1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // Intel License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 // * Redistribution's of source code must retain the above copyright notice,
20 // this list of conditions and the following disclaimer.
21 //
22 // * Redistribution's in binary form must reproduce the above copyright notice,
23 // this list of conditions and the following disclaimer in the documentation
24 // and/or other materials provided with the distribution.
25 //
26 // * The name of Intel Corporation may not be used to endorse or promote products
27 // derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41
42 #include "_cvaux.h"
43
44 /****************************************************************************************\
45 The code below is some modification of Stan Birchfield's algorithm described in:
46
47 Depth Discontinuities by Pixel-to-Pixel Stereo
48 Stan Birchfield and Carlo Tomasi
49 International Journal of Computer Vision,
50 35(3): 269-293, December 1999.
51
52 This implementation uses different cost function that results in
53 O(pixPerRow*maxDisparity) complexity of dynamic programming stage versus
54 O(pixPerRow*log(pixPerRow)*maxDisparity) in the above paper.
55 \****************************************************************************************/
56
57 /****************************************************************************************\
58 * Find stereo correspondence by dynamic programming algorithm *
59 \****************************************************************************************/
60 #define ICV_DP_STEP_LEFT 0
61 #define ICV_DP_STEP_UP 1
62 #define ICV_DP_STEP_DIAG 2
63
64 #define ICV_BIRCH_DIFF_LUM 5
65
66 #define ICV_MAX_DP_SUM_VAL (INT_MAX/4)
67
68 typedef struct _CvDPCell
69 {
70 uchar step; //local-optimal step
71 int sum; //current sum
72 }_CvDPCell;
73
74 typedef struct _CvRightImData
75 {
76 uchar min_val, max_val;
77 } _CvRightImData;
78
79 // When CV_IMAX3 and CV_IMIN3 are used in the same expression, the evulation
80 // order is undefined, and they should not assign to the same temporary variable.
81 #define CV_IMAX3(a,b,c) ((max3 = (a) >= (b) ? (a) : (b)),(max3 >= (c) ? max3 : (c)))
82 #define CV_IMIN3(a,b,c) ((min3 = (a) <= (b) ? (a) : (b)),(min3 <= (c) ? min3 : (c)))
83
icvFindStereoCorrespondenceByBirchfieldDP(uchar * src1,uchar * src2,uchar * disparities,CvSize size,int widthStep,int maxDisparity,float _param1,float _param2,float _param3,float _param4,float _param5)84 void icvFindStereoCorrespondenceByBirchfieldDP( uchar* src1, uchar* src2,
85 uchar* disparities,
86 CvSize size, int widthStep,
87 int maxDisparity,
88 float _param1, float _param2,
89 float _param3, float _param4,
90 float _param5 )
91 {
92 int x, y, i, j, max3, min3;
93 int d, s;
94 int dispH = maxDisparity + 3;
95 uchar *dispdata;
96 int imgW = size.width;
97 int imgH = size.height;
