1 /**************************************************************************
2  *
3  * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /**
29  * \file ffvertex_prog.c
30  *
31  * Create a vertex program to execute the current fixed function T&L pipeline.
32  * \author Keith Whitwell
33  */
34 
35 
36 #include "main/glheader.h"
37 #include "main/mtypes.h"
38 #include "main/macros.h"
39 #include "main/mfeatures.h"
40 #include "main/enums.h"
41 #include "main/ffvertex_prog.h"
42 #include "program/program.h"
43 #include "program/prog_cache.h"
44 #include "program/prog_instruction.h"
45 #include "program/prog_parameter.h"
46 #include "program/prog_print.h"
47 #include "program/prog_statevars.h"
48 
49 
50 /** Max of number of lights and texture coord units */
51 #define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
52 
53 struct state_key {
54    unsigned light_color_material_mask:12;
55    unsigned light_global_enabled:1;
56    unsigned light_local_viewer:1;
57    unsigned light_twoside:1;
58    unsigned material_shininess_is_zero:1;
59    unsigned need_eye_coords:1;
60    unsigned normalize:1;
61    unsigned rescale_normals:1;
62 
63    unsigned fog_source_is_depth:1;
64    unsigned fog_distance_mode:2;
65    unsigned separate_specular:1;
66    unsigned point_attenuated:1;
67    unsigned point_array:1;
68    unsigned texture_enabled_global:1;
69    unsigned fragprog_inputs_read:12;
70 
71    GLbitfield64 varying_vp_inputs;
72 
73    struct {
74       unsigned light_enabled:1;
75       unsigned light_eyepos3_is_zero:1;
76       unsigned light_spotcutoff_is_180:1;
77       unsigned light_attenuated:1;
78       unsigned texunit_really_enabled:1;
79       unsigned texmat_enabled:1;
80       unsigned coord_replace:1;
81       unsigned texgen_enabled:4;
82       unsigned texgen_mode0:4;
83       unsigned texgen_mode1:4;
84       unsigned texgen_mode2:4;
85       unsigned texgen_mode3:4;
86    } unit[NUM_UNITS];
87 };
88 
89 
90 #define TXG_NONE           0
91 #define TXG_OBJ_LINEAR     1
92 #define TXG_EYE_LINEAR     2
93 #define TXG_SPHERE_MAP     3
94 #define TXG_REFLECTION_MAP 4
95 #define TXG_NORMAL_MAP     5
96 
translate_texgen(GLboolean enabled,GLenum mode)97 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
98 {
99    if (!enabled)
100       return TXG_NONE;
101 
102    switch (mode) {
103    case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
104    case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
105    case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
106    case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
107    case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
108    default: return TXG_NONE;
109    }
110 }
111 
112 #define FDM_EYE_RADIAL    0
113 #define FDM_EYE_PLANE     1
114 #define FDM_EYE_PLANE_ABS 2
115 
translate_fog_distance_mode(GLenum mode)116 static GLuint translate_fog_distance_mode( GLenum mode )
117 {
118    switch (mode) {
119    case GL_EYE_RADIAL_NV:
120       return FDM_EYE_RADIAL;
121    case GL_EYE_PLANE:
122       return FDM_EYE_PLANE;
123    default: /* shouldn't happen; fall through to a sensible default */
124    case GL_EYE_PLANE_ABSOLUTE_NV:
125       return FDM_EYE_PLANE_ABS;
126    }
127 }
128 
check_active_shininess(struct gl_context * ctx,const struct state_key * key,GLuint side)129 static GLboolean check_active_shininess( struct gl_context *ctx,
130                                          const struct state_key *key,
131                                          GLuint side )
132 {
133    GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side;
134 
135    if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
136        (key->light_color_material_mask & (1 << attr)))
137       return GL_TRUE;
138 
139    if (key->varying_vp_inputs & VERT_ATTRIB_GENERIC(attr))
140       return GL_TRUE;
141 
142    if (ctx->Light.Material.Attrib[attr][0] != 0.0F)
143       return GL_TRUE;
144 
145    return GL_FALSE;
146 }
147 
148 
make_state_key(struct gl_context * ctx,struct state_key * key)149 static void make_state_key( struct gl_context *ctx, struct state_key *key )
150 {
151    const struct gl_fragment_program *fp;
152    GLuint i;
153 
154    memset(key, 0, sizeof(struct state_key));
155    fp = ctx->FragmentProgram._Current;
156 
157    /* This now relies on texenvprogram.c being active:
158     */
159    assert(fp);
160 
161    key->need_eye_coords = ctx->_NeedEyeCoords;
162 
163    key->fragprog_inputs_read = fp->Base.InputsRead;
164    key->varying_vp_inputs = ctx->varying_vp_inputs;
165 
166    if (ctx->RenderMode == GL_FEEDBACK) {
167       /* make sure the vertprog emits color and tex0 */
168       key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
169    }
170 
171    key->separate_specular = (ctx->Light.Model.ColorControl ==
172 			     GL_SEPARATE_SPECULAR_COLOR);
173 
174    if (ctx->Light.Enabled) {
175       key->light_global_enabled = 1;
176 
177       if (ctx->Light.Model.LocalViewer)
178 	 key->light_local_viewer = 1;
179 
180       if (ctx->Light.Model.TwoSide)
181 	 key->light_twoside = 1;
182 
183       if (ctx->Light.ColorMaterialEnabled) {
184 	 key->light_color_material_mask = ctx->Light._ColorMaterialBitmask;
185       }
186 
187       for (i = 0; i < MAX_LIGHTS; i++) {
188 	 struct gl_light *light = &ctx->Light.Light[i];
189 
190 	 if (light->Enabled) {
191 	    key->unit[i].light_enabled = 1;
192 
193 	    if (light->EyePosition[3] == 0.0)
194 	       key->unit[i].light_eyepos3_is_zero = 1;
195 
196 	    if (light->SpotCutoff == 180.0)
197 	       key->unit[i].light_spotcutoff_is_180 = 1;
198 
199 	    if (light->ConstantAttenuation != 1.0 ||
200 		light->LinearAttenuation != 0.0 ||
201 		light->QuadraticAttenuation != 0.0)
202 	       key->unit[i].light_attenuated = 1;
203 	 }
204       }
205 
206       if (check_active_shininess(ctx, key, 0)) {
207          key->material_shininess_is_zero = 0;
208       }
209       else if (key->light_twoside &&
210                check_active_shininess(ctx, key, 1)) {
211          key->material_shininess_is_zero = 0;
212       }
213       else {
214          key->material_shininess_is_zero = 1;
215       }
216    }
217 
218    if (ctx->Transform.Normalize)
219       key->normalize = 1;
220 
221    if (ctx->Transform.RescaleNormals)
222       key->rescale_normals = 1;
223 
224    if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT) {
225       key->fog_source_is_depth = 1;
