1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.3
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_execute.c
27 * Software interpreter for vertex/fragment programs.
28 * \author Brian Paul
29 */
30
31 /*
32 * NOTE: we do everything in single-precision floating point; we don't
33 * currently observe the single/half/fixed-precision qualifiers.
34 *
35 */
36
37
38 #include "main/glheader.h"
39 #include "main/colormac.h"
40 #include "main/macros.h"
41 #include "prog_execute.h"
42 #include "prog_instruction.h"
43 #include "prog_parameter.h"
44 #include "prog_print.h"
45 #include "prog_noise.h"
46
47
48 /* debug predicate */
49 #define DEBUG_PROG 0
50
51
52 /**
53 * Set x to positive or negative infinity.
54 */
55 #if defined(USE_IEEE) || defined(_WIN32)
56 #define SET_POS_INFINITY(x) \
57 do { \
58 fi_type fi; \
59 fi.i = 0x7F800000; \
60 x = fi.f; \
61 } while (0)
62 #define SET_NEG_INFINITY(x) \
63 do { \
64 fi_type fi; \
65 fi.i = 0xFF800000; \
66 x = fi.f; \
67 } while (0)
68 #elif defined(VMS)
69 #define SET_POS_INFINITY(x) x = __MAXFLOAT
70 #define SET_NEG_INFINITY(x) x = -__MAXFLOAT
71 #else
72 #define SET_POS_INFINITY(x) x = (GLfloat) HUGE_VAL
73 #define SET_NEG_INFINITY(x) x = (GLfloat) -HUGE_VAL
74 #endif
75
76 #define SET_FLOAT_BITS(x, bits) ((fi_type *) (void *) &(x))->i = bits
77
78
79 static const GLfloat ZeroVec[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
80
81
82
83 /**
84 * Return TRUE for +0 and other positive values, FALSE otherwise.
85 * Used for RCC opcode.
86 */
87 static inline GLboolean
positive(float x)88 positive(float x)
89 {
90 fi_type fi;
91 fi.f = x;
92 if (fi.i & 0x80000000)
93 return GL_FALSE;
94 return GL_TRUE;
95 }
96
97
98
99 /**
100 * Return a pointer to the 4-element float vector specified by the given
101 * source register.
102 */
103 static inline const GLfloat *
get_src_register_pointer(const struct prog_src_register * source,const struct gl_program_machine * machine)104 get_src_register_pointer(const struct prog_src_register *source,
105 const struct gl_program_machine *machine)
106 {
107 const struct gl_program *prog = machine->CurProgram;
108 GLint reg = source->Index;
109
110 if (source->RelAddr) {
111 /* add address register value to src index/offset */
112 reg += machine->AddressReg[0][0];
113 if (reg < 0) {
114 return ZeroVec;
115 }
116 }
117
118 switch (source->File) {
119 case PROGRAM_TEMPORARY:
120 if (reg >= MAX_PROGRAM_TEMPS)
121 return ZeroVec;
122 return machine->Temporaries[reg];
123
124 case PROGRAM_INPUT:
125 if (prog->Target == GL_VERTEX_PROGRAM_ARB) {
126 if (reg >= VERT_ATTRIB_MAX)
127 return ZeroVec;
128 return machine->VertAttribs[reg];
129 }
130 else {
131 if (reg >= FRAG_ATTRIB_MAX)
132 return ZeroVec;
133 return machine->Attribs[reg][machine->CurElement];
134 }
135
136 case PROGRAM_OUTPUT:
137 if (reg >= MAX_PROGRAM_OUTPUTS)
138 return ZeroVec;
139 return machine->Outputs[reg];
140
141 case PROGRAM_LOCAL_PARAM:
142 if (reg >= MAX_PROGRAM_LOCAL_PARAMS)
143 return ZeroVec;
144 return machine->CurProgram->LocalParams[reg];
145
146 case PROGRAM_ENV_PARAM:
147 if (reg >= MAX_PROGRAM_ENV_PARAMS)
148 return ZeroVec;
149 return machine->EnvParams[reg];
150
151 case PROGRAM_STATE_VAR:
152 /* Fallthrough */
153 case PROGRAM_CONSTANT:
154 /* Fallthrough */
155 case PROGRAM_UNIFORM:
156 /* Fallthrough */
157 case PROGRAM_NAMED_PARAM:
158 if (reg >= (GLint) prog->Parameters->NumParameters)
159 return ZeroVec;
160 return (GLfloat *) prog->Parameters->ParameterValues[reg];
161
162 case PROGRAM_SYSTEM_VALUE:
163 assert(reg < Elements(machine->SystemValues));
164 return machine->SystemValues[reg];
165
166 default:
167 _mesa_problem(NULL,
168 "Invalid src register file %d in get_src_register_pointer()",
169 source->File);
170 return NULL;
171 }
172 }
173
174
175 /**
176 * Return a pointer to the 4-element float vector specified by the given
177 * destination register.
178 */
179 static inline GLfloat *
get_dst_register_pointer(const struct prog_dst_register * dest,struct gl_program_machine * machine)180 get_dst_register_pointer(const struct prog_dst_register *dest,
181 struct gl_program_machine *machine)
182 {
183 static GLfloat dummyReg[4];
184 GLint reg = dest->Index;
185
186 if (dest->RelAddr) {
187 /* add address register value to src index/offset */
188 reg += machine->AddressReg[0][0];
189 if (reg < 0) {
190 return dummyReg;
191 }
192 }
193
194 switch (dest->File) {
195 case PROGRAM_TEMPORARY:
196 if (reg >= MAX_PROGRAM_TEMPS)
197 return dummyReg;
198 return machine->Temporaries[reg];
199
200 case PROGRAM_OUTPUT:
201 if (reg >= MAX_PROGRAM_OUTPUTS)
202 return dummyReg;
203 return machine->Outputs[reg];
204
205 case PROGRAM_WRITE_ONLY:
206 return dummyReg;
207
208 default:
209 _mesa_problem(NULL,
210 "Invalid dest register file %d in get_dst_register_pointer()",
211 dest->File);
212 return NULL;
213 }
214 }
215
216
217
218 /**
219 * Fetch a 4-element float vector from the given source register.
220 * Apply swizzling and negating as needed.
221 */
222 static void
fetch_vector4(const struct prog_src_register * source,const struct gl_program_machine * machine,GLfloat result[4])223 fetch_vector4(const struct prog_src_register *source,
224 const struct gl_program_machine *machine, GLfloat result[4])
225 {
226 const GLfloat *src = get_src_register_pointer(source, machine);
227 ASSERT(src);
228
229 if (source->Swizzle == SWIZZLE_NOOP) {
230 /* no swizzling */
231 COPY_4V(result, src);
232 }
233 else {
234 ASSERT(GET_SWZ(source->Swizzle, 0) <= 3);
235 ASSERT(GET_SWZ(source->Swizzle, 1) <= 3);
236 ASSERT(GET_SWZ(source->Swizzle, 2) <= 3);
237 ASSERT(GET_SWZ(source->Swizzle, 3) <= 3);
238 result[0] = src[GET_SWZ(source->Swizzle, 0)];
239 result[1] = src[GET_SWZ(source->Swizzle, 1)];
240 result[2] = src[GET_SWZ(source->Swizzle, 2)];
241 result[3] = src[GET_SWZ(source->Swizzle, 3)];
242 }
243
244 if (source->Abs) {
245 result[0] = FABSF(result[0]);
246 result[1] = FABSF(result[1]);
247 result[2] = FABSF(result[2]);
248 result[3] = FABSF(result[3]);
249 }
250 if (source->Negate) {
251 ASSERT(source->Negate == NEGATE_XYZW);
252 result[0] = -result[0];
253 result[1] = -result[1];
254 result[2] = -result[2];
255 result[3] = -result[3];
256 }
257
258 #ifdef NAN_CHECK
259 assert(!IS_INF_OR_NAN(result[0]));
260 assert(!IS_INF_OR_NAN(result[0]));
261 assert(!IS_INF_OR_NAN(result[0]));
262 assert(!IS_INF_OR_NAN(result[0]));
263 #endif
264 }
265
266
267 /**
268 * Fetch a 4-element uint vector from the given source register.
269 * Apply swizzling but not negation/abs.
270 */
271 static void
fetch_vector4ui(const struct prog_src_register * source,const struct gl_program_machine * machine,GLuint result[4])272 fetch_vector4ui(const struct prog_src_register *source,
273 const struct gl_program_machine *machine, GLuint result[4])
274 {
275 const GLuint *src = (GLuint *) get_src_register_pointer(source, machine);
276 ASSERT(src);
277
278 if (source->Swizzle == SWIZZLE_NOOP) {
279 /* no swizzling */
280 COPY_4V(result, src);
281 }
282 else {
283 ASSERT(GET_SWZ(source->Swizzle, 0) <= 3);
284 ASSERT(GET_SWZ(source->Swizzle, 1) <= 3);
285 ASSERT(GET_SWZ(source->Swizzle, 2) <= 3);
286 ASSERT(GET_SWZ(source->Swizzle, 3) <= 3);
287 result[0] = src[GET_SWZ(source->Swizzle, 0)];
288 result[1] = src[GET_SWZ(source->Swizzle, 1)];
289 result[2] = src[GET_SWZ(source->Swizzle, 2)];
290 result[3] = src[GET_SWZ(source->Swizzle, 3)];
291 }
292
293 /* Note: no Negate or Abs here */
294 }
295
296
297
298 /**
299 * Fetch the derivative with respect to X or Y for the given register.
