1 /*
2  * Copyright © 2009 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_context.h"
29 #include "brw_state.h"
30 #include "brw_defines.h"
31 #include "brw_util.h"
32 #include "main/macros.h"
33 #include "main/fbobject.h"
34 #include "intel_batchbuffer.h"
35 
36 /**
37  * Determine the appropriate attribute override value to store into the
38  * 3DSTATE_SF structure for a given fragment shader attribute.  The attribute
39  * override value contains two pieces of information: the location of the
40  * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
41  * flag indicating whether to "swizzle" the attribute based on the direction
42  * the triangle is facing.
43  *
44  * If an attribute is "swizzled", then the given VUE location is used for
45  * front-facing triangles, and the VUE location that immediately follows is
46  * used for back-facing triangles.  We use this to implement the mapping from
47  * gl_FrontColor/gl_BackColor to gl_Color.
48  *
49  * urb_entry_read_offset is the offset into the VUE at which the SF unit is
50  * being instructed to begin reading attribute data.  It can be set to a
51  * nonzero value to prevent the SF unit from wasting time reading elements of
52  * the VUE that are not needed by the fragment shader.  It is measured in
53  * 256-bit increments.
54  */
55 uint32_t
get_attr_override(struct brw_vue_map * vue_map,int urb_entry_read_offset,int fs_attr,bool two_side_color,uint32_t * max_source_attr)56 get_attr_override(struct brw_vue_map *vue_map, int urb_entry_read_offset,
57                   int fs_attr, bool two_side_color, uint32_t *max_source_attr)
58 {
59    int vs_attr = _mesa_frag_attrib_to_vert_result(fs_attr);
60    if (vs_attr < 0 || vs_attr == VERT_RESULT_HPOS) {
61       /* These attributes will be overwritten by the fragment shader's
62        * interpolation code (see emit_interp() in brw_wm_fp.c), so just let
63        * them reference the first available attribute.
64        */
65       return 0;
66    }
67 
68    /* Find the VUE slot for this attribute. */
69    int slot = vue_map->vert_result_to_slot[vs_attr];
70 
71    /* If there was only a back color written but not front, use back
72     * as the color instead of undefined
73     */
74    if (slot == -1 && vs_attr == VERT_RESULT_COL0)
75       slot = vue_map->vert_result_to_slot[VERT_RESULT_BFC0];
76    if (slot == -1 && vs_attr == VERT_RESULT_COL1)
77       slot = vue_map->vert_result_to_slot[VERT_RESULT_BFC1];
78 
79    if (slot == -1) {
80       /* This attribute does not exist in the VUE--that means that the vertex
81        * shader did not write to it.  Behavior is undefined in this case, so
82        * just reference the first available attribute.
83        */
84       return 0;
85    }
86 
87    /* Compute the location of the attribute relative to urb_entry_read_offset.
88     * Each increment of urb_entry_read_offset represents a 256-bit value, so
89     * it counts for two 128-bit VUE slots.
90     */
91    int source_attr = slot - 2 * urb_entry_read_offset;
92    assert(source_attr >= 0 && source_attr < 32);
93 
94    /* If we are doing two-sided color, and the VUE slot following this one
95     * represents a back-facing color, then we need to instruct the SF unit to
96     * do back-facing swizzling.
97     */
98    bool swizzling = two_side_color &&
99       ((vue_map->slot_to_vert_result[slot] == VERT_RESULT_COL0 &&
100         vue_map->slot_to_vert_result[slot+1] == VERT_RESULT_BFC0) ||
101        (vue_map->slot_to_vert_result[slot] == VERT_RESULT_COL1 &&
102         vue_map->slot_to_vert_result[slot+1] == VERT_RESULT_BFC1));
103 
104    /* Update max_source_attr.  If swizzling, the SF will read this slot + 1. */
105    if (*max_source_attr < source_attr + swizzling)
106       *max_source_attr = source_attr + swizzling;
107 
108    if (swizzling) {
109       return source_attr |
110          (ATTRIBUTE_SWIZZLE_INPUTATTR_FACING << ATTRIBUTE_SWIZZLE_SHIFT);
111    }
112 
113    return source_attr;
114 }
115 
116 static void