226       key->fog_distance_mode = translate_fog_distance_mode(ctx->Fog.FogDistanceMode);
227    }
228 
229    if (ctx->Point._Attenuated)
230       key->point_attenuated = 1;
231 
232 #if FEATURE_point_size_array
233    if (ctx->Array.ArrayObj->VertexAttrib[VERT_ATTRIB_POINT_SIZE].Enabled)
234       key->point_array = 1;
235 #endif
236 
237    if (ctx->Texture._TexGenEnabled ||
238        ctx->Texture._TexMatEnabled ||
239        ctx->Texture._EnabledUnits)
240       key->texture_enabled_global = 1;
241 
242    for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
243       struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
244 
245       if (texUnit->_ReallyEnabled)
246 	 key->unit[i].texunit_really_enabled = 1;
247 
248       if (ctx->Point.PointSprite)
249 	 if (ctx->Point.CoordReplace[i])
250 	    key->unit[i].coord_replace = 1;
251 
252       if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
253 	 key->unit[i].texmat_enabled = 1;
254 
255       if (texUnit->TexGenEnabled) {
256 	 key->unit[i].texgen_enabled = 1;
257 
258 	 key->unit[i].texgen_mode0 =
259 	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
260 			      texUnit->GenS.Mode );
261 	 key->unit[i].texgen_mode1 =
262 	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
263 			      texUnit->GenT.Mode );
264 	 key->unit[i].texgen_mode2 =
265 	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
266 			      texUnit->GenR.Mode );
267 	 key->unit[i].texgen_mode3 =
268 	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
269 			      texUnit->GenQ.Mode );
270       }
271    }
272 }
273 
274 
275 
276 /* Very useful debugging tool - produces annotated listing of
277  * generated program with line/function references for each
278  * instruction back into this file:
279  */
280 #define DISASSEM 0
281 
282 
283 /* Use uregs to represent registers internally, translate to Mesa's
284  * expected formats on emit.
285  *
286  * NOTE: These are passed by value extensively in this file rather
287  * than as usual by pointer reference.  If this disturbs you, try
288  * remembering they are just 32bits in size.
289  *
290  * GCC is smart enough to deal with these dword-sized structures in
291  * much the same way as if I had defined them as dwords and was using
292  * macros to access and set the fields.  This is much nicer and easier
293  * to evolve.
294  */
295 struct ureg {
296    GLuint file:4;
297    GLint idx:9;      /* relative addressing may be negative */
298                      /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
299    GLuint negate:1;
300    GLuint swz:12;
301    GLuint pad:6;
302 };
303 
304 
305 struct tnl_program {
306    const struct state_key *state;
307    struct gl_vertex_program *program;
308    GLint max_inst;  /** number of instructions allocated for program */
309    GLboolean mvp_with_dp4;
310 
311    GLuint temp_in_use;
312    GLuint temp_reserved;
313 
314    struct ureg eye_position;
315    struct ureg eye_position_z;
316    struct ureg eye_position_normalized;
317    struct ureg transformed_normal;
318    struct ureg identity;
319 
320    GLuint materials;
321    GLuint color_materials;
322 };
323 
324 
325 static const struct ureg undef = {
326    PROGRAM_UNDEFINED,
327    0,
328    0,
329    0,
330    0
331 };
332 
333 /* Local shorthand:
334  */
335 #define X    SWIZZLE_X
336 #define Y    SWIZZLE_Y
337 #define Z    SWIZZLE_Z
338 #define W    SWIZZLE_W
339 
340 
341 /* Construct a ureg:
342  */
make_ureg(GLuint file,GLint idx)343 static struct ureg make_ureg(GLuint file, GLint idx)
344 {
345    struct ureg reg;
346    reg.file = file;
347    reg.idx = idx;
348    reg.negate = 0;
349    reg.swz = SWIZZLE_NOOP;
350    reg.pad = 0;
351    return reg;
352 }
353 
354 
355 
negate(struct ureg reg)356 static struct ureg negate( struct ureg reg )
357 {
358    reg.negate ^= 1;
359    return reg;
360 }
361 
362 
swizzle(struct ureg reg,int x,int y,int z,int w)363 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
364 {
365    reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
366 			   GET_SWZ(reg.swz, y),
367 			   GET_SWZ(reg.swz, z),
368 			   GET_SWZ(reg.swz, w));
369    return reg;
370 }
371 
372 
swizzle1(struct ureg reg,int x)373 static struct ureg swizzle1( struct ureg reg, int x )
374 {
375    return swizzle(reg, x, x, x, x);
376 }
377 
378 
get_temp(struct tnl_program * p)379 static struct ureg get_temp( struct tnl_program *p )
380 {
381    int bit = ffs( ~p->temp_in_use );
382    if (!bit) {
383       _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
384       exit(1);
385    }
386 
387    if ((GLuint) bit > p->program->Base.NumTemporaries)
388       p->program->Base.NumTemporaries = bit;
389 
390    p->temp_in_use |= 1<<(bit-1);
391    return make_ureg(PROGRAM_TEMPORARY, bit-1);
392 }
393 
394 
reserve_temp(struct tnl_program * p)395 static struct ureg reserve_temp( struct tnl_program *p )
396 {
397    struct ureg temp = get_temp( p );
398    p->temp_reserved |= 1<<temp.idx;
399    return temp;
400 }
401 
402 
release_temp(struct tnl_program * p,struct ureg reg)403 static void release_temp( struct tnl_program *p, struct ureg reg )
404 {
405    if (reg.file == PROGRAM_TEMPORARY) {
406       p->temp_in_use &= ~(1<<reg.idx);
407       p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
408    }
409 }
410 
release_temps(struct tnl_program * p)411 static void release_temps( struct tnl_program *p )
412 {
413    p->temp_in_use = p->temp_reserved;
414 }
415 
416 
register_param5(struct tnl_program * p,GLint s0,GLint s1,GLint s2,GLint s3,GLint s4)417 static struct ureg register_param5(struct tnl_program *p,
418 				   GLint s0,
419 				   GLint s1,
420 				   GLint s2,
421 				   GLint s3,
422                                    GLint s4)
423 {
424    gl_state_index tokens[STATE_LENGTH];
425    GLint idx;
426    tokens[0] = s0;
427    tokens[1] = s1;
428    tokens[2] = s2;
429    tokens[3] = s3;
430    tokens[4] = s4;
431    idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
432    return make_ureg(PROGRAM_STATE_VAR, idx);
433 }
434 
435 
436 #define register_param1(p,s0)          register_param5(p,s0,0,0,0,0)
437 #define register_param2(p,s0,s1)       register_param5(p,s0,s1,0,0,0)
438 #define register_param3(p,s0,s1,s2)    register_param5(p,s0,s1,s2,0,0)
439 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
440 
441 
442 
443 /**
444  * \param input  one of VERT_ATTRIB_x tokens.