300 * XXX this currently only works for fragment program input attribs.
301 */
302 static void
fetch_vector4_deriv(struct gl_context * ctx,const struct prog_src_register * source,const struct gl_program_machine * machine,char xOrY,GLfloat result[4])303 fetch_vector4_deriv(struct gl_context * ctx,
304 const struct prog_src_register *source,
305 const struct gl_program_machine *machine,
306 char xOrY, GLfloat result[4])
307 {
308 if (source->File == PROGRAM_INPUT &&
309 source->Index < (GLint) machine->NumDeriv) {
310 const GLint col = machine->CurElement;
311 const GLfloat w = machine->Attribs[FRAG_ATTRIB_WPOS][col][3];
312 const GLfloat invQ = 1.0f / w;
313 GLfloat deriv[4];
314
315 if (xOrY == 'X') {
316 deriv[0] = machine->DerivX[source->Index][0] * invQ;
317 deriv[1] = machine->DerivX[source->Index][1] * invQ;
318 deriv[2] = machine->DerivX[source->Index][2] * invQ;
319 deriv[3] = machine->DerivX[source->Index][3] * invQ;
320 }
321 else {
322 deriv[0] = machine->DerivY[source->Index][0] * invQ;
323 deriv[1] = machine->DerivY[source->Index][1] * invQ;
324 deriv[2] = machine->DerivY[source->Index][2] * invQ;
325 deriv[3] = machine->DerivY[source->Index][3] * invQ;
326 }
327
328 result[0] = deriv[GET_SWZ(source->Swizzle, 0)];
329 result[1] = deriv[GET_SWZ(source->Swizzle, 1)];
330 result[2] = deriv[GET_SWZ(source->Swizzle, 2)];
331 result[3] = deriv[GET_SWZ(source->Swizzle, 3)];
332
333 if (source->Abs) {
334 result[0] = FABSF(result[0]);
335 result[1] = FABSF(result[1]);
336 result[2] = FABSF(result[2]);
337 result[3] = FABSF(result[3]);
338 }
339 if (source->Negate) {
340 ASSERT(source->Negate == NEGATE_XYZW);
341 result[0] = -result[0];
342 result[1] = -result[1];
343 result[2] = -result[2];
344 result[3] = -result[3];
345 }
346 }
347 else {
348 ASSIGN_4V(result, 0.0, 0.0, 0.0, 0.0);
349 }
350 }
351
352
353 /**
354 * As above, but only return result[0] element.
355 */
356 static void
fetch_vector1(const struct prog_src_register * source,const struct gl_program_machine * machine,GLfloat result[4])357 fetch_vector1(const struct prog_src_register *source,
358 const struct gl_program_machine *machine, GLfloat result[4])
359 {
360 const GLfloat *src = get_src_register_pointer(source, machine);
361 ASSERT(src);
362
363 result[0] = src[GET_SWZ(source->Swizzle, 0)];
364
365 if (source->Abs) {
366 result[0] = FABSF(result[0]);
367 }
368 if (source->Negate) {
369 result[0] = -result[0];
370 }
371 }
372
373
374 static GLuint
fetch_vector1ui(const struct prog_src_register * source,const struct gl_program_machine * machine)375 fetch_vector1ui(const struct prog_src_register *source,
376 const struct gl_program_machine *machine)
377 {
378 const GLuint *src = (GLuint *) get_src_register_pointer(source, machine);
379 return src[GET_SWZ(source->Swizzle, 0)];
380 }
381
382
383 /**
384 * Fetch texel from texture. Use partial derivatives when possible.
385 */
386 static inline void
fetch_texel(struct gl_context * ctx,const struct gl_program_machine * machine,const struct prog_instruction * inst,const GLfloat texcoord[4],GLfloat lodBias,GLfloat color[4])387 fetch_texel(struct gl_context *ctx,
388 const struct gl_program_machine *machine,
389 const struct prog_instruction *inst,
390 const GLfloat texcoord[4], GLfloat lodBias,
391 GLfloat color[4])
392 {
393 const GLuint unit = machine->Samplers[inst->TexSrcUnit];
394
395 /* Note: we only have the right derivatives for fragment input attribs.
396 */
397 if (machine->NumDeriv > 0 &&
398 inst->SrcReg[0].File == PROGRAM_INPUT &&
399 inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0 + inst->TexSrcUnit) {
400 /* simple texture fetch for which we should have derivatives */
401 GLuint attr = inst->SrcReg[0].Index;
402 machine->FetchTexelDeriv(ctx, texcoord,
403 machine->DerivX[attr],
404 machine->DerivY[attr],
405 lodBias, unit, color);
406 }
407 else {
408 machine->FetchTexelLod(ctx, texcoord, lodBias, unit, color);
409 }
410 }
411
412
413 /**
414 * Test value against zero and return GT, LT, EQ or UN if NaN.
415 */
416 static inline GLuint
generate_cc(float value)417 generate_cc(float value)
418 {
419 if (value != value)
420 return COND_UN; /* NaN */
421 if (value > 0.0F)
422 return COND_GT;
423 if (value < 0.0F)
424 return COND_LT;
425 return COND_EQ;
426 }
427
428
429 /**
430 * Test if the ccMaskRule is satisfied by the given condition code.
431 * Used to mask destination writes according to the current condition code.
432 */
433 static inline GLboolean
test_cc(GLuint condCode,GLuint ccMaskRule)434 test_cc(GLuint condCode, GLuint ccMaskRule)
435 {
436 switch (ccMaskRule) {
437 case COND_EQ: return (condCode == COND_EQ);
438 case COND_NE: return (condCode != COND_EQ);
439 case COND_LT: return (condCode == COND_LT);
440 case COND_GE: return (condCode == COND_GT || condCode == COND_EQ);
441 case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
442 case COND_GT: return (condCode == COND_GT);
443 case COND_TR: return GL_TRUE;
444 case COND_FL: return GL_FALSE;
445 default: return GL_TRUE;
446 }
447 }
448
449
450 /**
451 * Evaluate the 4 condition codes against a predicate and return GL_TRUE
452 * or GL_FALSE to indicate result.
453 */
454 static inline GLboolean
eval_condition(const struct gl_program_machine * machine,const struct prog_instruction * inst)455 eval_condition(const struct gl_program_machine *machine,
456 const struct prog_instruction *inst)
457 {
458 const GLuint swizzle = inst->DstReg.CondSwizzle;
459 const GLuint condMask = inst->DstReg.CondMask;
460 if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
461 test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
462 test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
463 test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
464 return GL_TRUE;
465 }
466 else {
467 return GL_FALSE;
468 }
469 }
470
471
472
473 /**
474 * Store 4 floats into a register. Observe the instructions saturate and
475 * set-condition-code flags.
476 */
477 static void
store_vector4(const struct prog_instruction * inst,struct gl_program_machine * machine,const GLfloat value[4])478 store_vector4(const struct prog_instruction *inst,
479 struct gl_program_machine *machine, const GLfloat value[4])
480 {
481 const struct prog_dst_register *dstReg = &(inst->DstReg);
482 const GLboolean clamp = inst->SaturateMode == SATURATE_ZERO_ONE;
483 GLuint writeMask = dstReg->WriteMask;
484 GLfloat clampedValue[4];
485 GLfloat *dst = get_dst_register_pointer(dstReg, machine);
486
487 #if 0
488 if (value[0] > 1.0e10 ||
489 IS_INF_OR_NAN(value[0]) ||
490 IS_INF_OR_NAN(value[1]) ||
491 IS_INF_OR_NAN(value[2]) || IS_INF_OR_NAN(value[3]))
492 printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
493 #endif
494
495 if (clamp) {
496 clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
497 clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
498 clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
499 clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
500 value = clampedValue;
501 }
502
503 if (dstReg->CondMask != COND_TR) {
504 /* condition codes may turn off some writes */
505 if (writeMask & WRITEMASK_X) {
506 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 0)],
507 dstReg->CondMask))
508 writeMask &= ~WRITEMASK_X;
509 }
510 if (writeMask & WRITEMASK_Y) {
511 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 1)],
512 dstReg->CondMask))
513 writeMask &= ~WRITEMASK_Y;
514 }
515 if (writeMask & WRITEMASK_Z) {
516 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 2)],
517 dstReg->CondMask))
518 writeMask &= ~WRITEMASK_Z;
519 }
520 if (writeMask & WRITEMASK_W) {
521 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 3)],
522 dstReg->CondMask))
523 writeMask &= ~WRITEMASK_W;
524 }
525 }
526
527 #ifdef NAN_CHECK
528 assert(!IS_INF_OR_NAN(value[0]));
529 assert(!IS_INF_OR_NAN(value[0]));
530 assert(!IS_INF_OR_NAN(value[0]));
531 assert(!IS_INF_OR_NAN(value[0]));
532 #endif
533
534 if (writeMask & WRITEMASK_X)
535 dst[0] = value[0];
536 if (writeMask & WRITEMASK_Y)
537 dst[1] = value[1];
538 if (writeMask & WRITEMASK_Z)
539 dst[2] = value[2];
540 if (writeMask & WRITEMASK_W)
541 dst[3] = value[3];
542
543 if (inst->CondUpdate) {
544 if (writeMask & WRITEMASK_X)
545 machine->CondCodes[0] = generate_cc(value[0]);
546 if (writeMask & WRITEMASK_Y)
547 machine->CondCodes[1] = generate_cc(value[1]);
548 if (writeMask & WRITEMASK_Z)
549 machine->CondCodes[2] = generate_cc(value[2]);
550 if (writeMask & WRITEMASK_W)
551 machine->CondCodes[3] = generate_cc(value[3]);
552 #if DEBUG_PROG
553 printf("CondCodes=(%s,%s,%s,%s) for:\n",
554 _mesa_condcode_string(machine->CondCodes[0]),
555 _mesa_condcode_string(machine->CondCodes[1]),
556 _mesa_condcode_string(machine->CondCodes[2]),
557 _mesa_condcode_string(machine->CondCodes[3]));
558 #endif
559 }
560 }
561
562
563 /**
564 * Store 4 uints into a register. Observe the set-condition-code flags.
