1 /**************************************************************************
2  *
3  * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4  * All Rights Reserved.
5  *
6  **************************************************************************/
7 
8 
9 /**
10  * Code to implement GL_OES_query_matrix.  See the spec at:
11  * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt
12  */
13 
14 
15 #include <stdlib.h>
16 #include <math.h>
17 #include "GLES/gl.h"
18 #include "GLES/glext.h"
19 
20 
21 /**
22  * This is from the GL_OES_query_matrix extension specification:
23  *
24  *  GLbitfield glQueryMatrixxOES( GLfixed mantissa[16],
25  *                                GLint   exponent[16] )
26  *  mantissa[16] contains the contents of the current matrix in GLfixed
27  *  format.  exponent[16] contains the unbiased exponents applied to the
28  *  matrix components, so that the internal representation of component i
29  *  is close to mantissa[i] * 2^exponent[i].  The function returns a status
30  *  word which is zero if all the components are valid. If
31  *  status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
32  *  The implementations are not required to keep track of overflows.  In
33  *  that case, the invalid bits are never set.
34  */
35 
36 #define INT_TO_FIXED(x) ((GLfixed) ((x) << 16))
37 #define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0))
38 
39 #if defined(_MSC_VER)
40 /* Oddly, the fpclassify() function doesn't exist in such a form
41  * on MSVC.  This is an implementation using slightly different
42  * lower-level Windows functions.
43  */
44 #include <float.h>
45 
46 enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
fpclassify(double x)47 fpclassify(double x)
48 {
49     switch(_fpclass(x)) {
50         case _FPCLASS_SNAN: /* signaling NaN */
51         case _FPCLASS_QNAN: /* quiet NaN */
52             return FP_NAN;
53         case _FPCLASS_NINF: /* negative infinity */
54         case _FPCLASS_PINF: /* positive infinity */
55             return FP_INFINITE;
56         case _FPCLASS_NN:   /* negative normal */
57         case _FPCLASS_PN:   /* positive normal */
58             return FP_NORMAL;
59         case _FPCLASS_ND:   /* negative denormalized */
60         case _FPCLASS_PD:   /* positive denormalized */
61             return FP_SUBNORMAL;
62         case _FPCLASS_NZ:   /* negative zero */
63         case _FPCLASS_PZ:   /* positive zero */
64             return FP_ZERO;
65         default:
66             /* Should never get here; but if we do, this will guarantee
67              * that the pattern is not treated like a number.
68              */
69             return FP_NAN;
70     }
71 }
72 
73 #elif defined(__APPLE__) || defined(__CYGWIN__) || defined(__FreeBSD__) || \
74      defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || \
75      (defined(__sun) && defined(__C99FEATURES__)) || defined(__MINGW32__) || \
76      (defined(__sun) && defined(__GNUC__)) || defined(ANDROID) || defined(__HAIKU__)
77 
78 /* fpclassify is available. */
79 
80 #elif !defined(_XOPEN_SOURCE) || _XOPEN_SOURCE < 600
81 
82 enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
fpclassify(double x)83 fpclassify(double x)
84 {
85    /* XXX do something better someday */
86    return FP_NORMAL;
87 }
88 
89 #endif
90 
91 extern GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]);
92 
93 /* The Mesa functions we'll need */
94 extern void GL_APIENTRY _mesa_GetIntegerv(GLenum pname, GLint *params);
95 extern void GL_APIENTRY _mesa_GetFloatv(GLenum pname, GLfloat *params);
96 
_es_QueryMatrixxOES(GLfixed mantissa[16],GLint exponent[16])97 GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])
98 {
99     GLfloat matrix[16];
100     GLint tmp;
101     GLenum currentMode = GL_FALSE;
102     GLenum desiredMatrix = GL_FALSE;
103     /* The bitfield returns 1 for each component that is invalid (i.e.
104      * NaN or Inf).  In case of error, everything is invalid.
105      */
106     GLbitfield rv;
107     register unsigned int i;
108     unsigned int bit;
109 
110     /* This data structure defines the mapping between the current matrix
111      * mode and the desired matrix identifier.
112      */
113     static struct {
114         GLenum currentMode;
115         GLenum desiredMatrix;
116     } modes[] = {
117         {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
118         {GL_PROJECTION, GL_PROJECTION_MATRIX},
119         {GL_TEXTURE, GL_TEXTURE_MATRIX},
120     };
121 
122     /* Call Mesa to get the current matrix in floating-point form.  First,
123      * we have to figure out what the current matrix mode is.
124      */
125     _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
126     currentMode = (GLenum) tmp;
127 
128     /* The mode is either GL_FALSE, if for some reason we failed to query
129      * the mode, or a given mode from the above table.  Search for the
130      * returned mode to get the desired matrix; if we don't find it,
131      * we can return immediately, as _mesa_GetInteger() will have
132      * logged the necessary error already.
133      */
134     for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) {
135         if (modes[i].currentMode == currentMode) {
136             desiredMatrix = modes[i].desiredMatrix;
137             break;
138         }
139     }
140     if (desiredMatrix == GL_FALSE) {
141         /* Early error means all values are invalid. */
142         return 0xffff;
143     }
144 
145     /* Now pull the matrix itself. */
146     _mesa_GetFloatv(desiredMatrix, matrix);
147 
148     rv = 0;
149     for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
150         float normalizedFraction;
151         int exp;
152 
153         switch (fpclassify(matrix[i])) {
154             /* A "subnormal" or denormalized number is too small to be
155              * represented in normal format; but despite that it's a
156              * valid floating point number.  FP_ZERO and FP_NORMAL
157              * are both valid as well.  We should be fine treating
158              * these three cases as legitimate floating-point numbers.
159              */
160             case FP_SUBNORMAL:
161             case FP_NORMAL:
162             case FP_ZERO:
163                 normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
164                 mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
165                 exponent[i] = (GLint) exp;
166                 break;
167 
168             /* If the entry is not-a-number or an infinity, then the
169              * matrix component is invalid.  The invalid flag for
170              * the component is already set; might as well set the
171              * other return values to known values.  We'll set
172              * distinct values so that a savvy end user could determine
173              * whether the matrix component was a NaN or an infinity,
174              * but this is more useful for debugging than anything else
175              * since the standard doesn't specify any such magic
176              * values to return.
177              */
178             case FP_NAN:
179                 mantissa[i] = INT_TO_FIXED(0);
180                 exponent[i] = (GLint) 0;
181                 rv |= bit;
182                 break;
183 
184             case FP_INFINITE:
185                 /* Return +/- 1 based on whether it's a positive or
186                  * negative infinity.
187                  */
188                 if (matrix[i] > 0) {
189                     mantissa[i] = INT_TO_FIXED(1);
190                 }
191                 else {
192                     mantissa[i] = -INT_TO_FIXED(1);
193                 }
194                 exponent[i] = (GLint) 0;
195                 rv |= bit;
196                 break;
197 
198             /* We should never get here; but here's a catching case
199              * in case fpclassify() is returnings something unexpected.
200              */
201             default:
202                 mantissa[i] = INT_TO_FIXED(2);
203                 exponent[i] = (GLint) 0;
204                 rv |= bit;
205                 break;
206         }
207 
208     } /* for each component */
209 
210     /* All done */
211     return rv;
212 }
213