98 uchar val, prevval, prev, curr;
99 int min_val;
100 uchar* dest = disparities;
101 int param1 = cvRound(_param1);
102 int param2 = cvRound(_param2);
103 int param3 = cvRound(_param3);
104 int param4 = cvRound(_param4);
105 int param5 = cvRound(_param5);
106
107 #define CELL(d,x) cells[(d)+(x)*dispH]
108
109 uchar* dsi = (uchar*)cvAlloc(sizeof(uchar)*imgW*dispH);
110 uchar* edges = (uchar*)cvAlloc(sizeof(uchar)*imgW*imgH);
111 _CvDPCell* cells = (_CvDPCell*)cvAlloc(sizeof(_CvDPCell)*imgW*MAX(dispH,(imgH+1)/2));
112 _CvRightImData* rData = (_CvRightImData*)cvAlloc(sizeof(_CvRightImData)*imgW);
113 int* reliabilities = (int*)cells;
114
115 for( y = 0; y < imgH; y++ )
116 {
117 uchar* srcdata1 = src1 + widthStep * y;
118 uchar* srcdata2 = src2 + widthStep * y;
119
120 //init rData
121 prevval = prev = srcdata2[0];
122 for( j = 1; j < imgW; j++ )
123 {
124 curr = srcdata2[j];
125 val = (uchar)((curr + prev)>>1);
126 rData[j-1].max_val = (uchar)CV_IMAX3( val, prevval, prev );
127 rData[j-1].min_val = (uchar)CV_IMIN3( val, prevval, prev );
128 prevval = val;
129 prev = curr;
130 }
131 rData[j-1] = rData[j-2];//last elem
132
133 // fill dissimularity space image
134 for( i = 1; i <= maxDisparity + 1; i++ )
135 {
136 dsi += imgW;
137 rData--;
138 for( j = i - 1; j < imgW - 1; j++ )
139 {
140 int t;
141 if( (t = srcdata1[j] - rData[j+1].max_val) >= 0 )
142 {
143 dsi[j] = (uchar)t;
144 }
145 else if( (t = rData[j+1].min_val - srcdata1[j]) >= 0 )
146 {
147 dsi[j] = (uchar)t;
148 }
149 else
150 {
151 dsi[j] = 0;
152 }
153 }
154 }
155 dsi -= (maxDisparity+1)*imgW;
156 rData += maxDisparity+1;
157
158 //intensity gradients image construction
159 //left row
160 edges[y*imgW] = edges[y*imgW+1] = edges[y*imgW+2] = 2;
161 edges[y*imgW+imgW-1] = edges[y*imgW+imgW-2] = edges[y*imgW+imgW-3] = 1;
162 for( j = 3; j < imgW-4; j++ )
163 {
164 edges[y*imgW+j] = 0;
165
166 if( ( CV_IMAX3( srcdata1[j-3], srcdata1[j-2], srcdata1[j-1] ) -
167 CV_IMIN3( srcdata1[j-3], srcdata1[j-2], srcdata1[j-1] ) ) >= ICV_BIRCH_DIFF_LUM )
168 {
169 edges[y*imgW+j] |= 1;
170 }
171 if( ( CV_IMAX3( srcdata2[j+3], srcdata2[j+2], srcdata2[j+1] ) -
172 CV_IMIN3( srcdata2[j+3], srcdata2[j+2], srcdata2[j+1] ) ) >= ICV_BIRCH_DIFF_LUM )
173 {
174 edges[y*imgW+j] |= 2;
175 }
176 }
177
178 //find correspondence using dynamical programming
179 //init DP table
180 for( x = 0; x < imgW; x++ )
181 {
182 CELL(0,x).sum = CELL(dispH-1,x).sum = ICV_MAX_DP_SUM_VAL;
183 CELL(0,x).step = CELL(dispH-1,x).step = ICV_DP_STEP_LEFT;
184 }
185 for( d = 2; d < dispH; d++ )
186 {
187 CELL(d,d-2).sum = ICV_MAX_DP_SUM_VAL;
188 CELL(d,d-2).step = ICV_DP_STEP_UP;
189 }
190 CELL(1,0).sum = 0;
191 CELL(1,0).step = ICV_DP_STEP_LEFT;
192
193 for( x = 1; x < imgW; x++ )
194 {
195 int d = MIN( x + 1, maxDisparity + 1);
196 uchar* _edges = edges + y*imgW + x;
197 int e0 = _edges[0] & 1;
198 _CvDPCell* _cell = cells + x*dispH;
199
200 do