565 */
566 static void
store_vector4ui(const struct prog_instruction * inst,struct gl_program_machine * machine,const GLuint value[4])567 store_vector4ui(const struct prog_instruction *inst,
568 struct gl_program_machine *machine, const GLuint value[4])
569 {
570 const struct prog_dst_register *dstReg = &(inst->DstReg);
571 GLuint writeMask = dstReg->WriteMask;
572 GLuint *dst = (GLuint *) get_dst_register_pointer(dstReg, machine);
573
574 if (dstReg->CondMask != COND_TR) {
575 /* condition codes may turn off some writes */
576 if (writeMask & WRITEMASK_X) {
577 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 0)],
578 dstReg->CondMask))
579 writeMask &= ~WRITEMASK_X;
580 }
581 if (writeMask & WRITEMASK_Y) {
582 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 1)],
583 dstReg->CondMask))
584 writeMask &= ~WRITEMASK_Y;
585 }
586 if (writeMask & WRITEMASK_Z) {
587 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 2)],
588 dstReg->CondMask))
589 writeMask &= ~WRITEMASK_Z;
590 }
591 if (writeMask & WRITEMASK_W) {
592 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 3)],
593 dstReg->CondMask))
594 writeMask &= ~WRITEMASK_W;
595 }
596 }
597
598 if (writeMask & WRITEMASK_X)
599 dst[0] = value[0];
600 if (writeMask & WRITEMASK_Y)
601 dst[1] = value[1];
602 if (writeMask & WRITEMASK_Z)
603 dst[2] = value[2];
604 if (writeMask & WRITEMASK_W)
605 dst[3] = value[3];
606
607 if (inst->CondUpdate) {
608 if (writeMask & WRITEMASK_X)
609 machine->CondCodes[0] = generate_cc((float)value[0]);
610 if (writeMask & WRITEMASK_Y)
611 machine->CondCodes[1] = generate_cc((float)value[1]);
612 if (writeMask & WRITEMASK_Z)
613 machine->CondCodes[2] = generate_cc((float)value[2]);
614 if (writeMask & WRITEMASK_W)
615 machine->CondCodes[3] = generate_cc((float)value[3]);
616 #if DEBUG_PROG
617 printf("CondCodes=(%s,%s,%s,%s) for:\n",
618 _mesa_condcode_string(machine->CondCodes[0]),
619 _mesa_condcode_string(machine->CondCodes[1]),
620 _mesa_condcode_string(machine->CondCodes[2]),
621 _mesa_condcode_string(machine->CondCodes[3]));
622 #endif
623 }
624 }
625
626
627
628 /**
629 * Execute the given vertex/fragment program.
630 *
631 * \param ctx rendering context
632 * \param program the program to execute
633 * \param machine machine state (must be initialized)
634 * \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
635 */
636 GLboolean
_mesa_execute_program(struct gl_context * ctx,const struct gl_program * program,struct gl_program_machine * machine)637 _mesa_execute_program(struct gl_context * ctx,
638 const struct gl_program *program,
639 struct gl_program_machine *machine)
640 {
641 const GLuint numInst = program->NumInstructions;
642 const GLuint maxExec = 65536;
643 GLuint pc, numExec = 0;
644
645 machine->CurProgram = program;
646
647 if (DEBUG_PROG) {
648 printf("execute program %u --------------------\n", program->Id);
649 }
650
651 if (program->Target == GL_VERTEX_PROGRAM_ARB) {
652 machine->EnvParams = ctx->VertexProgram.Parameters;
653 }
654 else {
655 machine->EnvParams = ctx->FragmentProgram.Parameters;
656 }
657
658 for (pc = 0; pc < numInst; pc++) {
659 const struct prog_instruction *inst = program->Instructions + pc;
660
661 if (DEBUG_PROG) {
662 _mesa_print_instruction(inst);
663 }
664
665 switch (inst->Opcode) {
666 case OPCODE_ABS:
667 {
668 GLfloat a[4], result[4];
669 fetch_vector4(&inst->SrcReg[0], machine, a);
670 result[0] = FABSF(a[0]);
671 result[1] = FABSF(a[1]);
672 result[2] = FABSF(a[2]);
673 result[3] = FABSF(a[3]);
674 store_vector4(inst, machine, result);
675 }
676 break;
677 case OPCODE_ADD:
678 {
679 GLfloat a[4], b[4], result[4];
680 fetch_vector4(&inst->SrcReg[0], machine, a);
681 fetch_vector4(&inst->SrcReg[1], machine, b);
682 result[0] = a[0] + b[0];
683 result[1] = a[1] + b[1];
684 result[2] = a[2] + b[2];
685 result[3] = a[3] + b[3];
686 store_vector4(inst, machine, result);
687 if (DEBUG_PROG) {
688 printf("ADD (%g %g %g %g) = (%g %g %g %g) + (%g %g %g %g)\n",
689 result[0], result[1], result[2], result[3],
690 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
691 }
692 }
693 break;
694 case OPCODE_AND: /* bitwise AND */
695 {
696 GLuint a[4], b[4], result[4];
697 fetch_vector4ui(&inst->SrcReg[0], machine, a);
698 fetch_vector4ui(&inst->SrcReg[1], machine, b);
699 result[0] = a[0] & b[0];
700 result[1] = a[1] & b[1];
701 result[2] = a[2] & b[2];
702 result[3] = a[3] & b[3];
703 store_vector4ui(inst, machine, result);
704 }
705 break;
706 case OPCODE_ARL:
707 {
708 GLfloat t[4];
709 fetch_vector4(&inst->SrcReg[0], machine, t);
710 machine->AddressReg[0][0] = IFLOOR(t[0]);
711 if (DEBUG_PROG) {
712 printf("ARL %d\n", machine->AddressReg[0][0]);
713 }
714 }
715 break;
716 case OPCODE_BGNLOOP:
717 /* no-op */
718 ASSERT(program->Instructions[inst->BranchTarget].Opcode
719 == OPCODE_ENDLOOP);
720 break;
721 case OPCODE_ENDLOOP:
722 /* subtract 1 here since pc is incremented by for(pc) loop */
723 ASSERT(program->Instructions[inst->BranchTarget].Opcode
724 == OPCODE_BGNLOOP);
725 pc = inst->BranchTarget - 1; /* go to matching BNGLOOP */
726 break;
727 case OPCODE_BGNSUB: /* begin subroutine */
728 break;
729 case OPCODE_ENDSUB: /* end subroutine */
730 break;
731 case OPCODE_BRA: /* branch (conditional) */
732 if (eval_condition(machine, inst)) {
733 /* take branch */
734 /* Subtract 1 here since we'll do pc++ below */
735 pc = inst->BranchTarget - 1;
736 }
737 break;
738 case OPCODE_BRK: /* break out of loop (conditional) */
739 ASSERT(program->Instructions[inst->BranchTarget].Opcode
740 == OPCODE_ENDLOOP);
741 if (eval_condition(machine, inst)) {
742 /* break out of loop */
743 /* pc++ at end of for-loop will put us after the ENDLOOP inst */
744 pc = inst->BranchTarget;
745 }
746 break;
747 case OPCODE_CONT: /* continue loop (conditional) */
748 ASSERT(program->Instructions[inst->BranchTarget].Opcode
749 == OPCODE_ENDLOOP);
750 if (eval_condition(machine, inst)) {
751 /* continue at ENDLOOP */
752 /* Subtract 1 here since we'll do pc++ at end of for-loop */
753 pc = inst->BranchTarget - 1;
754 }
755 break;
756 case OPCODE_CAL: /* Call subroutine (conditional) */
757 if (eval_condition(machine, inst)) {
758 /* call the subroutine */
759 if (machine->StackDepth >= MAX_PROGRAM_CALL_DEPTH) {
760 return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
761 }
762 machine->CallStack[machine->StackDepth++] = pc + 1; /* next inst */
763 /* Subtract 1 here since we'll do pc++ at end of for-loop */
764 pc = inst->BranchTarget - 1;
765 }
766 break;
767 case OPCODE_CMP:
768 {
769 GLfloat a[4], b[4], c[4], result[4];
770 fetch_vector4(&inst->SrcReg[0], machine, a);
771 fetch_vector4(&inst->SrcReg[1], machine, b);
772 fetch_vector4(&inst->SrcReg[2], machine, c);
773 result[0] = a[0] < 0.0F ? b[0] : c[0];