445  */
register_input(struct tnl_program * p,GLuint input)446 static struct ureg register_input( struct tnl_program *p, GLuint input )
447 {
448    assert(input < VERT_ATTRIB_MAX);
449 
450    if (p->state->varying_vp_inputs & VERT_BIT(input)) {
451       p->program->Base.InputsRead |= VERT_BIT(input);
452       return make_ureg(PROGRAM_INPUT, input);
453    }
454    else {
455       return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
456    }
457 }
458 
459 
460 /**
461  * \param input  one of VERT_RESULT_x tokens.
462  */
register_output(struct tnl_program * p,GLuint output)463 static struct ureg register_output( struct tnl_program *p, GLuint output )
464 {
465    p->program->Base.OutputsWritten |= BITFIELD64_BIT(output);
466    return make_ureg(PROGRAM_OUTPUT, output);
467 }
468 
469 
register_const4f(struct tnl_program * p,GLfloat s0,GLfloat s1,GLfloat s2,GLfloat s3)470 static struct ureg register_const4f( struct tnl_program *p,
471 			      GLfloat s0,
472 			      GLfloat s1,
473 			      GLfloat s2,
474 			      GLfloat s3)
475 {
476    gl_constant_value values[4];
477    GLint idx;
478    GLuint swizzle;
479    values[0].f = s0;
480    values[1].f = s1;
481    values[2].f = s2;
482    values[3].f = s3;
483    idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
484                                      &swizzle );
485    ASSERT(swizzle == SWIZZLE_NOOP);
486    return make_ureg(PROGRAM_CONSTANT, idx);
487 }
488 
489 #define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
490 #define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
491 #define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
492 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
493 
is_undef(struct ureg reg)494 static GLboolean is_undef( struct ureg reg )
495 {
496    return reg.file == PROGRAM_UNDEFINED;
497 }
498 
499 
get_identity_param(struct tnl_program * p)500 static struct ureg get_identity_param( struct tnl_program *p )
501 {
502    if (is_undef(p->identity))
503       p->identity = register_const4f(p, 0,0,0,1);
504 
505    return p->identity;
506 }
507 
register_matrix_param5(struct tnl_program * p,GLint s0,GLint s1,GLint s2,GLint s3,GLint s4,struct ureg * matrix)508 static void register_matrix_param5( struct tnl_program *p,
509 				    GLint s0, /* modelview, projection, etc */
510 				    GLint s1, /* texture matrix number */
511 				    GLint s2, /* first row */
512 				    GLint s3, /* last row */
513 				    GLint s4, /* inverse, transpose, etc */
514 				    struct ureg *matrix )
515 {
516    GLint i;
517 
518    /* This is a bit sad as the support is there to pull the whole
519     * matrix out in one go:
520     */
521    for (i = 0; i <= s3 - s2; i++)
522       matrix[i] = register_param5( p, s0, s1, i, i, s4 );
523 }
524 
525 
emit_arg(struct prog_src_register * src,struct ureg reg)526 static void emit_arg( struct prog_src_register *src,
527 		      struct ureg reg )
528 {
529    src->File = reg.file;
530    src->Index = reg.idx;
531    src->Swizzle = reg.swz;
532    src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
533    src->Abs = 0;
534    src->RelAddr = 0;
535    /* Check that bitfield sizes aren't exceeded */
536    ASSERT(src->Index == reg.idx);
537 }
538 
539 
emit_dst(struct prog_dst_register * dst,struct ureg reg,GLuint mask)540 static void emit_dst( struct prog_dst_register *dst,
541 		      struct ureg reg, GLuint mask )
542 {
543    dst->File = reg.file;
544    dst->Index = reg.idx;
545    /* allow zero as a shorthand for xyzw */
546    dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
547    dst->CondMask = COND_TR;  /* always pass cond test */
548    dst->CondSwizzle = SWIZZLE_NOOP;
549    dst->CondSrc = 0;
550    /* Check that bitfield sizes aren't exceeded */
551    ASSERT(dst->Index == reg.idx);
552 }
553 
554 
debug_insn(struct prog_instruction * inst,const char * fn,GLuint line)555 static void debug_insn( struct prog_instruction *inst, const char *fn,
556 			GLuint line )
557 {
558    if (DISASSEM) {
559       static const char *last_fn;
560 
561       if (fn != last_fn) {
562 	 last_fn = fn;
563 	 printf("%s:\n", fn);
564       }
565 
566       printf("%d:\t", line);
567       _mesa_print_instruction(inst);
568    }
569 }
570 
571 
emit_op3fn(struct tnl_program * p,enum prog_opcode op,struct ureg dest,GLuint mask,struct ureg src0,struct ureg src1,struct ureg src2,const char * fn,GLuint line)572 static void emit_op3fn(struct tnl_program *p,
573                        enum prog_opcode op,
574 		       struct ureg dest,
575 		       GLuint mask,
576 		       struct ureg src0,
577 		       struct ureg src1,
578 		       struct ureg src2,
579 		       const char *fn,
580 		       GLuint line)
581 {
582    GLuint nr;
583    struct prog_instruction *inst;
584 
585    assert((GLint) p->program->Base.NumInstructions <= p->max_inst);
586 
587    if (p->program->Base.NumInstructions == p->max_inst) {
588       /* need to extend the program's instruction array */
589       struct prog_instruction *newInst;
590 
591       /* double the size */
592       p->max_inst *= 2;
593 
594       newInst = _mesa_alloc_instructions(p->max_inst);
595       if (!newInst) {
596          _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
597          return;
598       }
599 
600       _mesa_copy_instructions(newInst,
601                               p->program->Base.Instructions,
602                               p->program->Base.NumInstructions);
603 
604       _mesa_free_instructions(p->program->Base.Instructions,
605                               p->program->Base.NumInstructions);
606 
607       p->program->Base.Instructions = newInst;
608    }
609 
610    nr = p->program->Base.NumInstructions++;
611 
612    inst = &p->program->Base.Instructions[nr];
613    inst->Opcode = (enum prog_opcode) op;
614    inst->Data = 0;
615 
616    emit_arg( &inst->SrcReg[0], src0 );
617    emit_arg( &inst->SrcReg[1], src1 );
618    emit_arg( &inst->SrcReg[2], src2 );
619 
620    emit_dst( &inst->DstReg, dest, mask );
621 
622    debug_insn(inst, fn, line);
623 }
624 
625 
626 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
627    emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
628 
629 #define emit_op2(p, op, dst, mask, src0, src1) \
630     emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
631 
632 #define emit_op1(p, op, dst, mask, src0) \
633     emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
634 
635 
make_temp(struct tnl_program * p,struct ureg reg)636 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
637 {
638    if (reg.file == PROGRAM_TEMPORARY &&
639        !(p->temp_reserved & (1<<reg.idx)))
640       return reg;
641    else {
642       struct ureg temp = get_temp(p);
643       emit_op1(p, OPCODE_MOV, temp, 0, reg);
644       return temp;
645    }
646 }
647 
648 
649 /* Currently no tracking performed of input/output/register size or
650  * active elements.  Could be used to reduce these operations, as
651  * could the matrix type.