201 {
202 int s = dsi[d*imgW+x];
203 int sum[3];
204
205 //check left step
206 sum[0] = _cell[d-dispH].sum - param2;
207
208 //check up step
209 if( _cell[d+1].step != ICV_DP_STEP_DIAG && e0 )
210 {
211 sum[1] = _cell[d+1].sum + param1;
212
213 if( _cell[d-1-dispH].step != ICV_DP_STEP_UP && (_edges[1-d] & 2) )
214 {
215 int t;
216
217 sum[2] = _cell[d-1-dispH].sum + param1;
218
219 t = sum[1] < sum[0];
220
221 //choose local-optimal pass
222 if( sum[t] <= sum[2] )
223 {
224 _cell[d].step = (uchar)t;
225 _cell[d].sum = sum[t] + s;
226 }
227 else
228 {
229 _cell[d].step = ICV_DP_STEP_DIAG;
230 _cell[d].sum = sum[2] + s;
231 }
232 }
233 else
234 {
235 if( sum[0] <= sum[1] )
236 {
237 _cell[d].step = ICV_DP_STEP_LEFT;
238 _cell[d].sum = sum[0] + s;
239 }
240 else
241 {
242 _cell[d].step = ICV_DP_STEP_UP;
243 _cell[d].sum = sum[1] + s;
244 }
245 }
246 }
247 else if( _cell[d-1-dispH].step != ICV_DP_STEP_UP && (_edges[1-d] & 2) )
248 {
249 sum[2] = _cell[d-1-dispH].sum + param1;
250 if( sum[0] <= sum[2] )
251 {
252 _cell[d].step = ICV_DP_STEP_LEFT;
253 _cell[d].sum = sum[0] + s;
254 }
255 else
256 {
257 _cell[d].step = ICV_DP_STEP_DIAG;
258 _cell[d].sum = sum[2] + s;
259 }
260 }
261 else
262 {
263 _cell[d].step = ICV_DP_STEP_LEFT;
264 _cell[d].sum = sum[0] + s;
265 }
266 }
267 while( --d );
268 }// for x
269
270 //extract optimal way and fill disparity image
271 dispdata = dest + widthStep * y;
272
273 //find min_val
274 min_val = ICV_MAX_DP_SUM_VAL;
275 for( i = 1; i <= maxDisparity + 1; i++ )
276 {
277 if( min_val > CELL(i,imgW-1).sum )
278 {
279 d = i;
280 min_val = CELL(i,imgW-1).sum;
281 }
282 }
283
284 //track optimal pass
285 for( x = imgW - 1; x > 0; x-- )
286 {
287 dispdata[x] = (uchar)(d - 1);
288 while( CELL(d,x).step == ICV_DP_STEP_UP ) d++;
289 if ( CELL(d,x).step == ICV_DP_STEP_DIAG )
290 {
291 s = x;
292 while( CELL(d,x).step == ICV_DP_STEP_DIAG )
293 {
294 d--;
295 x--;
296 }
297 for( i = x; i < s; i++ )
298 {
299 dispdata[i] = (uchar)(d-1);
300 }
301 }
302 }//for x
303 }// for y
304
305 //Postprocessing the Disparity Map
306
307 //remove obvious errors in the disparity map
308 for( x = 0; x < imgW; x++ )
309 {
310 for( y = 1; y < imgH - 1; y++ )
311 {
312 if( dest[(y-1)*widthStep+x] == dest[(y+1)*widthStep+x] )
313 {
314 dest[y*widthStep+x] = dest[(y-1)*widthStep+x];
315 }
316 }
317 }
318
319 //compute intensity Y-gradients
320 for( x = 0; x < imgW; x++ )
321 {
322 for( y = 1; y < imgH - 1; y++ )
323 {
324 if( ( CV_IMAX3( src1[(y-1)*widthStep+x], src1[y*widthStep+x],
325 src1[(y+1)*widthStep+x] ) -
326 CV_IMIN3( src1[(y-1)*widthStep+x], src1[y*widthStep+x],
327 src1[(y+1)*widthStep+x] ) ) >= ICV_BIRCH_DIFF_LUM )
328 {
329 edges[y*imgW+x] |= 4;
330 edges[(y+1)*imgW+x] |= 4;
331 edges[(y-1)*imgW+x] |= 4;
332 y++;
333 }
334 }
335 }
336
337 //remove along any particular row, every gradient
338 //for which two adjacent columns do not agree.