774 result[1] = a[1] < 0.0F ? b[1] : c[1];
775 result[2] = a[2] < 0.0F ? b[2] : c[2];
776 result[3] = a[3] < 0.0F ? b[3] : c[3];
777 store_vector4(inst, machine, result);
778 if (DEBUG_PROG) {
779 printf("CMP (%g %g %g %g) = (%g %g %g %g) < 0 ? (%g %g %g %g) : (%g %g %g %g)\n",
780 result[0], result[1], result[2], result[3],
781 a[0], a[1], a[2], a[3],
782 b[0], b[1], b[2], b[3],
783 c[0], c[1], c[2], c[3]);
784 }
785 }
786 break;
787 case OPCODE_COS:
788 {
789 GLfloat a[4], result[4];
790 fetch_vector1(&inst->SrcReg[0], machine, a);
791 result[0] = result[1] = result[2] = result[3]
792 = (GLfloat) cos(a[0]);
793 store_vector4(inst, machine, result);
794 }
795 break;
796 case OPCODE_DDX: /* Partial derivative with respect to X */
797 {
798 GLfloat result[4];
799 fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
800 'X', result);
801 store_vector4(inst, machine, result);
802 }
803 break;
804 case OPCODE_DDY: /* Partial derivative with respect to Y */
805 {
806 GLfloat result[4];
807 fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
808 'Y', result);
809 store_vector4(inst, machine, result);
810 }
811 break;
812 case OPCODE_DP2:
813 {
814 GLfloat a[4], b[4], result[4];
815 fetch_vector4(&inst->SrcReg[0], machine, a);
816 fetch_vector4(&inst->SrcReg[1], machine, b);
817 result[0] = result[1] = result[2] = result[3] = DOT2(a, b);
818 store_vector4(inst, machine, result);
819 if (DEBUG_PROG) {
820 printf("DP2 %g = (%g %g) . (%g %g)\n",
821 result[0], a[0], a[1], b[0], b[1]);
822 }
823 }
824 break;
825 case OPCODE_DP2A:
826 {
827 GLfloat a[4], b[4], c, result[4];
828 fetch_vector4(&inst->SrcReg[0], machine, a);
829 fetch_vector4(&inst->SrcReg[1], machine, b);
830 fetch_vector1(&inst->SrcReg[1], machine, &c);
831 result[0] = result[1] = result[2] = result[3] = DOT2(a, b) + c;
832 store_vector4(inst, machine, result);
833 if (DEBUG_PROG) {
834 printf("DP2A %g = (%g %g) . (%g %g) + %g\n",
835 result[0], a[0], a[1], b[0], b[1], c);
836 }
837 }
838 break;
839 case OPCODE_DP3:
840 {
841 GLfloat a[4], b[4], result[4];
842 fetch_vector4(&inst->SrcReg[0], machine, a);
843 fetch_vector4(&inst->SrcReg[1], machine, b);
844 result[0] = result[1] = result[2] = result[3] = DOT3(a, b);
845 store_vector4(inst, machine, result);
846 if (DEBUG_PROG) {
847 printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
848 result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
849 }
850 }
851 break;
852 case OPCODE_DP4:
853 {
854 GLfloat a[4], b[4], result[4];
855 fetch_vector4(&inst->SrcReg[0], machine, a);
856 fetch_vector4(&inst->SrcReg[1], machine, b);
857 result[0] = result[1] = result[2] = result[3] = DOT4(a, b);
858 store_vector4(inst, machine, result);
859 if (DEBUG_PROG) {
860 printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
861 result[0], a[0], a[1], a[2], a[3],
862 b[0], b[1], b[2], b[3]);
863 }
864 }
865 break;
866 case OPCODE_DPH:
867 {
868 GLfloat a[4], b[4], result[4];
869 fetch_vector4(&inst->SrcReg[0], machine, a);
870 fetch_vector4(&inst->SrcReg[1], machine, b);
871 result[0] = result[1] = result[2] = result[3] = DOT3(a, b) + b[3];
872 store_vector4(inst, machine, result);
873 }
874 break;
875 case OPCODE_DST: /* Distance vector */
876 {
877 GLfloat a[4], b[4], result[4];
878 fetch_vector4(&inst->SrcReg[0], machine, a);
879 fetch_vector4(&inst->SrcReg[1], machine, b);
880 result[0] = 1.0F;
881 result[1] = a[1] * b[1];
882 result[2] = a[2];
883 result[3] = b[3];
884 store_vector4(inst, machine, result);
885 }
886 break;
887 case OPCODE_EXP:
888 {
889 GLfloat t[4], q[4], floor_t0;
890 fetch_vector1(&inst->SrcReg[0], machine, t);
891 floor_t0 = FLOORF(t[0]);
892 if (floor_t0 > FLT_MAX_EXP) {
893 SET_POS_INFINITY(q[0]);
894 SET_POS_INFINITY(q[2]);
895 }
896 else if (floor_t0 < FLT_MIN_EXP) {
897 q[0] = 0.0F;
898 q[2] = 0.0F;
899 }
900 else {
901 q[0] = LDEXPF(1.0, (int) floor_t0);
902 /* Note: GL_NV_vertex_program expects
903 * result.z = result.x * APPX(result.y)
904 * We do what the ARB extension says.
905 */
906 q[2] = (GLfloat) pow(2.0, t[0]);
907 }
908 q[1] = t[0] - floor_t0;
909 q[3] = 1.0F;
910 store_vector4( inst, machine, q );
911 }
912 break;
913 case OPCODE_EX2: /* Exponential base 2 */
914 {
915 GLfloat a[4], result[4], val;
916 fetch_vector1(&inst->SrcReg[0], machine, a);
917 val = (GLfloat) pow(2.0, a[0]);
918 /*
919 if (IS_INF_OR_NAN(val))
920 val = 1.0e10;
921 */
922 result[0] = result[1] = result[2] = result[3] = val;
923 store_vector4(inst, machine, result);
924 }
925 break;
926 case OPCODE_FLR:
927 {
928 GLfloat a[4], result[4];
929 fetch_vector4(&inst->SrcReg[0], machine, a);
930 result[0] = FLOORF(a[0]);
931 result[1] = FLOORF(a[1]);
932 result[2] = FLOORF(a[2]);
933 result[3] = FLOORF(a[3]);
934 store_vector4(inst, machine, result);
935 }
936 break;
937 case OPCODE_FRC:
938 {
939 GLfloat a[4], result[4];
940 fetch_vector4(&inst->SrcReg[0], machine, a);
941 result[0] = a[0] - FLOORF(a[0]);
942 result[1] = a[1] - FLOORF(a[1]);
943 result[2] = a[2] - FLOORF(a[2]);
944 result[3] = a[3] - FLOORF(a[3]);
945 store_vector4(inst, machine, result);
946 }
947 break;
948 case OPCODE_IF:
949 {
950 GLboolean cond;
951 ASSERT(program->Instructions[inst->BranchTarget].Opcode
952 == OPCODE_ELSE ||
953 program->Instructions[inst->BranchTarget].Opcode
954 == OPCODE_ENDIF);
955 /* eval condition */
956 if (inst->SrcReg[0].File != PROGRAM_UNDEFINED) {
957 GLfloat a[4];
958 fetch_vector1(&inst->SrcReg[0], machine, a);
959 cond = (a[0] != 0.0);
960 }
961 else {
962 cond = eval_condition(machine, inst);
963 }
964 if (DEBUG_PROG) {
965 printf("IF: %d\n", cond);
966 }
967 /* do if/else */
968 if (cond) {
969 /* do if-clause (just continue execution) */
970 }
971 else {
972 /* go to the instruction after ELSE or ENDIF */
973 assert(inst->BranchTarget >= 0);
974 pc = inst->BranchTarget;
975 }
976 }
977 break;
978 case OPCODE_ELSE:
979 /* goto ENDIF */
980 ASSERT(program->Instructions[inst->BranchTarget].Opcode
981 == OPCODE_ENDIF);
982 assert(inst->BranchTarget >= 0);
983 pc = inst->BranchTarget;
984 break;
985 case OPCODE_ENDIF:
986 /* nothing */
987 break;
988 case OPCODE_KIL_NV: /* NV_f_p only (conditional) */
989 if (eval_condition(machine, inst)) {
990 return GL_FALSE;
991 }
992 break;
993 case OPCODE_KIL: /* ARB_f_p only */
994 {
995 GLfloat a[4];
996 fetch_vector4(&inst->SrcReg[0], machine, a);
997 if (DEBUG_PROG) {
998 printf("KIL if (%g %g %g %g) <= 0.0\n",
999 a[0], a[1], a[2], a[3]);
1000 }
1001
1002 if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) {
1003 return GL_FALSE;
1004 }
1005 }
1006 break;
1007 case OPCODE_LG2: /* log base 2 */
1008 {
1009 GLfloat a[4], result[4], val;
1010 fetch_vector1(&inst->SrcReg[0], machine, a);
1011 /* The fast LOG2 macro doesn't meet the precision requirements.