652  */
emit_matrix_transform_vec4(struct tnl_program * p,struct ureg dest,const struct ureg * mat,struct ureg src)653 static void emit_matrix_transform_vec4( struct tnl_program *p,
654 					struct ureg dest,
655 					const struct ureg *mat,
656 					struct ureg src)
657 {
658    emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
659    emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
660    emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
661    emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
662 }
663 
664 
665 /* This version is much easier to implement if writemasks are not
666  * supported natively on the target or (like SSE), the target doesn't
667  * have a clean/obvious dotproduct implementation.
668  */
emit_transpose_matrix_transform_vec4(struct tnl_program * p,struct ureg dest,const struct ureg * mat,struct ureg src)669 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
670 						  struct ureg dest,
671 						  const struct ureg *mat,
672 						  struct ureg src)
673 {
674    struct ureg tmp;
675 
676    if (dest.file != PROGRAM_TEMPORARY)
677       tmp = get_temp(p);
678    else
679       tmp = dest;
680 
681    emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
682    emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
683    emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
684    emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
685 
686    if (dest.file != PROGRAM_TEMPORARY)
687       release_temp(p, tmp);
688 }
689 
690 
emit_matrix_transform_vec3(struct tnl_program * p,struct ureg dest,const struct ureg * mat,struct ureg src)691 static void emit_matrix_transform_vec3( struct tnl_program *p,
692 					struct ureg dest,
693 					const struct ureg *mat,
694 					struct ureg src)
695 {
696    emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
697    emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
698    emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
699 }
700 
701 
emit_normalize_vec3(struct tnl_program * p,struct ureg dest,struct ureg src)702 static void emit_normalize_vec3( struct tnl_program *p,
703 				 struct ureg dest,
704 				 struct ureg src )
705 {
706 #if 0
707    /* XXX use this when drivers are ready for NRM3 */
708    emit_op1(p, OPCODE_NRM3, dest, WRITEMASK_XYZ, src);
709 #else
710    struct ureg tmp = get_temp(p);
711    emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
712    emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
713    emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
714    release_temp(p, tmp);
715 #endif
716 }
717 
718 
emit_passthrough(struct tnl_program * p,GLuint input,GLuint output)719 static void emit_passthrough( struct tnl_program *p,
720 			      GLuint input,
721 			      GLuint output )
722 {
723    struct ureg out = register_output(p, output);
724    emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
725 }
726 
727 
get_eye_position(struct tnl_program * p)728 static struct ureg get_eye_position( struct tnl_program *p )
729 {
730    if (is_undef(p->eye_position)) {
731       struct ureg pos = register_input( p, VERT_ATTRIB_POS );
732       struct ureg modelview[4];
733 
734       p->eye_position = reserve_temp(p);
735 
736       if (p->mvp_with_dp4) {
737 	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
738                                  0, modelview );
739 
740 	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
741       }
742       else {
743 	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
744 				 STATE_MATRIX_TRANSPOSE, modelview );
745 
746 	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
747       }
748    }
749 
750    return p->eye_position;
751 }
752 
753 
get_eye_position_z(struct tnl_program * p)754 static struct ureg get_eye_position_z( struct tnl_program *p )
755 {
756    if (!is_undef(p->eye_position))
757       return swizzle1(p->eye_position, Z);
758 
759    if (is_undef(p->eye_position_z)) {
760       struct ureg pos = register_input( p, VERT_ATTRIB_POS );
761       struct ureg modelview[4];
762 
763       p->eye_position_z = reserve_temp(p);
764 
765       register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
766                               0, modelview );
767 
768       emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
769    }
770 
771    return p->eye_position_z;
772 }
773 
774 
get_eye_position_normalized(struct tnl_program * p)775 static struct ureg get_eye_position_normalized( struct tnl_program *p )
776 {
777    if (is_undef(p->eye_position_normalized)) {
778       struct ureg eye = get_eye_position(p);
779       p->eye_position_normalized = reserve_temp(p);
780       emit_normalize_vec3(p, p->eye_position_normalized, eye);
781    }
782 
783    return p->eye_position_normalized;
784 }
785 
786 
get_transformed_normal(struct tnl_program * p)787 static struct ureg get_transformed_normal( struct tnl_program *p )
788 {
789    if (is_undef(p->transformed_normal) &&
790        !p->state->need_eye_coords &&
791        !p->state->normalize &&
792        !(p->state->need_eye_coords == p->state->rescale_normals))
793    {
794       p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
795    }
796    else if (is_undef(p->transformed_normal))
797    {
798       struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
799       struct ureg mvinv[3];
800       struct ureg transformed_normal = reserve_temp(p);
801 
802       if (p->state->need_eye_coords) {
803          register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
804                                  STATE_MATRIX_INVTRANS, mvinv );
805 
806          /* Transform to eye space:
807           */
808          emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
809          normal = transformed_normal;
810       }
811 
812       /* Normalize/Rescale:
813        */
814       if (p->state->normalize) {
815 	 emit_normalize_vec3( p, transformed_normal, normal );
816          normal = transformed_normal;
817       }
818       else if (p->state->need_eye_coords == p->state->rescale_normals) {
819          /* This is already adjusted for eye/non-eye rendering:
820           */
821 	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
822                                                STATE_NORMAL_SCALE);
823 
824 	 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
825          normal = transformed_normal;
826       }
827 
828       assert(normal.file == PROGRAM_TEMPORARY);
829       p->transformed_normal = normal;
830    }
831 
832    return p->transformed_normal;
833 }
834 
835 
build_hpos(struct tnl_program * p)836 static void build_hpos( struct tnl_program *p )
837 {
838    struct ureg pos = register_input( p, VERT_ATTRIB_POS );
839    struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
840    struct ureg mvp[4];
841 
842    if (p->mvp_with_dp4) {
843       register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
844 			      0, mvp );
845       emit_matrix_transform_vec4( p, hpos, mvp, pos );
846    }
847    else {
848       register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
849 			      STATE_MATRIX_TRANSPOSE, mvp );
850       emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
851    }
852 }
853 
854 
material_attrib(GLuint side,GLuint property)855 static GLuint material_attrib( GLuint side, GLuint property )
856 {
857    return (property - STATE_AMBIENT) * 2 + side;
858 }
859 
860 
861 /**
862  * Get a bitmask of which material values vary on a per-vertex basis.