339 for( y = 0; y < imgH; y++ )
340 {
341 prev = edges[y*imgW];
342 for( x = 1; x < imgW - 1; x++ )
343 {
344 curr = edges[y*imgW+x];
345 if( (curr & 4) &&
346 ( !( prev & 4 ) ||
347 !( edges[y*imgW+x+1] & 4 ) ) )
348 {
349 edges[y*imgW+x] -= 4;
350 }
351 prev = curr;
352 }
353 }
354
355 // define reliability
356 for( x = 0; x < imgW; x++ )
357 {
358 for( y = 1; y < imgH; y++ )
359 {
360 i = y - 1;
361 for( ; y < imgH && dest[y*widthStep+x] == dest[(y-1)*widthStep+x]; y++ )
362 ;
363 s = y - i;
364 for( ; i < y; i++ )
365 {
366 reliabilities[i*imgW+x] = s;
367 }
368 }
369 }
370
371 //Y - propagate reliable regions
372 for( x = 0; x < imgW; x++ )
373 {
374 for( y = 0; y < imgH; y++ )
375 {
376 d = dest[y*widthStep+x];
377 if( reliabilities[y*imgW+x] >= param4 && !(edges[y*imgW+x] & 4) &&
378 d > 0 )//highly || moderately
379 {
380 disparities[y*widthStep+x] = (uchar)d;
381 //up propagation
382 for( i = y - 1; i >= 0; i-- )
383 {
384 if( ( edges[i*imgW+x] & 4 ) ||
385 ( dest[i*widthStep+x] < d &&
386 reliabilities[i*imgW+x] >= param3 ) ||
387 ( reliabilities[y*imgW+x] < param5 &&
388 dest[i*widthStep+x] - 1 == d ) ) break;
389
390 disparities[i*widthStep+x] = (uchar)d;
391 }
392
393 //down propagation
394 for( i = y + 1; i < imgH; i++ )
395 {
396 if( ( edges[i*imgW+x] & 4 ) ||
397 ( dest[i*widthStep+x] < d &&
398 reliabilities[i*imgW+x] >= param3 ) ||
399 ( reliabilities[y*imgW+x] < param5 &&
400 dest[i*widthStep+x] - 1 == d ) ) break;
401
402 disparities[i*widthStep+x] = (uchar)d;
403 }
404 y = i - 1;
405 }
406 else
407 {
408 disparities[y*widthStep+x] = (uchar)d;
409 }
410 }
411 }
412
413 // define reliability along X
414 for( y = 0; y < imgH; y++ )
415 {
416 for( x = 1; x < imgW; x++ )
417 {
418 i = x - 1;
419 for( ; x < imgW && dest[y*widthStep+x] == dest[y*widthStep+x-1]; x++ );
420 s = x - i;
421 for( ; i < x; i++ )
422 {
423 reliabilities[y*imgW+i] = s;
424 }
425 }
426 }
427
428 //X - propagate reliable regions
429 for( y = 0; y < imgH; y++ )
430 {
431 for( x = 0; x < imgW; x++ )
432 {
433 d = dest[y*widthStep+x];
434 if( reliabilities[y*imgW+x] >= param4 && !(edges[y*imgW+x] & 1) &&
435 d > 0 )//highly || moderately
436 {
437 disparities[y*widthStep+x] = (uchar)d;
438 //up propagation
439 for( i = x - 1; i >= 0; i-- )
440 {
441 if( (edges[y*imgW+i] & 1) ||
442 ( dest[y*widthStep+i] < d &&
443 reliabilities[y*imgW+i] >= param3 ) ||
444 ( reliabilities[y*imgW+x] < param5 &&
445 dest[y*widthStep+i] - 1 == d ) ) break;
446
447 disparities[y*widthStep+i] = (uchar)d;
448 }
449
450 //down propagation
451 for( i = x + 1; i < imgW; i++ )
452 {
453 if( (edges[y*imgW+i] & 1) ||
454 ( dest[y*widthStep+i] < d &&
455 reliabilities[y*imgW+i] >= param3 ) ||
456 ( reliabilities[y*imgW+x] < param5 &&
457 dest[y*widthStep+i] - 1 == d ) ) break;
458
459 disparities[y*widthStep+i] = (uchar)d;
460 }
461 x = i - 1;
462 }
463 else
464 {
465 disparities[y*widthStep+x] = (uchar)d;
466 }
467 }
468 }
469
470 //release resources
471 cvFree( &dsi );
472 cvFree( &edges );
473 cvFree( &cells );
474 cvFree( &rData );
475 }
476
477
478 /*F///////////////////////////////////////////////////////////////////////////
479 //
480 // Name: cvFindStereoCorrespondence
481 // Purpose: find stereo correspondence on stereo-pair
482 // Context:
483 // Parameters:
484 // leftImage - left image of stereo-pair (format 8uC1).