upload_sf_state(struct brw_context * brw)117 upload_sf_state(struct brw_context *brw)
118 {
119    struct intel_context *intel = &brw->intel;
120    struct gl_context *ctx = &intel->ctx;
121    /* BRW_NEW_FRAGMENT_PROGRAM */
122    uint32_t num_outputs = _mesa_bitcount_64(brw->fragment_program->Base.InputsRead);
123    /* _NEW_LIGHT */
124    bool shade_model_flat = ctx->Light.ShadeModel == GL_FLAT;
125    uint32_t dw1, dw2, dw3, dw4, dw16, dw17;
126    int i;
127    /* _NEW_BUFFER */
128    bool render_to_fbo = _mesa_is_user_fbo(brw->intel.ctx.DrawBuffer);
129    bool multisampled_fbo = ctx->DrawBuffer->Visual.samples > 1;
130 
131    int attr = 0, input_index = 0;
132    int urb_entry_read_offset = 1;
133    float point_size;
134    uint16_t attr_overrides[FRAG_ATTRIB_MAX];
135    uint32_t point_sprite_origin;
136 
137    dw1 = GEN6_SF_SWIZZLE_ENABLE | num_outputs << GEN6_SF_NUM_OUTPUTS_SHIFT;
138 
139    dw2 = GEN6_SF_STATISTICS_ENABLE |
140          GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;
141 
142    dw3 = 0;
143    dw4 = 0;
144    dw16 = 0;
145    dw17 = 0;
146 
147    /* _NEW_POLYGON */
148    if ((ctx->Polygon.FrontFace == GL_CCW) ^ render_to_fbo)
149       dw2 |= GEN6_SF_WINDING_CCW;
150 
151    if (ctx->Polygon.OffsetFill)
152        dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;
153 
154    if (ctx->Polygon.OffsetLine)
155        dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;
156 
157    if (ctx->Polygon.OffsetPoint)
158        dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;
159 
160    switch (ctx->Polygon.FrontMode) {
161    case GL_FILL:
162        dw2 |= GEN6_SF_FRONT_SOLID;
163        break;
164 
165    case GL_LINE:
166        dw2 |= GEN6_SF_FRONT_WIREFRAME;
167        break;
168 
169    case GL_POINT:
170        dw2 |= GEN6_SF_FRONT_POINT;
171        break;
172 
173    default:
174        assert(0);
175        break;
176    }
177 
178    switch (ctx->Polygon.BackMode) {
179    case GL_FILL:
180        dw2 |= GEN6_SF_BACK_SOLID;
181        break;
182 
183    case GL_LINE:
184        dw2 |= GEN6_SF_BACK_WIREFRAME;
185        break;
186 
187    case GL_POINT:
188        dw2 |= GEN6_SF_BACK_POINT;
189        break;
190 
191    default:
192        assert(0);
193        break;
194    }
195 
196    /* _NEW_SCISSOR */
197    if (ctx->Scissor.Enabled)
198       dw3 |= GEN6_SF_SCISSOR_ENABLE;
199 
200    /* _NEW_POLYGON */
201    if (ctx->Polygon.CullFlag) {
202       switch (ctx->Polygon.CullFaceMode) {
203       case GL_FRONT:
204 	 dw3 |= GEN6_SF_CULL_FRONT;
205 	 break;
206       case GL_BACK:
207 	 dw3 |= GEN6_SF_CULL_BACK;
208 	 break;
209       case GL_FRONT_AND_BACK:
210 	 dw3 |= GEN6_SF_CULL_BOTH;
211 	 break;
212       default:
213 	 assert(0);
214 	 break;
215       }
216    } else {
217       dw3 |= GEN6_SF_CULL_NONE;
218    }
219 
220    /* _NEW_LINE */
221    {
222       uint32_t line_width_u3_7 = U_FIXED(CLAMP(ctx->Line.Width, 0.0, 7.99), 7);
223       /* TODO: line width of 0 is not allowed when MSAA enabled */
224       if (line_width_u3_7 == 0)
225          line_width_u3_7 = 1;
226       dw3 |= line_width_u3_7 << GEN6_SF_LINE_WIDTH_SHIFT;
227    }
228    if (ctx->Line.SmoothFlag) {
229       dw3 |= GEN6_SF_LINE_AA_ENABLE;
230       dw3 |= GEN6_SF_LINE_AA_MODE_TRUE;
231       dw3 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
232    }
233    /* _NEW_MULTISAMPLE */
234    if (multisampled_fbo && ctx->Multisample.Enabled)
235       dw3 |= GEN6_SF_MSRAST_ON_PATTERN;
236 
237    /* _NEW_PROGRAM | _NEW_POINT */
238    if (!(ctx->VertexProgram.PointSizeEnabled ||
239 	 ctx->Point._Attenuated))
240       dw4 |= GEN6_SF_USE_STATE_POINT_WIDTH;
241 
242    /* Clamp to ARB_point_parameters user limits */
243    point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
244 
245    /* Clamp to the hardware limits and convert to fixed point */
246    dw4 |= U_FIXED(CLAMP(point_size, 0.125, 255.875), 3);
247 
248    /*
249     * Window coordinates in an FBO are inverted, which means point
250     * sprite origin must be inverted, too.