863  */
set_material_flags(struct tnl_program * p)864 static void set_material_flags( struct tnl_program *p )
865 {
866    p->color_materials = 0;
867    p->materials = 0;
868 
869    if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
870       p->materials =
871 	 p->color_materials = p->state->light_color_material_mask;
872    }
873 
874    p->materials |= (p->state->varying_vp_inputs >> VERT_ATTRIB_GENERIC0);
875 }
876 
877 
get_material(struct tnl_program * p,GLuint side,GLuint property)878 static struct ureg get_material( struct tnl_program *p, GLuint side,
879 				 GLuint property )
880 {
881    GLuint attrib = material_attrib(side, property);
882 
883    if (p->color_materials & (1<<attrib))
884       return register_input(p, VERT_ATTRIB_COLOR0);
885    else if (p->materials & (1<<attrib)) {
886       /* Put material values in the GENERIC slots -- they are not used
887        * for anything in fixed function mode.
888        */
889       return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
890    }
891    else
892       return register_param3( p, STATE_MATERIAL, side, property );
893 }
894 
895 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
896 				   MAT_BIT_FRONT_AMBIENT | \
897 				   MAT_BIT_FRONT_DIFFUSE) << (side))
898 
899 
900 /**
901  * Either return a precalculated constant value or emit code to
902  * calculate these values dynamically in the case where material calls
903  * are present between begin/end pairs.
904  *
905  * Probably want to shift this to the program compilation phase - if
906  * we always emitted the calculation here, a smart compiler could
907  * detect that it was constant (given a certain set of inputs), and
908  * lift it out of the main loop.  That way the programs created here
909  * would be independent of the vertex_buffer details.
910  */
get_scenecolor(struct tnl_program * p,GLuint side)911 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
912 {
913    if (p->materials & SCENE_COLOR_BITS(side)) {
914       struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
915       struct ureg material_emission = get_material(p, side, STATE_EMISSION);
916       struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
917       struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
918       struct ureg tmp = make_temp(p, material_diffuse);
919       emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
920 	       material_ambient, material_emission);
921       return tmp;
922    }
923    else
924       return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
925 }
926 
927 
get_lightprod(struct tnl_program * p,GLuint light,GLuint side,GLuint property)928 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
929 				  GLuint side, GLuint property )
930 {
931    GLuint attrib = material_attrib(side, property);
932    if (p->materials & (1<<attrib)) {
933       struct ureg light_value =
934 	 register_param3(p, STATE_LIGHT, light, property);
935       struct ureg material_value = get_material(p, side, property);
936       struct ureg tmp = get_temp(p);
937       emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
938       return tmp;
939    }
940    else
941       return register_param4(p, STATE_LIGHTPROD, light, side, property);
942 }
943 
944 
calculate_light_attenuation(struct tnl_program * p,GLuint i,struct ureg VPpli,struct ureg dist)945 static struct ureg calculate_light_attenuation( struct tnl_program *p,
946 						GLuint i,
947 						struct ureg VPpli,
948 						struct ureg dist )
949 {
950    struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
951 					     STATE_ATTENUATION);
952    struct ureg att = undef;
953 
954    /* Calculate spot attenuation:
955     */
956    if (!p->state->unit[i].light_spotcutoff_is_180) {
957       struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
958 						  STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
959       struct ureg spot = get_temp(p);
960       struct ureg slt = get_temp(p);
961 
962       att = get_temp(p);
963 
964       emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
965       emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
966       emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
967       emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
968 
969       release_temp(p, spot);
970       release_temp(p, slt);
971    }
972 
973    /* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
974     *
975     * Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
976     */
977    if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
978       if (is_undef(att))
979          att = get_temp(p);
980       /* 1/d,d,d,1/d */
981       emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
982       /* 1,d,d*d,1/d */
983       emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
984       /* 1/dist-atten */
985       emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
986 
987       if (!p->state->unit[i].light_spotcutoff_is_180) {
988 	 /* dist-atten */
989 	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
990 	 /* spot-atten * dist-atten */
991 	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
992       }
993       else {
994 	 /* dist-atten */
995 	 emit_op1(p, OPCODE_RCP, att, 0, dist);
996       }
997    }
998 
999    return att;
1000 }
1001 
1002 
1003 /**
1004  * Compute:
1005  *   lit.y = MAX(0, dots.x)
1006  *   lit.z = SLT(0, dots.x)
1007  */
emit_degenerate_lit(struct tnl_program * p,struct ureg lit,struct ureg dots)1008 static void emit_degenerate_lit( struct tnl_program *p,
1009                                  struct ureg lit,
1010                                  struct ureg dots )
1011 {
1012    struct ureg id = get_identity_param(p);  /* id = {0,0,0,1} */
1013 
1014    /* Note that lit.x & lit.w will not be examined.  Note also that
1015     * dots.xyzw == dots.xxxx.
1016     */
1017 
1018    /* MAX lit, id, dots;
1019     */
1020    emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1021 
1022    /* result[2] = (in > 0 ? 1 : 0)
1023     * SLT lit.z, id.z, dots;   # lit.z = (0 < dots.z) ? 1 : 0
1024     */
1025    emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1026 }
1027 
1028 
1029 /* Need to add some addtional parameters to allow lighting in object
1030  * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1031  * space lighting.
1032  */
build_lighting(struct tnl_program * p)1033 static void build_lighting( struct tnl_program *p )
1034 {
1035    const GLboolean twoside = p->state->light_twoside;
1036    const GLboolean separate = p->state->separate_specular;
1037    GLuint nr_lights = 0, count = 0;
1038    struct ureg normal = get_transformed_normal(p);
1039    struct ureg lit = get_temp(p);
1040    struct ureg dots = get_temp(p);
1041    struct ureg _col0 = undef, _col1 = undef;
1042    struct ureg _bfc0 = undef, _bfc1 = undef;
1043    GLuint i;
1044 
1045    /*
1046     * NOTE:
1047     * dots.x = dot(normal, VPpli)
1048     * dots.y = dot(normal, halfAngle)
1049     * dots.z = back.shininess
1050     * dots.w = front.shininess
1051     */
1052 
1053    for (i = 0; i < MAX_LIGHTS; i++)
1054       if (p->state->unit[i].light_enabled)
1055 	 nr_lights++;
1056 
1057    set_material_flags(p);
1058 
1059    {
1060       if (!p->state->material_shininess_is_zero) {
1061          struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1062          emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1063          release_temp(p, shininess);
1064       }
1065 
1066       _col0 = make_temp(p, get_scenecolor(p, 0));
1067       if (separate)
1068 	 _col1 = make_temp(p, get_identity_param(p));
1069       else
1070 	 _col1 = _col0;
1071    }
1072 
1073    if (twoside) {
1074       if (!p->state->material_shininess_is_zero) {
1075          /* Note that we negate the back-face specular exponent here.