485 // rightImage - right image of stereo-pair (format 8uC1).
486 // mode -mode of correspondance retrieval (now CV_RETR_DP_BIRCHFIELD only)
487 // dispImage - destination disparity image
488 // maxDisparity - maximal disparity
489 // param1, param2, param3, param4, param5 - parameters of algorithm
490 // Returns:
491 // Notes:
492 // Images must be rectified.
493 // All images must have format 8uC1.
494 //F*/
495 CV_IMPL void
cvFindStereoCorrespondence(const CvArr * leftImage,const CvArr * rightImage,int mode,CvArr * depthImage,int maxDisparity,double param1,double param2,double param3,double param4,double param5)496 cvFindStereoCorrespondence(
497 const CvArr* leftImage, const CvArr* rightImage,
498 int mode,
499 CvArr* depthImage,
500 int maxDisparity,
501 double param1, double param2, double param3,
502 double param4, double param5 )
503 {
504 CV_FUNCNAME( "cvFindStereoCorrespondence" );
505
506 __BEGIN__;
507
508 CvMat *src1, *src2;
509 CvMat *dst;
510 CvMat src1_stub, src2_stub, dst_stub;
511 int coi;
512
513 CV_CALL( src1 = cvGetMat( leftImage, &src1_stub, &coi ));
514 if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" );
515 CV_CALL( src2 = cvGetMat( rightImage, &src2_stub, &coi ));
516 if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" );
517 CV_CALL( dst = cvGetMat( depthImage, &dst_stub, &coi ));
518 if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" );
519
520 // check args
521 if( CV_MAT_TYPE( src1->type ) != CV_8UC1 ||
522 CV_MAT_TYPE( src2->type ) != CV_8UC1 ||
523 CV_MAT_TYPE( dst->type ) != CV_8UC1) CV_ERROR(CV_StsUnsupportedFormat,
524 "All images must be single-channel and have 8u" );
525
526 if( !CV_ARE_SIZES_EQ( src1, src2 ) || !CV_ARE_SIZES_EQ( src1, dst ) )
527 CV_ERROR( CV_StsUnmatchedSizes, "" );
528
529 if( maxDisparity <= 0 || maxDisparity >= src1->width || maxDisparity > 255 )
530 CV_ERROR(CV_StsOutOfRange,
531 "parameter /maxDisparity/ is out of range");
532
533 if( mode == CV_DISPARITY_BIRCHFIELD )
534 {
535 if( param1 == CV_UNDEF_SC_PARAM ) param1 = CV_IDP_BIRCHFIELD_PARAM1;
536 if( param2 == CV_UNDEF_SC_PARAM ) param2 = CV_IDP_BIRCHFIELD_PARAM2;
537 if( param3 == CV_UNDEF_SC_PARAM ) param3 = CV_IDP_BIRCHFIELD_PARAM3;
538 if( param4 == CV_UNDEF_SC_PARAM ) param4 = CV_IDP_BIRCHFIELD_PARAM4;
539 if( param5 == CV_UNDEF_SC_PARAM ) param5 = CV_IDP_BIRCHFIELD_PARAM5;
540
541 CV_CALL( icvFindStereoCorrespondenceByBirchfieldDP( src1->data.ptr,
542 src2->data.ptr, dst->data.ptr,
543 cvGetMatSize( src1 ), src1->step,
544 maxDisparity, (float)param1, (float)param2, (float)param3,
545 (float)param4, (float)param5 ) );
546 }
547 else
548 {
549 CV_ERROR( CV_StsBadArg, "Unsupported mode of function" );
550 }
551
552 __END__;
553 }
554
555 /* End of file. */
556
557