1012 */
1013 if (a[0] == 0.0F) {
1014 val = -FLT_MAX;
1015 }
1016 else {
1017 val = (float)(log(a[0]) * 1.442695F);
1018 }
1019 result[0] = result[1] = result[2] = result[3] = val;
1020 store_vector4(inst, machine, result);
1021 }
1022 break;
1023 case OPCODE_LIT:
1024 {
1025 const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */
1026 GLfloat a[4], result[4];
1027 fetch_vector4(&inst->SrcReg[0], machine, a);
1028 a[0] = MAX2(a[0], 0.0F);
1029 a[1] = MAX2(a[1], 0.0F);
1030 /* XXX ARB version clamps a[3], NV version doesn't */
1031 a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon));
1032 result[0] = 1.0F;
1033 result[1] = a[0];
1034 /* XXX we could probably just use pow() here */
1035 if (a[0] > 0.0F) {
1036 if (a[1] == 0.0 && a[3] == 0.0)
1037 result[2] = 1.0F;
1038 else
1039 result[2] = (GLfloat) pow(a[1], a[3]);
1040 }
1041 else {
1042 result[2] = 0.0F;
1043 }
1044 result[3] = 1.0F;
1045 store_vector4(inst, machine, result);
1046 if (DEBUG_PROG) {
1047 printf("LIT (%g %g %g %g) : (%g %g %g %g)\n",
1048 result[0], result[1], result[2], result[3],
1049 a[0], a[1], a[2], a[3]);
1050 }
1051 }
1052 break;
1053 case OPCODE_LOG:
1054 {
1055 GLfloat t[4], q[4], abs_t0;
1056 fetch_vector1(&inst->SrcReg[0], machine, t);
1057 abs_t0 = FABSF(t[0]);
1058 if (abs_t0 != 0.0F) {
1059 /* Since we really can't handle infinite values on VMS
1060 * like other OSes we'll use __MAXFLOAT to represent
1061 * infinity. This may need some tweaking.
1062 */
1063 #ifdef VMS
1064 if (abs_t0 == __MAXFLOAT)
1065 #else
1066 if (IS_INF_OR_NAN(abs_t0))
1067 #endif
1068 {
1069 SET_POS_INFINITY(q[0]);
1070 q[1] = 1.0F;
1071 SET_POS_INFINITY(q[2]);
1072 }
1073 else {
1074 int exponent;
1075 GLfloat mantissa = FREXPF(t[0], &exponent);
1076 q[0] = (GLfloat) (exponent - 1);
1077 q[1] = (GLfloat) (2.0 * mantissa); /* map [.5, 1) -> [1, 2) */
1078
1079 /* The fast LOG2 macro doesn't meet the precision
1080 * requirements.
1081 */
1082 q[2] = (float)(log(t[0]) * 1.442695F);
1083 }
1084 }
1085 else {
1086 SET_NEG_INFINITY(q[0]);
1087 q[1] = 1.0F;
1088 SET_NEG_INFINITY(q[2]);
1089 }
1090 q[3] = 1.0;
1091 store_vector4(inst, machine, q);
1092 }
1093 break;
1094 case OPCODE_LRP:
1095 {
1096 GLfloat a[4], b[4], c[4], result[4];
1097 fetch_vector4(&inst->SrcReg[0], machine, a);
1098 fetch_vector4(&inst->SrcReg[1], machine, b);
1099 fetch_vector4(&inst->SrcReg[2], machine, c);
1100 result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
1101 result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
1102 result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
1103 result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
1104 store_vector4(inst, machine, result);
1105 if (DEBUG_PROG) {
1106 printf("LRP (%g %g %g %g) = (%g %g %g %g), "
1107 "(%g %g %g %g), (%g %g %g %g)\n",
1108 result[0], result[1], result[2], result[3],
1109 a[0], a[1], a[2], a[3],
1110 b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
1111 }
1112 }
1113 break;
1114 case OPCODE_MAD:
1115 {
1116 GLfloat a[4], b[4], c[4], result[4];
1117 fetch_vector4(&inst->SrcReg[0], machine, a);
1118 fetch_vector4(&inst->SrcReg[1], machine, b);
1119 fetch_vector4(&inst->SrcReg[2], machine, c);
1120 result[0] = a[0] * b[0] + c[0];
1121 result[1] = a[1] * b[1] + c[1];
1122 result[2] = a[2] * b[2] + c[2];
1123 result[3] = a[3] * b[3] + c[3];
1124 store_vector4(inst, machine, result);
1125 if (DEBUG_PROG) {
1126 printf("MAD (%g %g %g %g) = (%g %g %g %g) * "
1127 "(%g %g %g %g) + (%g %g %g %g)\n",
1128 result[0], result[1], result[2], result[3],
1129 a[0], a[1], a[2], a[3],
1130 b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
1131 }
1132 }
1133 break;
1134 case OPCODE_MAX:
1135 {
1136 GLfloat a[4], b[4], result[4];
1137 fetch_vector4(&inst->SrcReg[0], machine, a);
1138 fetch_vector4(&inst->SrcReg[1], machine, b);
1139 result[0] = MAX2(a[0], b[0]);
1140 result[1] = MAX2(a[1], b[1]);
1141 result[2] = MAX2(a[2], b[2]);
1142 result[3] = MAX2(a[3], b[3]);
1143 store_vector4(inst, machine, result);
1144 if (DEBUG_PROG) {
1145 printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n",
1146 result[0], result[1], result[2], result[3],
1147 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
1148 }
1149 }
1150 break;
1151 case OPCODE_MIN:
1152 {
1153 GLfloat a[4], b[4], result[4];
1154 fetch_vector4(&inst->SrcReg[0], machine, a);
1155 fetch_vector4(&inst->SrcReg[1], machine, b);
1156 result[0] = MIN2(a[0], b[0]);
1157 result[1] = MIN2(a[1], b[1]);
1158 result[2] = MIN2(a[2], b[2]);
1159 result[3] = MIN2(a[3], b[3]);
1160 store_vector4(inst, machine, result);
1161 }
1162 break;
1163 case OPCODE_MOV:
1164 {
1165 GLfloat result[4];
1166 fetch_vector4(&inst->SrcReg[0], machine, result);
1167 store_vector4(inst, machine, result);
1168 if (DEBUG_PROG) {
1169 printf("MOV (%g %g %g %g)\n",
1170 result[0], result[1], result[2], result[3]);
1171 }
1172 }
1173 break;
1174 case OPCODE_MUL:
1175 {
1176 GLfloat a[4], b[4], result[4];
1177 fetch_vector4(&inst->SrcReg[0], machine, a);
1178 fetch_vector4(&inst->SrcReg[1], machine, b);
1179 result[0] = a[0] * b[0];
1180 result[1] = a[1] * b[1];
1181 result[2] = a[2] * b[2];
1182 result[3] = a[3] * b[3];
1183 store_vector4(inst, machine, result);
1184 if (DEBUG_PROG) {
1185 printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n",
1186 result[0], result[1], result[2], result[3],
1187 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
1188 }
1189 }
1190 break;
1191 case OPCODE_NOISE1:
1192 {
1193 GLfloat a[4], result[4];
1194 fetch_vector1(&inst->SrcReg[0], machine, a);
1195 result[0] =
1196 result[1] =
1197 result[2] =
1198 result[3] = _mesa_noise1(a[0]);
1199 store_vector4(inst, machine, result);
1200 }
1201 break;
1202 case OPCODE_NOISE2:
1203 {
1204 GLfloat a[4], result[4];
1205 fetch_vector4(&inst->SrcReg[0], machine, a);
1206 result[0] =
1207 result[1] =
1208 result[2] = result[3] = _mesa_noise2(a[0], a[1]);
1209 store_vector4(inst, machine, result);
1210 }
1211 break;
1212 case OPCODE_NOISE3:
1213 {
1214 GLfloat a[4], result[4];
1215 fetch_vector4(&inst->SrcReg[0], machine, a);
1216 result[0] =
1217 result[1] =
1218 result[2] =
1219 result[3] = _mesa_noise3(a[0], a[1], a[2]);
1220 store_vector4(inst, machine, result);
1221 }
1222 break;
1223 case OPCODE_NOISE4:
1224 {
1225 GLfloat a[4], result[4];
1226 fetch_vector4(&inst->SrcReg[0], machine, a);
1227 result[0] =
1228 result[1] =
1229 result[2] =
1230 result[3] = _mesa_noise4(a[0], a[1], a[2], a[3]);
1231 store_vector4(inst, machine, result);
1232 }
1233 break;
1234 case OPCODE_NOP:
1235 break;
1236 case OPCODE_NOT: /* bitwise NOT */
1237 {
1238 GLuint a[4], result[4];
1239 fetch_vector4ui(&inst->SrcReg[0], machine, a);
1240 result[0] = ~a[0];
1241 result[1] = ~a[1];
1242 result[2] = ~a[2];
1243 result[3] = ~a[3];