1076           * The negation will be un-done later in the back-face code below.
1077           */
1078          struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1079          emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1080                   negate(swizzle1(shininess,X)));
1081          release_temp(p, shininess);
1082       }
1083 
1084       _bfc0 = make_temp(p, get_scenecolor(p, 1));
1085       if (separate)
1086 	 _bfc1 = make_temp(p, get_identity_param(p));
1087       else
1088 	 _bfc1 = _bfc0;
1089    }
1090 
1091    /* If no lights, still need to emit the scenecolor.
1092     */
1093    {
1094       struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1095       emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1096    }
1097 
1098    if (separate) {
1099       struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1100       emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1101    }
1102 
1103    if (twoside) {
1104       struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1105       emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1106    }
1107 
1108    if (twoside && separate) {
1109       struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1110       emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1111    }
1112 
1113    if (nr_lights == 0) {
1114       release_temps(p);
1115       return;
1116    }
1117 
1118    for (i = 0; i < MAX_LIGHTS; i++) {
1119       if (p->state->unit[i].light_enabled) {
1120 	 struct ureg half = undef;
1121 	 struct ureg att = undef, VPpli = undef;
1122 	 struct ureg dist = undef;
1123 
1124 	 count++;
1125          if (p->state->unit[i].light_eyepos3_is_zero) {
1126              VPpli = register_param3(p, STATE_INTERNAL,
1127                                      STATE_LIGHT_POSITION_NORMALIZED, i);
1128          } else {
1129             struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1130                                                STATE_LIGHT_POSITION, i);
1131             struct ureg V = get_eye_position(p);
1132 
1133             VPpli = get_temp(p);
1134             dist = get_temp(p);
1135 
1136             /* Calculate VPpli vector
1137              */
1138             emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1139 
1140             /* Normalize VPpli.  The dist value also used in
1141              * attenuation below.
1142              */
1143             emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1144             emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1145             emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1146          }
1147 
1148          /* Calculate attenuation:
1149           */
1150          att = calculate_light_attenuation(p, i, VPpli, dist);
1151          release_temp(p, dist);
1152 
1153 	 /* Calculate viewer direction, or use infinite viewer:
1154 	  */
1155          if (!p->state->material_shininess_is_zero) {
1156             if (p->state->light_local_viewer) {
1157                struct ureg eye_hat = get_eye_position_normalized(p);
1158                half = get_temp(p);
1159                emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1160                emit_normalize_vec3(p, half, half);
1161             } else if (p->state->unit[i].light_eyepos3_is_zero) {
1162                half = register_param3(p, STATE_INTERNAL,
1163                                       STATE_LIGHT_HALF_VECTOR, i);
1164             } else {
1165                struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1166                half = get_temp(p);
1167                emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1168                emit_normalize_vec3(p, half, half);
1169             }
1170 	 }
1171 
1172 	 /* Calculate dot products:
1173 	  */
1174          if (p->state->material_shininess_is_zero) {
1175             emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1176          }
1177          else {
1178             emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1179             emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1180          }
1181 
1182 	 /* Front face lighting:
1183 	  */
1184 	 {
1185 	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1186 	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1187 	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1188 	    struct ureg res0, res1;
1189 	    GLuint mask0, mask1;
1190 
1191 	    if (count == nr_lights) {
1192 	       if (separate) {
1193 		  mask0 = WRITEMASK_XYZ;
1194 		  mask1 = WRITEMASK_XYZ;
1195 		  res0 = register_output( p, VERT_RESULT_COL0 );
1196 		  res1 = register_output( p, VERT_RESULT_COL1 );
1197 	       }
1198 	       else {
1199 		  mask0 = 0;
1200 		  mask1 = WRITEMASK_XYZ;
1201 		  res0 = _col0;
1202 		  res1 = register_output( p, VERT_RESULT_COL0 );
1203 	       }
1204 	    }
1205             else {
1206 	       mask0 = 0;
1207 	       mask1 = 0;
1208 	       res0 = _col0;
1209 	       res1 = _col1;
1210 	    }
1211 
1212 	    if (!is_undef(att)) {
1213                /* light is attenuated by distance */
1214                emit_op1(p, OPCODE_LIT, lit, 0, dots);
1215                emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1216                emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1217             }
1218             else if (!p->state->material_shininess_is_zero) {
1219                /* there's a non-zero specular term */
1220                emit_op1(p, OPCODE_LIT, lit, 0, dots);
1221                emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1222             }
1223             else {
1224                /* no attenutation, no specular */
1225                emit_degenerate_lit(p, lit, dots);
1226                emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1227             }
1228 
1229 	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1230 	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1231 
1232 	    release_temp(p, ambient);
1233 	    release_temp(p, diffuse);
1234 	    release_temp(p, specular);
1235 	 }
1236 
1237 	 /* Back face lighting:
1238 	  */
1239 	 if (twoside) {
1240 	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1241 	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1242 	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1243 	    struct ureg res0, res1;
1244 	    GLuint mask0, mask1;
1245 
1246 	    if (count == nr_lights) {
1247 	       if (separate) {
1248 		  mask0 = WRITEMASK_XYZ;
1249 		  mask1 = WRITEMASK_XYZ;
1250 		  res0 = register_output( p, VERT_RESULT_BFC0 );
1251 		  res1 = register_output( p, VERT_RESULT_BFC1 );
1252 	       }
1253 	       else {
1254 		  mask0 = 0;
1255 		  mask1 = WRITEMASK_XYZ;
1256 		  res0 = _bfc0;
1257 		  res1 = register_output( p, VERT_RESULT_BFC0 );
1258 	       }
1259 	    }
1260             else {
1261 	       res0 = _bfc0;
1262 	       res1 = _bfc1;
1263 	       mask0 = 0;
1264 	       mask1 = 0;
1265 	    }
1266 
1267             /* For the back face we need to negate the X and Y component
1268              * dot products.  dots.Z has the negated back-face specular
1269              * exponent.  We swizzle that into the W position.  This
1270              * negation makes the back-face specular term positive again.
