1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 #include "_cv.h"
42 
43 typedef struct
44 {
45     int bottom;
46     int left;
47     float height;
48     float width;
49     float base_a;
50     float base_b;
51 }
52 icvMinAreaState;
53 
54 #define CV_CALIPERS_MAXHEIGHT      0
55 #define CV_CALIPERS_MINAREARECT    1
56 #define CV_CALIPERS_MAXDIST        2
57 
58 /*F///////////////////////////////////////////////////////////////////////////////////////
59 //    Name:    icvRotatingCalipers
60 //    Purpose:
61 //      Rotating calipers algorithm with some applications
62 //
63 //    Context:
64 //    Parameters:
65 //      points      - convex hull vertices ( any orientation )
66 //      n           - number of vertices
67 //      mode        - concrete application of algorithm
68 //                    can be  CV_CALIPERS_MAXDIST   or
69 //                            CV_CALIPERS_MINAREARECT
70 //      left, bottom, right, top - indexes of extremal points
71 //      out         - output info.
72 //                    In case CV_CALIPERS_MAXDIST it points to float value -
73 //                    maximal height of polygon.
74 //                    In case CV_CALIPERS_MINAREARECT
75 //                    ((CvPoint2D32f*)out)[0] - corner
76 //                    ((CvPoint2D32f*)out)[1] - vector1
77 //                    ((CvPoint2D32f*)out)[0] - corner2
78 //
79 //                      ^
80 //                      |
81 //              vector2 |
82 //                      |
83 //                      |____________\
84 //                    corner         /
85 //                               vector1
86 //
87 //    Returns:
88 //    Notes:
89 //F*/
90 
91 /* we will use usual cartesian coordinates */
92 static void
icvRotatingCalipers(CvPoint2D32f * points,int n,int mode,float * out)93 icvRotatingCalipers( CvPoint2D32f* points, int n, int mode, float* out )
94 {
95     float minarea = FLT_MAX;
96     float max_dist = 0;
97     char buffer[32];
98     int i, k;
99     CvPoint2D32f* vect = (CvPoint2D32f*)cvAlloc( n * sizeof(vect[0]) );
100     float* inv_vect_length = (float*)cvAlloc( n * sizeof(inv_vect_length[0]) );
101     int left = 0, bottom = 0, right = 0, top = 0;
102     int seq[4] = { -1, -1, -1, -1 };
103 
104     /* rotating calipers sides will always have coordinates
105        (a,b) (-b,a) (-a,-b) (b, -a)
106      */
107     /* this is a first base bector (a,b) initialized by (1,0) */
108     float orientation = 0;
109     float base_a;
110     float base_b = 0;
111 
112     float left_x, right_x, top_y, bottom_y;
113     CvPoint2D32f pt0 = points[0];
114 
115     left_x = right_x = pt0.x;
116     top_y = bottom_y = pt0.y;
117 
118     for( i = 0; i < n; i++ )
119     {
120         double dx, dy;
121 
122         if( pt0.x < left_x )
123             left_x = pt0.x, left = i;
124 
125         if( pt0.x > right_x )
126             right_x = pt0.x, right = i;
127 
128         if( pt0.y > top_y )
129             top_y = pt0.y, top = i;
130 
131         if( pt0.y < bottom_y )
132             bottom_y = pt0.y, bottom = i;
133 
134         CvPoint2D32f pt = points[(i+1) & (i+1 < n ? -1 : 0)];
135 
136         dx = pt.x - pt0.x;
137         dy = pt.y - pt0.y;
138 
139         vect[i].x = (float)dx;
140         vect[i].y = (float)dy;
141         inv_vect_length[i] = (float)(1./sqrt(dx*dx + dy*dy));
142 
143         pt0 = pt;
144     }
145 
146     //cvbInvSqrt( inv_vect_length, inv_vect_length, n );
147 
148     /* find convex hull orientation */
149     {
150         double ax = vect[n-1].x;
151         double ay = vect[n-1].y;
152 
153         for( i = 0; i < n; i++ )
154         {
155             double bx = vect[i].x;