251     */
252    if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
253       point_sprite_origin = GEN6_SF_POINT_SPRITE_LOWERLEFT;
254    } else {
255       point_sprite_origin = GEN6_SF_POINT_SPRITE_UPPERLEFT;
256    }
257    dw1 |= point_sprite_origin;
258 
259    /* _NEW_LIGHT */
260    if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
261       dw4 |=
262 	 (2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
263 	 (2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
264 	 (1 << GEN6_SF_LINE_PROVOKE_SHIFT);
265    } else {
266       dw4 |=
267 	 (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
268    }
269 
270    /* Create the mapping from the FS inputs we produce to the VS outputs
271     * they source from.
272     */
273    uint32_t max_source_attr = 0;
274    for (; attr < FRAG_ATTRIB_MAX; attr++) {
275       enum glsl_interp_qualifier interp_qualifier =
276          brw->fragment_program->InterpQualifier[attr];
277       bool is_gl_Color = attr == FRAG_ATTRIB_COL0 || attr == FRAG_ATTRIB_COL1;
278 
279       if (!(brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(attr)))
280 	 continue;
281 
282       /* _NEW_POINT */
283       if (ctx->Point.PointSprite &&
284 	  (attr >= FRAG_ATTRIB_TEX0 && attr <= FRAG_ATTRIB_TEX7) &&
285 	  ctx->Point.CoordReplace[attr - FRAG_ATTRIB_TEX0]) {
286 	 dw16 |= (1 << input_index);
287       }
288 
289       if (attr == FRAG_ATTRIB_PNTC)
290 	 dw16 |= (1 << input_index);
291 
292       /* flat shading */
293       if (interp_qualifier == INTERP_QUALIFIER_FLAT ||
294           (shade_model_flat && is_gl_Color &&
295            interp_qualifier == INTERP_QUALIFIER_NONE))
296          dw17 |= (1 << input_index);
297 
298       /* The hardware can only do the overrides on 16 overrides at a
299        * time, and the other up to 16 have to be lined up so that the
300        * input index = the output index.  We'll need to do some
301        * tweaking to make sure that's the case.
302        */
303       assert(input_index < 16 || attr == input_index);
304 
305       /* CACHE_NEW_VS_PROG | _NEW_LIGHT | _NEW_PROGRAM */
306       attr_overrides[input_index++] =
307          get_attr_override(&brw->vs.prog_data->vue_map,
308 			   urb_entry_read_offset, attr,
309                            ctx->VertexProgram._TwoSideEnabled,
310                            &max_source_attr);
311    }
312 
313    for (; input_index < FRAG_ATTRIB_MAX; input_index++)
314       attr_overrides[input_index] = 0;
315 
316    /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
317     * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
318     *
319     * "This field should be set to the minimum length required to read the
320     *  maximum source attribute.  The maximum source attribute is indicated
321     *  by the maximum value of the enabled Attribute # Source Attribute if
322     *  Attribute Swizzle Enable is set, Number of Output Attributes-1 if
323     *  enable is not set.
324     *  read_length = ceiling((max_source_attr + 1) / 2)
325     *
326     *  [errata] Corruption/Hang possible if length programmed larger than
327     *  recommended"
328     */
329    uint32_t urb_entry_read_length = ALIGN(max_source_attr + 1, 2) / 2;
330       dw1 |= urb_entry_read_length << GEN6_SF_URB_ENTRY_READ_LENGTH_SHIFT |
331              urb_entry_read_offset << GEN6_SF_URB_ENTRY_READ_OFFSET_SHIFT;
332 
333    BEGIN_BATCH(20);
334    OUT_BATCH(_3DSTATE_SF << 16 | (20 - 2));
335    OUT_BATCH(dw1);
336    OUT_BATCH(dw2);
337    OUT_BATCH(dw3);
338    OUT_BATCH(dw4);
339    OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant.  copied from gen4 */
340    OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
341    OUT_BATCH_F(0.0); /* XXX: global depth offset clamp */
342    for (i = 0; i < 8; i++) {
343       OUT_BATCH(attr_overrides[i * 2] | attr_overrides[i * 2 + 1] << 16);
344    }
345    OUT_BATCH(dw16); /* point sprite texcoord bitmask */
346    OUT_BATCH(dw17); /* constant interp bitmask */
347    OUT_BATCH(0); /* wrapshortest enables 0-7 */
348    OUT_BATCH(0); /* wrapshortest enables 8-15 */
349    ADVANCE_BATCH();
350 }
351 
352 const struct brw_tracked_state gen6_sf_state = {
353    .dirty = {
354       .mesa  = (_NEW_LIGHT |
355 		_NEW_PROGRAM |
356 		_NEW_POLYGON |
357 		_NEW_LINE |
358 		_NEW_SCISSOR |
359 		_NEW_BUFFERS |
360 		_NEW_POINT |
361                 _NEW_MULTISAMPLE),
362       .brw   = (BRW_NEW_CONTEXT |
363 		BRW_NEW_FRAGMENT_PROGRAM),
364       .cache = CACHE_NEW_VS_PROG
365    },
366    .emit = upload_sf_state,
367 };
368