1244 store_vector4ui(inst, machine, result);
1245 }
1246 break;
1247 case OPCODE_NRM3: /* 3-component normalization */
1248 {
1249 GLfloat a[4], result[4];
1250 GLfloat tmp;
1251 fetch_vector4(&inst->SrcReg[0], machine, a);
1252 tmp = a[0] * a[0] + a[1] * a[1] + a[2] * a[2];
1253 if (tmp != 0.0F)
1254 tmp = INV_SQRTF(tmp);
1255 result[0] = tmp * a[0];
1256 result[1] = tmp * a[1];
1257 result[2] = tmp * a[2];
1258 result[3] = 0.0; /* undefined, but prevent valgrind warnings */
1259 store_vector4(inst, machine, result);
1260 }
1261 break;
1262 case OPCODE_NRM4: /* 4-component normalization */
1263 {
1264 GLfloat a[4], result[4];
1265 GLfloat tmp;
1266 fetch_vector4(&inst->SrcReg[0], machine, a);
1267 tmp = a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3];
1268 if (tmp != 0.0F)
1269 tmp = INV_SQRTF(tmp);
1270 result[0] = tmp * a[0];
1271 result[1] = tmp * a[1];
1272 result[2] = tmp * a[2];
1273 result[3] = tmp * a[3];
1274 store_vector4(inst, machine, result);
1275 }
1276 break;
1277 case OPCODE_OR: /* bitwise OR */
1278 {
1279 GLuint a[4], b[4], result[4];
1280 fetch_vector4ui(&inst->SrcReg[0], machine, a);
1281 fetch_vector4ui(&inst->SrcReg[1], machine, b);
1282 result[0] = a[0] | b[0];
1283 result[1] = a[1] | b[1];
1284 result[2] = a[2] | b[2];
1285 result[3] = a[3] | b[3];
1286 store_vector4ui(inst, machine, result);
1287 }
1288 break;
1289 case OPCODE_PK2H: /* pack two 16-bit floats in one 32-bit float */
1290 {
1291 GLfloat a[4];
1292 GLuint result[4];
1293 GLhalfNV hx, hy;
1294 fetch_vector4(&inst->SrcReg[0], machine, a);
1295 hx = _mesa_float_to_half(a[0]);
1296 hy = _mesa_float_to_half(a[1]);
1297 result[0] =
1298 result[1] =
1299 result[2] =
1300 result[3] = hx | (hy << 16);
1301 store_vector4ui(inst, machine, result);
1302 }
1303 break;
1304 case OPCODE_PK2US: /* pack two GLushorts into one 32-bit float */
1305 {
1306 GLfloat a[4];
1307 GLuint result[4], usx, usy;
1308 fetch_vector4(&inst->SrcReg[0], machine, a);
1309 a[0] = CLAMP(a[0], 0.0F, 1.0F);
1310 a[1] = CLAMP(a[1], 0.0F, 1.0F);
1311 usx = F_TO_I(a[0] * 65535.0F);
1312 usy = F_TO_I(a[1] * 65535.0F);
1313 result[0] =
1314 result[1] =
1315 result[2] =
1316 result[3] = usx | (usy << 16);
1317 store_vector4ui(inst, machine, result);
1318 }
1319 break;
1320 case OPCODE_PK4B: /* pack four GLbytes into one 32-bit float */
1321 {
1322 GLfloat a[4];
1323 GLuint result[4], ubx, uby, ubz, ubw;
1324 fetch_vector4(&inst->SrcReg[0], machine, a);
1325 a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F);
1326 a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F);
1327 a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F);
1328 a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F);
1329 ubx = F_TO_I(127.0F * a[0] + 128.0F);
1330 uby = F_TO_I(127.0F * a[1] + 128.0F);
1331 ubz = F_TO_I(127.0F * a[2] + 128.0F);
1332 ubw = F_TO_I(127.0F * a[3] + 128.0F);
1333 result[0] =
1334 result[1] =
1335 result[2] =
1336 result[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
1337 store_vector4ui(inst, machine, result);
1338 }
1339 break;
1340 case OPCODE_PK4UB: /* pack four GLubytes into one 32-bit float */
1341 {
1342 GLfloat a[4];
1343 GLuint result[4], ubx, uby, ubz, ubw;
1344 fetch_vector4(&inst->SrcReg[0], machine, a);
1345 a[0] = CLAMP(a[0], 0.0F, 1.0F);
1346 a[1] = CLAMP(a[1], 0.0F, 1.0F);
1347 a[2] = CLAMP(a[2], 0.0F, 1.0F);
1348 a[3] = CLAMP(a[3], 0.0F, 1.0F);
1349 ubx = F_TO_I(255.0F * a[0]);
1350 uby = F_TO_I(255.0F * a[1]);
1351 ubz = F_TO_I(255.0F * a[2]);
1352 ubw = F_TO_I(255.0F * a[3]);
1353 result[0] =
1354 result[1] =
1355 result[2] =
1356 result[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
1357 store_vector4ui(inst, machine, result);
1358 }
1359 break;
1360 case OPCODE_POW:
1361 {
1362 GLfloat a[4], b[4], result[4];
1363 fetch_vector1(&inst->SrcReg[0], machine, a);
1364 fetch_vector1(&inst->SrcReg[1], machine, b);
1365 result[0] = result[1] = result[2] = result[3]
1366 = (GLfloat) pow(a[0], b[0]);
1367 store_vector4(inst, machine, result);
1368 }
1369 break;
1370 case OPCODE_RCC: /* clamped riciprocal */
1371 {
1372 const float largest = 1.884467e+19, smallest = 5.42101e-20;
1373 GLfloat a[4], r, result[4];
1374 fetch_vector1(&inst->SrcReg[0], machine, a);
1375 if (DEBUG_PROG) {
1376 if (a[0] == 0)
1377 printf("RCC(0)\n");
1378 else if (IS_INF_OR_NAN(a[0]))
1379 printf("RCC(inf)\n");
1380 }
1381 if (a[0] == 1.0F) {
1382 r = 1.0F;
1383 }
1384 else {
1385 r = 1.0F / a[0];
1386 }
1387 if (positive(r)) {
1388 if (r > largest) {
1389 r = largest;
1390 }
1391 else if (r < smallest) {
1392 r = smallest;
1393 }
1394 }
1395 else {
1396 if (r < -largest) {
1397 r = -largest;
1398 }
1399 else if (r > -smallest) {
1400 r = -smallest;
1401 }
1402 }
1403 result[0] = result[1] = result[2] = result[3] = r;
1404 store_vector4(inst, machine, result);
1405 }
1406 break;
1407
1408 case OPCODE_RCP:
1409 {
1410 GLfloat a[4], result[4];
1411 fetch_vector1(&inst->SrcReg[0], machine, a);
1412 if (DEBUG_PROG) {
1413 if (a[0] == 0)
1414 printf("RCP(0)\n");
1415 else if (IS_INF_OR_NAN(a[0]))
1416 printf("RCP(inf)\n");
1417 }
1418 result[0] = result[1] = result[2] = result[3] = 1.0F / a[0];
1419 store_vector4(inst, machine, result);
1420 }
1421 break;
1422 case OPCODE_RET: /* return from subroutine (conditional) */
1423 if (eval_condition(machine, inst)) {
1424 if (machine->StackDepth == 0) {
1425 return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
1426 }
1427 /* subtract one because of pc++ in the for loop */
1428 pc = machine->CallStack[--machine->StackDepth] - 1;
1429 }
1430 break;
1431 case OPCODE_RFL: /* reflection vector */
1432 {
1433 GLfloat axis[4], dir[4], result[4], tmpX, tmpW;
1434 fetch_vector4(&inst->SrcReg[0], machine, axis);
1435 fetch_vector4(&inst->SrcReg[1], machine, dir);
1436 tmpW = DOT3(axis, axis);
1437 tmpX = (2.0F * DOT3(axis, dir)) / tmpW;
1438 result[0] = tmpX * axis[0] - dir[0];
1439 result[1] = tmpX * axis[1] - dir[1];
1440 result[2] = tmpX * axis[2] - dir[2];
1441 /* result[3] is never written! XXX enforce in parser! */
1442 store_vector4(inst, machine, result);
1443 }
1444 break;
1445 case OPCODE_RSQ: /* 1 / sqrt() */
1446 {
1447 GLfloat a[4], result[4];
1448 fetch_vector1(&inst->SrcReg[0], machine, a);
1449 a[0] = FABSF(a[0]);
1450 result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
1451 store_vector4(inst, machine, result);
1452 if (DEBUG_PROG) {
1453 printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]);
1454 }
1455 }
1456 break;
1457 case OPCODE_SCS: /* sine and cos */
1458 {
1459 GLfloat a[4], result[4];
1460 fetch_vector1(&inst->SrcReg[0], machine, a);
1461 result[0] = (GLfloat) cos(a[0]);
1462 result[1] = (GLfloat) sin(a[0]);
1463 result[2] = 0.0; /* undefined! */
1464 result[3] = 0.0; /* undefined! */
1465 store_vector4(inst, machine, result);