156             double by = vect[i].y;
157 
158             double convexity = ax * by - ay * bx;
159 
160             if( convexity != 0 )
161             {
162                 orientation = (convexity > 0) ? 1.f : (-1.f);
163                 break;
164             }
165             ax = bx;
166             ay = by;
167         }
168         assert( orientation != 0 );
169     }
170     base_a = orientation;
171 
172 /*****************************************************************************************/
173 /*                         init calipers position                                        */
174     seq[0] = bottom;
175     seq[1] = right;
176     seq[2] = top;
177     seq[3] = left;
178 /*****************************************************************************************/
179 /*                         Main loop - evaluate angles and rotate calipers               */
180 
181     /* all of edges will be checked while rotating calipers by 90 degrees */
182     for( k = 0; k < n; k++ )
183     {
184         /* sinus of minimal angle */
185         /*float sinus;*/
186 
187         /* compute cosine of angle between calipers side and polygon edge */
188         /* dp - dot product */
189         float dp0 = base_a * vect[seq[0]].x + base_b * vect[seq[0]].y;
190         float dp1 = -base_b * vect[seq[1]].x + base_a * vect[seq[1]].y;
191         float dp2 = -base_a * vect[seq[2]].x - base_b * vect[seq[2]].y;
192         float dp3 = base_b * vect[seq[3]].x - base_a * vect[seq[3]].y;
193 
194         float cosalpha = dp0 * inv_vect_length[seq[0]];
195         float maxcos = cosalpha;
196 
197         /* number of calipers edges, that has minimal angle with edge */
198         int main_element = 0;
199 
200         /* choose minimal angle */
201         cosalpha = dp1 * inv_vect_length[seq[1]];
202         maxcos = (cosalpha > maxcos) ? (main_element = 1, cosalpha) : maxcos;
203         cosalpha = dp2 * inv_vect_length[seq[2]];
204         maxcos = (cosalpha > maxcos) ? (main_element = 2, cosalpha) : maxcos;
205         cosalpha = dp3 * inv_vect_length[seq[3]];
206         maxcos = (cosalpha > maxcos) ? (main_element = 3, cosalpha) : maxcos;
207 
208         /*rotate calipers*/
209         {
210             //get next base
211             int pindex = seq[main_element];
212             float lead_x = vect[pindex].x*inv_vect_length[pindex];
213             float lead_y = vect[pindex].y*inv_vect_length[pindex];
214             switch( main_element )
215             {
216             case 0:
217                 base_a = lead_x;
218                 base_b = lead_y;
219                 break;
220             case 1:
221                 base_a = lead_y;
222                 base_b = -lead_x;
223                 break;
224             case 2:
225                 base_a = -lead_x;
226                 base_b = -lead_y;
227                 break;
228             case 3:
229                 base_a = -lead_y;
230                 base_b = lead_x;
231                 break;
232             default: assert(0);
233             }
234         }
235         /* change base point of main edge */
236         seq[main_element] += 1;
237         seq[main_element] = (seq[main_element] == n) ? 0 : seq[main_element];
238 
239 
240         switch (mode)
241         {
242         case CV_CALIPERS_MAXHEIGHT:
243             {
244                 /* now main element lies on edge alligned to calipers side */
245 
246                 /* find opposite element i.e. transform  */
247                 /* 0->2, 1->3, 2->0, 3->1                */
248                 int opposite_el = main_element ^ 2;
249 