1271              */
1272             dots = negate(swizzle(dots,X,Y,W,Z));
1273 
1274 	    if (!is_undef(att)) {
1275                emit_op1(p, OPCODE_LIT, lit, 0, dots);
1276 	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1277                emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1278             }
1279             else if (!p->state->material_shininess_is_zero) {
1280                emit_op1(p, OPCODE_LIT, lit, 0, dots);
1281                emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1282             }
1283             else {
1284                emit_degenerate_lit(p, lit, dots);
1285                emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1286             }
1287 
1288 	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1289 	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1290             /* restore dots to its original state for subsequent lights
1291              * by negating and swizzling again.
1292              */
1293             dots = negate(swizzle(dots,X,Y,W,Z));
1294 
1295 	    release_temp(p, ambient);
1296 	    release_temp(p, diffuse);
1297 	    release_temp(p, specular);
1298 	 }
1299 
1300 	 release_temp(p, half);
1301 	 release_temp(p, VPpli);
1302 	 release_temp(p, att);
1303       }
1304    }
1305 
1306    release_temps( p );
1307 }
1308 
1309 
build_fog(struct tnl_program * p)1310 static void build_fog( struct tnl_program *p )
1311 {
1312    struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1313    struct ureg input;
1314 
1315    if (p->state->fog_source_is_depth) {
1316 
1317       switch (p->state->fog_distance_mode) {
1318       case FDM_EYE_RADIAL: /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
1319 	input = get_eye_position(p);
1320 	emit_op2(p, OPCODE_DP3, fog, WRITEMASK_X, input, input);
1321 	emit_op1(p, OPCODE_RSQ, fog, WRITEMASK_X, fog);
1322 	emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, fog);
1323 	break;
1324       case FDM_EYE_PLANE: /* Z = Ze */
1325 	input = get_eye_position_z(p);
1326 	emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1327 	break;
1328       case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
1329 	input = get_eye_position_z(p);
1330 	emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1331 	break;
1332       default: assert(0); break; /* can't happen */
1333       }
1334 
1335    }
1336    else {
1337       input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1338       emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1339    }
1340 
1341    emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1342 }
1343 
1344 
build_reflect_texgen(struct tnl_program * p,struct ureg dest,GLuint writemask)1345 static void build_reflect_texgen( struct tnl_program *p,
1346 				  struct ureg dest,
1347 				  GLuint writemask )
1348 {
1349    struct ureg normal = get_transformed_normal(p);
1350    struct ureg eye_hat = get_eye_position_normalized(p);
1351    struct ureg tmp = get_temp(p);
1352 
1353    /* n.u */
1354    emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1355    /* 2n.u */
1356    emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1357    /* (-2n.u)n + u */
1358    emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1359 
1360    release_temp(p, tmp);
1361 }
1362 
1363 
build_sphere_texgen(struct tnl_program * p,struct ureg dest,GLuint writemask)1364 static void build_sphere_texgen( struct tnl_program *p,
1365 				 struct ureg dest,
1366 				 GLuint writemask )
1367 {
1368    struct ureg normal = get_transformed_normal(p);
1369    struct ureg eye_hat = get_eye_position_normalized(p);
1370    struct ureg tmp = get_temp(p);
1371    struct ureg half = register_scalar_const(p, .5);
1372    struct ureg r = get_temp(p);
1373    struct ureg inv_m = get_temp(p);
1374    struct ureg id = get_identity_param(p);
1375 
1376    /* Could share the above calculations, but it would be
1377     * a fairly odd state for someone to set (both sphere and
1378     * reflection active for different texture coordinate
1379     * components.  Of course - if two texture units enable
1380     * reflect and/or sphere, things start to tilt in favour
1381     * of seperating this out:
1382     */
1383 
1384    /* n.u */
1385    emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1386    /* 2n.u */
1387    emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1388    /* (-2n.u)n + u */
1389    emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1390    /* r + 0,0,1 */
1391    emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1392    /* rx^2 + ry^2 + (rz+1)^2 */
1393    emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1394    /* 2/m */
1395    emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1396    /* 1/m */
1397    emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1398    /* r/m + 1/2 */
1399    emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1400 
1401    release_temp(p, tmp);
1402    release_temp(p, r);
1403    release_temp(p, inv_m);
1404 }
1405 
1406 
build_texture_transform(struct tnl_program * p)1407 static void build_texture_transform( struct tnl_program *p )
1408 {
1409    GLuint i, j;
1410 
1411    for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1412 
1413       if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1414 	 continue;
1415 
1416       if (p->state->unit[i].coord_replace)
1417   	 continue;
1418 
1419       if (p->state->unit[i].texgen_enabled ||
1420 	  p->state->unit[i].texmat_enabled) {
1421 
1422 	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1423 	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1424 	 struct ureg out_texgen = undef;
1425 
1426 	 if (p->state->unit[i].texgen_enabled) {
1427 	    GLuint copy_mask = 0;
1428 	    GLuint sphere_mask = 0;
1429 	    GLuint reflect_mask = 0;
1430 	    GLuint normal_mask = 0;
1431 	    GLuint modes[4];
1432 
1433 	    if (texmat_enabled)
1434 	       out_texgen = get_temp(p);
1435 	    else
1436 	       out_texgen = out;
1437 
1438 	    modes[0] = p->state->unit[i].texgen_mode0;
1439 	    modes[1] = p->state->unit[i].texgen_mode1;
1440 	    modes[2] = p->state->unit[i].texgen_mode2;
1441 	    modes[3] = p->state->unit[i].texgen_mode3;
1442 
1443 	    for (j = 0; j < 4; j++) {
1444 	       switch (modes[j]) {
1445 	       case TXG_OBJ_LINEAR: {
1446 		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1447 		  struct ureg plane =
1448 		     register_param3(p, STATE_TEXGEN, i,
1449 				     STATE_TEXGEN_OBJECT_S + j);
1450 
1451 		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1452 			   obj, plane );
1453 		  break;
1454 	       }
1455 	       case TXG_EYE_LINEAR: {
1456 		  struct ureg eye = get_eye_position(p);
1457 		  struct ureg plane =
1458 		     register_param3(p, STATE_TEXGEN, i,
1459 				     STATE_TEXGEN_EYE_S + j);
1460 
1461 		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1462 			   eye, plane );
1463 		  break;
1464 	       }
1465 	       case TXG_SPHERE_MAP:
1466 		  sphere_mask |= WRITEMASK_X << j;
1467 		  break;
1468 	       case TXG_REFLECTION_MAP:
1469 		  reflect_mask |= WRITEMASK_X << j;
1470 		  break;
1471 	       case TXG_NORMAL_MAP:
1472 		  normal_mask |= WRITEMASK_X << j;
1473 		  break;
1474 	       case TXG_NONE:
1475 		  copy_mask |= WRITEMASK_X << j;
1476 	       }
1477 	    }
1478 
1479 	    if (sphere_mask) {
1480 	       build_sphere_texgen(p, out_texgen, sphere_mask);
1481 	    }
1482 
1483 	    if (reflect_mask) {
1484 	       build_reflect_texgen(p, out_texgen, reflect_mask);
1485 	    }
1486 
1487 	    if (normal_mask) {
1488 	       struct ureg normal = get_transformed_normal(p);
1489 	       emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1490 	    }
1491 
1492 	    if (copy_mask) {
1493 	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1494 	       emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1495 	    }
1496 	 }
1497 
1498 	 if (texmat_enabled) {
1499 	    struct ureg texmat[4];
1500 	    struct ureg in = (!is_undef(out_texgen) ?