1466 }
1467 break;
1468 case OPCODE_SEQ: /* set on equal */
1469 {
1470 GLfloat a[4], b[4], result[4];
1471 fetch_vector4(&inst->SrcReg[0], machine, a);
1472 fetch_vector4(&inst->SrcReg[1], machine, b);
1473 result[0] = (a[0] == b[0]) ? 1.0F : 0.0F;
1474 result[1] = (a[1] == b[1]) ? 1.0F : 0.0F;
1475 result[2] = (a[2] == b[2]) ? 1.0F : 0.0F;
1476 result[3] = (a[3] == b[3]) ? 1.0F : 0.0F;
1477 store_vector4(inst, machine, result);
1478 if (DEBUG_PROG) {
1479 printf("SEQ (%g %g %g %g) = (%g %g %g %g) == (%g %g %g %g)\n",
1480 result[0], result[1], result[2], result[3],
1481 a[0], a[1], a[2], a[3],
1482 b[0], b[1], b[2], b[3]);
1483 }
1484 }
1485 break;
1486 case OPCODE_SFL: /* set false, operands ignored */
1487 {
1488 static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
1489 store_vector4(inst, machine, result);
1490 }
1491 break;
1492 case OPCODE_SGE: /* set on greater or equal */
1493 {
1494 GLfloat a[4], b[4], result[4];
1495 fetch_vector4(&inst->SrcReg[0], machine, a);
1496 fetch_vector4(&inst->SrcReg[1], machine, b);
1497 result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
1498 result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
1499 result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
1500 result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
1501 store_vector4(inst, machine, result);
1502 if (DEBUG_PROG) {
1503 printf("SGE (%g %g %g %g) = (%g %g %g %g) >= (%g %g %g %g)\n",
1504 result[0], result[1], result[2], result[3],
1505 a[0], a[1], a[2], a[3],
1506 b[0], b[1], b[2], b[3]);
1507 }
1508 }
1509 break;
1510 case OPCODE_SGT: /* set on greater */
1511 {
1512 GLfloat a[4], b[4], result[4];
1513 fetch_vector4(&inst->SrcReg[0], machine, a);
1514 fetch_vector4(&inst->SrcReg[1], machine, b);
1515 result[0] = (a[0] > b[0]) ? 1.0F : 0.0F;
1516 result[1] = (a[1] > b[1]) ? 1.0F : 0.0F;
1517 result[2] = (a[2] > b[2]) ? 1.0F : 0.0F;
1518 result[3] = (a[3] > b[3]) ? 1.0F : 0.0F;
1519 store_vector4(inst, machine, result);
1520 if (DEBUG_PROG) {
1521 printf("SGT (%g %g %g %g) = (%g %g %g %g) > (%g %g %g %g)\n",
1522 result[0], result[1], result[2], result[3],
1523 a[0], a[1], a[2], a[3],
1524 b[0], b[1], b[2], b[3]);
1525 }
1526 }
1527 break;
1528 case OPCODE_SIN:
1529 {
1530 GLfloat a[4], result[4];
1531 fetch_vector1(&inst->SrcReg[0], machine, a);
1532 result[0] = result[1] = result[2] = result[3]
1533 = (GLfloat) sin(a[0]);
1534 store_vector4(inst, machine, result);
1535 }
1536 break;
1537 case OPCODE_SLE: /* set on less or equal */
1538 {
1539 GLfloat a[4], b[4], result[4];
1540 fetch_vector4(&inst->SrcReg[0], machine, a);
1541 fetch_vector4(&inst->SrcReg[1], machine, b);
1542 result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F;
1543 result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F;
1544 result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F;
1545 result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F;
1546 store_vector4(inst, machine, result);
1547 if (DEBUG_PROG) {
1548 printf("SLE (%g %g %g %g) = (%g %g %g %g) <= (%g %g %g %g)\n",
1549 result[0], result[1], result[2], result[3],
1550 a[0], a[1], a[2], a[3],
1551 b[0], b[1], b[2], b[3]);
1552 }
1553 }
1554 break;
1555 case OPCODE_SLT: /* set on less */
1556 {
1557 GLfloat a[4], b[4], result[4];
1558 fetch_vector4(&inst->SrcReg[0], machine, a);
1559 fetch_vector4(&inst->SrcReg[1], machine, b);
1560 result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
1561 result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
1562 result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
1563 result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
1564 store_vector4(inst, machine, result);
1565 if (DEBUG_PROG) {
1566 printf("SLT (%g %g %g %g) = (%g %g %g %g) < (%g %g %g %g)\n",
1567 result[0], result[1], result[2], result[3],
1568 a[0], a[1], a[2], a[3],
1569 b[0], b[1], b[2], b[3]);
1570 }
1571 }
1572 break;
1573 case OPCODE_SNE: /* set on not equal */
1574 {
1575 GLfloat a[4], b[4], result[4];
1576 fetch_vector4(&inst->SrcReg[0], machine, a);
1577 fetch_vector4(&inst->SrcReg[1], machine, b);
1578 result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;
1579 result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;
1580 result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;
1581 result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;
1582 store_vector4(inst, machine, result);
1583 if (DEBUG_PROG) {
1584 printf("SNE (%g %g %g %g) = (%g %g %g %g) != (%g %g %g %g)\n",
1585 result[0], result[1], result[2], result[3],
1586 a[0], a[1], a[2], a[3],
1587 b[0], b[1], b[2], b[3]);
1588 }
1589 }
1590 break;
1591 case OPCODE_SSG: /* set sign (-1, 0 or +1) */
1592 {
1593 GLfloat a[4], result[4];
1594 fetch_vector4(&inst->SrcReg[0], machine, a);
1595 result[0] = (GLfloat) ((a[0] > 0.0F) - (a[0] < 0.0F));
1596 result[1] = (GLfloat) ((a[1] > 0.0F) - (a[1] < 0.0F));
1597 result[2] = (GLfloat) ((a[2] > 0.0F) - (a[2] < 0.0F));
1598 result[3] = (GLfloat) ((a[3] > 0.0F) - (a[3] < 0.0F));
1599 store_vector4(inst, machine, result);
1600 }
1601 break;
1602 case OPCODE_STR: /* set true, operands ignored */
1603 {
1604 static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };
1605 store_vector4(inst, machine, result);
1606 }
1607 break;
1608 case OPCODE_SUB:
1609 {
1610 GLfloat a[4], b[4], result[4];
1611 fetch_vector4(&inst->SrcReg[0], machine, a);
1612 fetch_vector4(&inst->SrcReg[1], machine, b);
1613 result[0] = a[0] - b[0];
1614 result[1] = a[1] - b[1];
1615 result[2] = a[2] - b[2];
1616 result[3] = a[3] - b[3];
1617 store_vector4(inst, machine, result);
1618 if (DEBUG_PROG) {
1619 printf("SUB (%g %g %g %g) = (%g %g %g %g) - (%g %g %g %g)\n",
1620 result[0], result[1], result[2], result[3],
1621 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
1622 }
1623 }
1624 break;
1625 case OPCODE_SWZ: /* extended swizzle */
1626 {
1627 const struct prog_src_register *source = &inst->SrcReg[0];
1628 const GLfloat *src = get_src_register_pointer(source, machine);
1629 GLfloat result[4];
1630 GLuint i;
1631 for (i = 0; i < 4; i++) {
1632 const GLuint swz = GET_SWZ(source->Swizzle, i);
1633 if (swz == SWIZZLE_ZERO)
1634 result[i] = 0.0;
1635 else if (swz == SWIZZLE_ONE)
1636 result[i] = 1.0;
1637 else {
1638 ASSERT(swz >= 0);
1639 ASSERT(swz <= 3);
1640 result[i] = src[swz];
1641 }
1642 if (source->Negate & (1 << i))
1643 result[i] = -result[i];
1644 }
1645 store_vector4(inst, machine, result);
1646 }
1647 break;
1648 case OPCODE_TEX: /* Both ARB and NV frag prog */
1649 /* Simple texel lookup */
1650 {
1651 GLfloat texcoord[4], color[4];
1652 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1653
1654 /* For TEX, texcoord.Q should not be used and its value should not
1655 * matter (at most, we pass coord.xyz to texture3D() in GLSL).