250                 float dx = points[seq[opposite_el]].x - points[seq[main_element]].x;
251                 float dy = points[seq[opposite_el]].y - points[seq[main_element]].y;
252                 float dist;
253 
254                 if( main_element & 1 )
255                     dist = (float)fabs(dx * base_a + dy * base_b);
256                 else
257                     dist = (float)fabs(dx * (-base_b) + dy * base_a);
258 
259                 if( dist > max_dist )
260                     max_dist = dist;
261 
262                 break;
263             }
264         case CV_CALIPERS_MINAREARECT:
265             /* find area of rectangle */
266             {
267                 float height;
268                 float area;
269 
270                 /* find vector left-right */
271                 float dx = points[seq[1]].x - points[seq[3]].x;
272                 float dy = points[seq[1]].y - points[seq[3]].y;
273 
274                 /* dotproduct */
275                 float width = dx * base_a + dy * base_b;
276 
277                 /* find vector left-right */
278                 dx = points[seq[2]].x - points[seq[0]].x;
279                 dy = points[seq[2]].y - points[seq[0]].y;
280 
281                 /* dotproduct */
282                 height = -dx * base_b + dy * base_a;
283 
284                 area = width * height;
285                 if( area <= minarea )
286                 {
287                     float *buf = (float *) buffer;
288 
289                     minarea = area;
290                     /* leftist point */
291                     ((int *) buf)[0] = seq[3];
292                     buf[1] = base_a;
293                     buf[2] = width;
294                     buf[3] = base_b;
295                     buf[4] = height;
296                     /* bottom point */
297                     ((int *) buf)[5] = seq[0];
298                     buf[6] = area;
299                 }
300                 break;
301             }
302         }                       /*switch */
303     }                           /* for */
304 
305     switch (mode)
306     {
307     case CV_CALIPERS_MINAREARECT:
308         {
309             float *buf = (float *) buffer;
310 
311             float A1 = buf[1];
312             float B1 = buf[3];
313 
314             float A2 = -buf[3];
315             float B2 = buf[1];
316 
317             float C1 = A1 * points[((int *) buf)[0]].x + points[((int *) buf)[0]].y * B1;
318             float C2 = A2 * points[((int *) buf)[5]].x + points[((int *) buf)[5]].y * B2;
319 
320             float idet = 1.f / (A1 * B2 - A2 * B1);
321 
322             float px = (C1 * B2 - C2 * B1) * idet;
323             float py = (A1 * C2 - A2 * C1) * idet;
324 
325             out[0] = px;
326             out[1] = py;
327 
328             out[2] = A1 * buf[2];
329             out[3] = B1 * buf[2];
330 
331             out[4] = A2 * buf[4];
332             out[5] = B2 * buf[4];
333         }
334         break;
335     case CV_CALIPERS_MAXHEIGHT:
336         {
337             out[0] = max_dist;
338         }
339         break;
340     }
341 
342     cvFree( &vect );
343     cvFree( &inv_vect_length );
344 }
345 
346 
347 CV_IMPL  CvBox2D
cvMinAreaRect2(const CvArr * array,CvMemStorage * storage)348 cvMinAreaRect2( const CvArr* array, CvMemStorage* storage )
349 {
350     CvMemStorage* temp_storage = 0;
351     CvBox2D box;
352     CvPoint2D32f* points = 0;
353 
354     CV_FUNCNAME( "cvMinAreaRect2" );
355 
356     memset(&box, 0, sizeof(box));
357 
358     __BEGIN__;
359 
360     int i, n;
361     CvSeqReader reader;
362     CvContour contour_header;
363     CvSeqBlock block;
364     CvSeq* ptseq = (CvSeq*)array;