1501 			      out_texgen :
1502 			      register_input(p, VERT_ATTRIB_TEX0+i));
1503 	    if (p->mvp_with_dp4) {
1504 	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1505 				       0, texmat );
1506 	       emit_matrix_transform_vec4( p, out, texmat, in );
1507 	    }
1508 	    else {
1509 	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1510 				       STATE_MATRIX_TRANSPOSE, texmat );
1511 	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1512 	    }
1513 	 }
1514 
1515 	 release_temps(p);
1516       }
1517       else {
1518 	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1519       }
1520    }
1521 }
1522 
1523 
1524 /**
1525  * Point size attenuation computation.
1526  */
build_atten_pointsize(struct tnl_program * p)1527 static void build_atten_pointsize( struct tnl_program *p )
1528 {
1529    struct ureg eye = get_eye_position_z(p);
1530    struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
1531    struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1532    struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1533    struct ureg ut = get_temp(p);
1534 
1535    /* dist = |eyez| */
1536    emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1537    /* p1 + dist * (p2 + dist * p3); */
1538    emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1539 		swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1540    emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1541 		ut, swizzle1(state_attenuation, X));
1542 
1543    /* 1 / sqrt(factor) */
1544    emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1545 
1546 #if 0
1547    /* out = pointSize / sqrt(factor) */
1548    emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1549 #else
1550    /* this is a good place to clamp the point size since there's likely
1551     * no hardware registers to clamp point size at rasterization time.
1552     */
1553    emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1554    emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1555    emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1556 #endif
1557 
1558    release_temp(p, ut);
1559 }
1560 
1561 
1562 /**
1563  * Pass-though per-vertex point size, from user's point size array.
1564  */
build_array_pointsize(struct tnl_program * p)1565 static void build_array_pointsize( struct tnl_program *p )
1566 {
1567    struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1568    struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1569    emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1570 }
1571 
1572 
build_tnl_program(struct tnl_program * p)1573 static void build_tnl_program( struct tnl_program *p )
1574 {
1575    /* Emit the program, starting with the modelview, projection transforms:
1576     */
1577    build_hpos(p);
1578 
1579    /* Lighting calculations:
1580     */
1581    if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1582       if (p->state->light_global_enabled)
1583 	 build_lighting(p);
1584       else {
1585 	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1586 	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1587 
1588 	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1589 	    emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1590       }
1591    }
1592 
1593    if (p->state->fragprog_inputs_read & FRAG_BIT_FOGC)
1594       build_fog(p);
1595 
1596    if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1597       build_texture_transform(p);
1598 
1599    if (p->state->point_attenuated)
1600       build_atten_pointsize(p);
1601    else if (p->state->point_array)
1602       build_array_pointsize(p);
1603 
1604    /* Finish up:
1605     */
1606    emit_op1(p, OPCODE_END, undef, 0, undef);
1607 
1608    /* Disassemble:
1609     */
1610    if (DISASSEM) {
1611       printf ("\n");
1612    }
1613 }
1614 
1615 
1616 static void
create_new_program(const struct state_key * key,struct gl_vertex_program * program,GLboolean mvp_with_dp4,GLuint max_temps)1617 create_new_program( const struct state_key *key,
1618                     struct gl_vertex_program *program,
1619                     GLboolean mvp_with_dp4,
1620                     GLuint max_temps)
1621 {
1622    struct tnl_program p;
1623 
1624    memset(&p, 0, sizeof(p));
1625    p.state = key;
1626    p.program = program;
1627    p.eye_position = undef;
1628    p.eye_position_z = undef;
1629    p.eye_position_normalized = undef;
1630    p.transformed_normal = undef;
1631    p.identity = undef;
1632    p.temp_in_use = 0;
1633    p.mvp_with_dp4 = mvp_with_dp4;
1634 
1635    if (max_temps >= sizeof(int) * 8)
1636       p.temp_reserved = 0;
1637    else
1638       p.temp_reserved = ~((1<<max_temps)-1);
1639 
1640    /* Start by allocating 32 instructions.
1641     * If we need more, we'll grow the instruction array as needed.
1642     */
1643    p.max_inst = 32;
1644    p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1645    p.program->Base.String = NULL;
1646    p.program->Base.NumInstructions =
1647    p.program->Base.NumTemporaries =
1648    p.program->Base.NumParameters =
1649    p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1650    p.program->Base.Parameters = _mesa_new_parameter_list();
1651    p.program->Base.InputsRead = 0;
1652    p.program->Base.OutputsWritten = 0;
1653 
1654    build_tnl_program( &p );
1655 }
1656 
1657 
1658 /**
1659  * Return a vertex program which implements the current fixed-function
1660  * transform/lighting/texgen operations.
1661  */
1662 struct gl_vertex_program *
_mesa_get_fixed_func_vertex_program(struct gl_context * ctx)1663 _mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
1664 {
1665    struct gl_vertex_program *prog;
1666    struct state_key key;
1667 
1668    /* Grab all the relevent state and put it in a single structure:
1669     */
1670    make_state_key(ctx, &key);
1671 
1672    /* Look for an already-prepared program for this state:
1673     */
1674    prog = gl_vertex_program(
1675       _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key)));
1676 
1677    if (!prog) {
1678       /* OK, we'll have to build a new one */
1679       if (0)
1680          printf("Build new TNL program\n");
1681 
1682       prog = gl_vertex_program(ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0));
1683       if (!prog)
1684          return NULL;
1685 
1686       create_new_program( &key, prog,
1687                           ctx->mvp_with_dp4,
1688                           ctx->Const.VertexProgram.MaxTemps );
1689 
1690 #if 0
1691       if (ctx->Driver.ProgramStringNotify)
1692          ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1693                                           &prog->Base );
1694 #endif
1695       _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1696                                  &key, sizeof(key), &prog->Base);
1697    }
1698 
1699    return prog;
1700 }
1701