1656 * Set Q=1 so that FetchTexelDeriv() doesn't get a garbage value
1657 * which is effectively what happens when the texcoord swizzle
1658 * is .xyzz
1659 */
1660 texcoord[3] = 1.0f;
1661
1662 fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1663
1664 if (DEBUG_PROG) {
1665 printf("TEX (%g, %g, %g, %g) = texture[%d][%g, %g, %g, %g]\n",
1666 color[0], color[1], color[2], color[3],
1667 inst->TexSrcUnit,
1668 texcoord[0], texcoord[1], texcoord[2], texcoord[3]);
1669 }
1670 store_vector4(inst, machine, color);
1671 }
1672 break;
1673 case OPCODE_TXB: /* GL_ARB_fragment_program only */
1674 /* Texel lookup with LOD bias */
1675 {
1676 GLfloat texcoord[4], color[4], lodBias;
1677
1678 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1679
1680 /* texcoord[3] is the bias to add to lambda */
1681 lodBias = texcoord[3];
1682
1683 fetch_texel(ctx, machine, inst, texcoord, lodBias, color);
1684
1685 if (DEBUG_PROG) {
1686 printf("TXB (%g, %g, %g, %g) = texture[%d][%g %g %g %g]"
1687 " bias %g\n",
1688 color[0], color[1], color[2], color[3],
1689 inst->TexSrcUnit,
1690 texcoord[0],
1691 texcoord[1],
1692 texcoord[2],
1693 texcoord[3],
1694 lodBias);
1695 }
1696
1697 store_vector4(inst, machine, color);
1698 }
1699 break;
1700 case OPCODE_TXD: /* GL_NV_fragment_program only */
1701 /* Texture lookup w/ partial derivatives for LOD */
1702 {
1703 GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
1704 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1705 fetch_vector4(&inst->SrcReg[1], machine, dtdx);
1706 fetch_vector4(&inst->SrcReg[2], machine, dtdy);
1707 machine->FetchTexelDeriv(ctx, texcoord, dtdx, dtdy,
1708 0.0, /* lodBias */
1709 inst->TexSrcUnit, color);
1710 store_vector4(inst, machine, color);
1711 }
1712 break;
1713 case OPCODE_TXL:
1714 /* Texel lookup with explicit LOD */
1715 {
1716 GLfloat texcoord[4], color[4], lod;
1717
1718 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1719
1720 /* texcoord[3] is the LOD */
1721 lod = texcoord[3];
1722
1723 machine->FetchTexelLod(ctx, texcoord, lod,
1724 machine->Samplers[inst->TexSrcUnit], color);
1725
1726 store_vector4(inst, machine, color);
1727 }
1728 break;
1729 case OPCODE_TXP: /* GL_ARB_fragment_program only */
1730 /* Texture lookup w/ projective divide */
1731 {
1732 GLfloat texcoord[4], color[4];
1733
1734 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1735 /* Not so sure about this test - if texcoord[3] is
1736 * zero, we'd probably be fine except for an ASSERT in
1737 * IROUND_POS() which gets triggered by the inf values created.
1738 */
1739 if (texcoord[3] != 0.0) {
1740 texcoord[0] /= texcoord[3];
1741 texcoord[1] /= texcoord[3];
1742 texcoord[2] /= texcoord[3];
1743 }
1744
1745 fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1746
1747 store_vector4(inst, machine, color);
1748 }
1749 break;
1750 case OPCODE_TXP_NV: /* GL_NV_fragment_program only */
1751 /* Texture lookup w/ projective divide, as above, but do not
1752 * do the divide by w if sampling from a cube map.
1753 */
1754 {
1755 GLfloat texcoord[4], color[4];
1756
1757 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1758 if (inst->TexSrcTarget != TEXTURE_CUBE_INDEX &&
1759 texcoord[3] != 0.0) {
1760 texcoord[0] /= texcoord[3];
1761 texcoord[1] /= texcoord[3];
1762 texcoord[2] /= texcoord[3];
1763 }
1764
1765 fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1766
1767 store_vector4(inst, machine, color);
1768 }
1769 break;
1770 case OPCODE_TRUNC: /* truncate toward zero */
1771 {
1772 GLfloat a[4], result[4];
1773 fetch_vector4(&inst->SrcReg[0], machine, a);
1774 result[0] = (GLfloat) (GLint) a[0];
1775 result[1] = (GLfloat) (GLint) a[1];
1776 result[2] = (GLfloat) (GLint) a[2];
1777 result[3] = (GLfloat) (GLint) a[3];
1778 store_vector4(inst, machine, result);
1779 }
1780 break;
1781 case OPCODE_UP2H: /* unpack two 16-bit floats */
1782 {
1783 const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1784 GLfloat result[4];
1785 GLushort hx, hy;
1786 hx = raw & 0xffff;
1787 hy = raw >> 16;
1788 result[0] = result[2] = _mesa_half_to_float(hx);
1789 result[1] = result[3] = _mesa_half_to_float(hy);
1790 store_vector4(inst, machine, result);
1791 }
1792 break;
1793 case OPCODE_UP2US: /* unpack two GLushorts */
1794 {
1795 const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1796 GLfloat result[4];
1797 GLushort usx, usy;
1798 usx = raw & 0xffff;
1799 usy = raw >> 16;
1800 result[0] = result[2] = usx * (1.0f / 65535.0f);
1801 result[1] = result[3] = usy * (1.0f / 65535.0f);
1802 store_vector4(inst, machine, result);
1803 }
1804 break;
1805 case OPCODE_UP4B: /* unpack four GLbytes */
1806 {
1807 const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1808 GLfloat result[4];
1809 result[0] = (((raw >> 0) & 0xff) - 128) / 127.0F;
1810 result[1] = (((raw >> 8) & 0xff) - 128) / 127.0F;
1811 result[2] = (((raw >> 16) & 0xff) - 128) / 127.0F;
1812 result[3] = (((raw >> 24) & 0xff) - 128) / 127.0F;
1813 store_vector4(inst, machine, result);
1814 }
1815 break;
1816 case OPCODE_UP4UB: /* unpack four GLubytes */
1817 {
1818 const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1819 GLfloat result[4];
1820 result[0] = ((raw >> 0) & 0xff) / 255.0F;
1821 result[1] = ((raw >> 8) & 0xff) / 255.0F;
1822 result[2] = ((raw >> 16) & 0xff) / 255.0F;
1823 result[3] = ((raw >> 24) & 0xff) / 255.0F;
1824 store_vector4(inst, machine, result);
1825 }
1826 break;
1827 case OPCODE_XOR: /* bitwise XOR */
1828 {
1829 GLuint a[4], b[4], result[4];
1830 fetch_vector4ui(&inst->SrcReg[0], machine, a);
1831 fetch_vector4ui(&inst->SrcReg[1], machine, b);
1832 result[0] = a[0] ^ b[0];
1833 result[1] = a[1] ^ b[1];
1834 result[2] = a[2] ^ b[2];
1835 result[3] = a[3] ^ b[3];
1836 store_vector4ui(inst, machine, result);
1837 }
1838 break;
1839 case OPCODE_XPD: /* cross product */
1840 {
1841 GLfloat a[4], b[4], result[4];
1842 fetch_vector4(&inst->SrcReg[0], machine, a);
1843 fetch_vector4(&inst->SrcReg[1], machine, b);
1844 result[0] = a[1] * b[2] - a[2] * b[1];
1845 result[1] = a[2] * b[0] - a[0] * b[2];
1846 result[2] = a[0] * b[1] - a[1] * b[0];
1847 result[3] = 1.0;
1848 store_vector4(inst, machine, result);
1849 if (DEBUG_PROG) {
1850 printf("XPD (%g %g %g %g) = (%g %g %g) X (%g %g %g)\n",
1851 result[0], result[1], result[2], result[3],
1852 a[0], a[1], a[2], b[0], b[1], b[2]);
1853 }
1854 }
1855 break;
1856 case OPCODE_X2D: /* 2-D matrix transform */
1857 {
1858 GLfloat a[4], b[4], c[4], result[4];
1859 fetch_vector4(&inst->SrcReg[0], machine, a);
1860 fetch_vector4(&inst->SrcReg[1], machine, b);
1861 fetch_vector4(&inst->SrcReg[2], machine, c);
1862 result[0] = a[0] + b[0] * c[0] + b[1] * c[1];
1863 result[1] = a[1] + b[0] * c[2] + b[1] * c[3];
1864 result[2] = a[2] + b[0] * c[0] + b[1] * c[1];
1865 result[3] = a[3] + b[0] * c[2] + b[1] * c[3];
1866 store_vector4(inst, machine, result);
1867 }
1868 break;
1869 case OPCODE_PRINT:
1870 {
1871 if (inst->SrcReg[0].File != PROGRAM_UNDEFINED) {
1872 GLfloat a[4];
1873 fetch_vector4(&inst->SrcReg[0], machine, a);
1874 printf("%s%g, %g, %g, %g\n", (const char *) inst->Data,
1875 a[0], a[1], a[2], a[3]);
1876 }
1877 else {
1878 printf("%s\n", (const char *) inst->Data);
1879 }
1880 }
1881 break;
1882 case OPCODE_END:
1883 return GL_TRUE;
1884 default:
1885 _mesa_problem(ctx, "Bad opcode %d in _mesa_execute_program",
1886 inst->Opcode);
1887 return GL_TRUE; /* return value doesn't matter */
1888 }
1889
1890 numExec++;
1891 if (numExec > maxExec) {
1892 static GLboolean reported = GL_FALSE;
1893 if (!reported) {
1894 _mesa_problem(ctx, "Infinite loop detected in fragment program");
1895 reported = GL_TRUE;
1896 }
1897 return GL_TRUE;
1898 }
1899
1900 } /* for pc */
1901
1902 return GL_TRUE;
1903 }
1904