365     CvPoint2D32f out[3];
366 
367     if( CV_IS_SEQ(ptseq) )
368     {
369         if( !CV_IS_SEQ_POINT_SET(ptseq) &&
370             (CV_SEQ_KIND(ptseq) != CV_SEQ_KIND_CURVE || !CV_IS_SEQ_CONVEX(ptseq) ||
371             CV_SEQ_ELTYPE(ptseq) != CV_SEQ_ELTYPE_PPOINT ))
372             CV_ERROR( CV_StsUnsupportedFormat,
373                 "Input sequence must consist of 2d points or pointers to 2d points" );
374         if( !storage )
375             storage = ptseq->storage;
376     }
377     else
378     {
379         CV_CALL( ptseq = cvPointSeqFromMat(
380             CV_SEQ_KIND_GENERIC, array, &contour_header, &block ));
381     }
382 
383     if( storage )
384     {
385         CV_CALL( temp_storage = cvCreateChildMemStorage( storage ));
386     }
387     else
388     {
389         CV_CALL( temp_storage = cvCreateMemStorage(1 << 10));
390     }
391 
392     if( !CV_IS_SEQ_CONVEX( ptseq ))
393     {
394         CV_CALL( ptseq = cvConvexHull2( ptseq, temp_storage, CV_CLOCKWISE, 1 ));
395     }
396     else if( !CV_IS_SEQ_POINT_SET( ptseq ))
397     {
398         CvSeqWriter writer;
399 
400         if( !CV_IS_SEQ(ptseq->v_prev) || !CV_IS_SEQ_POINT_SET(ptseq->v_prev))
401             CV_ERROR( CV_StsBadArg,
402             "Convex hull must have valid pointer to point sequence stored in v_prev" );
403         cvStartReadSeq( ptseq, &reader );
404         cvStartWriteSeq( CV_SEQ_KIND_CURVE|CV_SEQ_FLAG_CONVEX|CV_SEQ_ELTYPE(ptseq->v_prev),
405                          sizeof(CvContour), CV_ELEM_SIZE(ptseq->v_prev->flags),
406                          temp_storage, &writer );
407 
408         for( i = 0; i < ptseq->total; i++ )
409         {
410             CvPoint pt = **(CvPoint**)(reader.ptr);
411             CV_WRITE_SEQ_ELEM( pt, writer );
412         }
413 
414         ptseq = cvEndWriteSeq( &writer );
415     }
416 
417     n = ptseq->total;
418 
419     CV_CALL( points = (CvPoint2D32f*)cvAlloc( n*sizeof(points[0]) ));
420     cvStartReadSeq( ptseq, &reader );
421 
422     if( CV_SEQ_ELTYPE( ptseq ) == CV_32SC2 )
423     {
424         for( i = 0; i < n; i++ )
425         {
426             CvPoint pt;
427             CV_READ_SEQ_ELEM( pt, reader );
428             points[i].x = (float)pt.x;
429             points[i].y = (float)pt.y;
430         }
431     }
432     else
433     {
434         for( i = 0; i < n; i++ )
435         {
436             CV_READ_SEQ_ELEM( points[i], reader );
437         }
438     }
439 
440     if( n > 2 )
441     {
442         icvRotatingCalipers( points, n, CV_CALIPERS_MINAREARECT, (float*)out );
443         box.center.x = out[0].x + (out[1].x + out[2].x)*0.5f;
444         box.center.y = out[0].y + (out[1].y + out[2].y)*0.5f;
445         box.size.height = (float)sqrt((double)out[1].x*out[1].x + (double)out[1].y*out[1].y);
446         box.size.width = (float)sqrt((double)out[2].x*out[2].x + (double)out[2].y*out[2].y);
447         box.angle = (float)atan2( -(double)out[1].y, (double)out[1].x );
448     }
449     else if( n == 2 )
450     {
451         box.center.x = (points[0].x + points[1].x)*0.5f;
452         box.center.y = (points[0].y + points[1].y)*0.5f;
453         double dx = points[1].x - points[0].x;
454         double dy = points[1].y - points[0].y;
455         box.size.height = (float)sqrt(dx*dx + dy*dy);
456         box.size.width = 0;
457         box.angle = (float)atan2( -dy, dx );
458     }
459     else
460     {
461         if( n == 1 )
462             box.center = points[0];
463     }
464 
465     box.angle = (float)(box.angle*180/CV_PI);
466 
467     __END__;
468 
469     cvReleaseMemStorage( &temp_storage );
470     cvFree( &points );
471 
472     return box;
473 }
474 
475