 0);
343 last_conditional_mod = n;
344 }
345 }
346
347 /* bottom-to-top dependencies: WAR */
348 memset(last_grf_write, 0, sizeof(last_grf_write));
349 memset(last_mrf_write, 0, sizeof(last_mrf_write));
350 last_conditional_mod = NULL;
351 last_fixed_grf_write = NULL;
352
353 exec_node *node;
354 exec_node *prev;
355 for (node = instructions.get_tail(), prev = node->prev;
356 !node->is_head_sentinel();
357 node = prev, prev = node->prev) {
358 schedule_node *n = (schedule_node *)node;
359 fs_inst *inst = n->inst;
360
361 /* write-after-read deps. */
362 for (int i = 0; i < 3; i++) {
363 if (inst->src[i].file == GRF) {
364 add_dep(n, last_grf_write[inst->src[i].reg]);
365 } else if (inst->src[i].file == FIXED_HW_REG &&
366 (inst->src[i].fixed_hw_reg.file ==
367 BRW_GENERAL_REGISTER_FILE)) {
368 add_dep(n, last_fixed_grf_write);
369 } else if (inst->src[i].file != BAD_FILE &&
370 inst->src[i].file != IMM &&
371 inst->src[i].file != UNIFORM) {
372 assert(inst->src[i].file != MRF);
373 add_barrier_deps(n);
374 }
375 }
376
377 for (int i = 0; i < inst->mlen; i++) {
378 /* It looks like the MRF regs are released in the send
379 * instruction once it's sent, not when the result comes
380 * back.
381 */
382 add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
383 }
384
385 if (inst->predicated) {
386 add_dep(n, last_conditional_mod);
387 }
388
389 /* Update the things this instruction wrote, so earlier reads
390 * can mark this as WAR dependency.
391 */
392 if (inst->dst.file == GRF) {
393 last_grf_write[inst->dst.reg] = n;
394 } else if (inst->dst.file == MRF) {
395 int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
396
397 last_mrf_write[reg] = n;
398
399 if (is_compressed(inst)) {
400 if (inst->dst.reg & BRW_MRF_COMPR4)
401 reg += 4;
402 else
403 reg++;
404
405 last_mrf_write[reg] = n;
406 }
407 } else if (inst->dst.file == FIXED_HW_REG &&
408 inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
409 last_fixed_grf_write = n;
410 } else if (inst->dst.file != BAD_FILE) {
411 add_barrier_deps(n);
412 }
413
414 if (inst->mlen > 0) {
415 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
416 last_mrf_write[inst->base_mrf + i] = n;
417 }
418 }
419
420 /* Treat FS_OPCODE_MOV_DISPATCH_TO_FLAGS as though it had a
421 * conditional_mod, because it sets the flag register.
422 */
423 if (inst->conditional_mod ||
424 inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
425 last_conditional_mod = n;
426 }
427 }
428 }
429
430 void
schedule_instructions(fs_inst * next_block_header)431 instruction_scheduler::schedule_instructions(fs_inst *next_block_header)
432 {
433 int time = 0;
434
435 /* Remove non-DAG heads from the list. */
436 foreach_list_safe(node, &instructions) {
437 schedule_node *n = (schedule_node *)node;
438 if (n->parent_count != 0)
439 n->remove();
440 }
441
442 while (!instructions.is_empty()) {
443 schedule_node *chosen = NULL;
444 int chosen_time = 0;
445
446 foreach_list(node, &instructions) {
447 schedule_node *n = (schedule_node *)node;
448
449 if (!chosen || n->unblocked_time < chosen_time) {
450 chosen = n;
451 chosen_time = n->unblocked_time;
452 }
453 }
454
455 /* Schedule this instruction. */
456 assert(chosen);
457 chosen->remove();
458 next_block_header->insert_before(chosen->inst);
459 instructions_to_schedule--;
460
461 /* Bump the clock. If we expected a delay for scheduling, then
462 * bump the clock to reflect that.
463 */
464 time = MAX2(time + 1, chosen_time);
465
466 /* Now that we've scheduled a new instruction, some of its
467 * children can be promoted to the list of instructions ready to
468 * be scheduled. Update the children's unblocked time for this
469 * DAG edge as we do so.
470 */
471 for (int i = 0; i < chosen->child_count; i++) {
472 schedule_node *child = chosen->children[i];
473
474 child->unblocked_time = MAX2(child->unblocked_time,
475 time + chosen->child_latency[i]);
476
477 child->parent_count--;
478 if (child->parent_count == 0) {
479 instructions.push_tail(child);
480 }
481 }
482
483 /* Shared resource: the mathbox. There's one per EU (on later
484 * generations, it's even more limited pre-gen6), so if we send
485 * something off to it then the next math isn't going to make
486 * progress until the first is done.
487 */
488 if (chosen->inst->is_math()) {
489 foreach_list(node, &instructions) {
490 schedule_node *n = (schedule_node *)node;
491
492 if (n->inst->is_math())
493 n->unblocked_time = MAX2(n->unblocked_time,
494 time + chosen->latency);
495 }
496 }
497 }
498
499 assert(instructions_to_schedule == 0);
500 }
501
502 void
schedule_instructions()503 fs_visitor::schedule_instructions()
504 {
505 fs_inst *next_block_header = (fs_inst *)instructions.head;
506 instruction_scheduler sched(this, mem_ctx, this->virtual_grf_count);
507
508 while (!next_block_header->is_tail_sentinel()) {
509 /* Add things to be scheduled until we get to a new BB. */
510 while (!next_block_header->is_tail_sentinel()) {
511 fs_inst *inst = next_block_header;
512 next_block_header = (fs_inst *)next_block_header->next;
513
514 sched.add_inst(inst);
515 if (inst->opcode == BRW_OPCODE_IF ||
516 inst->opcode == BRW_OPCODE_ELSE ||
517 inst->opcode == BRW_OPCODE_ENDIF ||
518 inst->opcode == BRW_OPCODE_DO ||
519 inst->opcode == BRW_OPCODE_WHILE ||
520 inst->opcode == BRW_OPCODE_BREAK ||
521 inst->opcode == BRW_OPCODE_CONTINUE) {
522 break;
523 }
524 }
525 sched.calculate_deps();
526 sched.schedule_instructions(next_block_header);
527 }
528
529 this->live_intervals_valid = false;
530 }
531