1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 #include "_cxcore.h"
43 #include <float.h>
44 
45 /****************************************************************************************\
46 *                              Mean value over the region                                *
47 \****************************************************************************************/
48 
49 #define ICV_MEAN_CASE_C1( len )         \
50     for( ; x <= (len) - 2; x += 2 )     \
51     {                                   \
52         if( mask[x] )                   \
53              s0 += src[x], pix++;       \
54         if( mask[x+1] )                 \
55             s0 += src[x+1], pix++;      \
56     }                                   \
57                                         \
58     for( ; x < (len); x++ )             \
59         if( mask[x] )                   \
60             s0 += src[x], pix++
61 
62 
63 #define ICV_MEAN_CASE_C2( len )         \
64     for( ; x < (len); x++ )             \
65         if( mask[x] )                   \
66         {                               \
67             s0 += src[x*2];             \
68             s1 += src[x*2+1];           \
69             pix++;                      \
70         }
71 
72 
73 #define ICV_MEAN_CASE_C3( len )         \
74     for( ; x < (len); x++ )             \
75         if( mask[x] )                   \
76         {                               \
77             s0 += src[x*3];             \
78             s1 += src[x*3+1];           \
79             s2 += src[x*3+2];           \
80             pix++;                      \
81         }
82 
83 
84 #define ICV_MEAN_CASE_C4( len )         \
85     for( ; x < (len); x++ )             \
86         if( mask[x] )                   \
87         {                               \
88             s0 += src[x*4];             \
89             s1 += src[x*4+1];           \
90             s2 += src[x*4+2];           \
91             s3 += src[x*4+3];           \
92             pix++;                      \
93         }
94 
95 
96 #define ICV_MEAN_COI_CASE( len, cn )    \
97     for( ; x <= (len) - 2; x += 2 )     \
98     {                                   \
99         if( mask[x] )                   \
100              s0 += src[x*(cn)], pix++;  \
101         if( mask[x+1] )                 \
102             s0+=src[(x+1)*(cn)], pix++; \
103     }                                   \
104                                         \
105     for( ; x < (len); x++ )             \
106         if( mask[x] )                   \
107             s0 += src[x*(cn)], pix++;
108 
109 
110 ////////////////////////////////////// entry macros //////////////////////////////////////
111 
112 #define ICV_MEAN_ENTRY_COMMON()         \
113     int pix = 0;                        \
114     step /= sizeof(src[0])
115 
116 #define ICV_MEAN_ENTRY_C1( sumtype )    \
117     sumtype s0 = 0;                     \
118     ICV_MEAN_ENTRY_COMMON()
119 
120 #define ICV_MEAN_ENTRY_C2( sumtype )    \
121     sumtype s0 = 0, s1 = 0;             \
122     ICV_MEAN_ENTRY_COMMON()
123 
124 #define ICV_MEAN_ENTRY_C3( sumtype )    \
125     sumtype s0 = 0, s1 = 0, s2 = 0;     \
126     ICV_MEAN_ENTRY_COMMON()
127 
128 #define ICV_MEAN_ENTRY_C4( sumtype )        \
129     sumtype s0 = 0, s1 = 0, s2 = 0, s3 = 0; \
130     ICV_MEAN_ENTRY_COMMON()
131 
132 
133 #define ICV_MEAN_ENTRY_BLOCK_COMMON( block_size ) \
134     int remaining = block_size;                   \
135     ICV_MEAN_ENTRY_COMMON()
136 
137 #define ICV_MEAN_ENTRY_BLOCK_C1( sumtype, worktype, block_size )\
138     sumtype sum0 = 0;                                           \
139     worktype s0 = 0;                                            \
140     ICV_MEAN_ENTRY_BLOCK_COMMON( block_size )
141 
142 #define ICV_MEAN_ENTRY_BLOCK_C2( sumtype, worktype, block_size )\
143     sumtype sum0 = 0, sum1 = 0;                                 \
144     worktype s0 = 0, s1 = 0;                                    \
145     ICV_MEAN_ENTRY_BLOCK_COMMON( block_size )
146 
147 #define ICV_MEAN_ENTRY_BLOCK_C3( sumtype, worktype, block_size )\
148     sumtype sum0 = 0, sum1 = 0, sum2 = 0;                       \
149     worktype s0 = 0, s1 = 0, s2 = 0;                            \
150     ICV_MEAN_ENTRY_BLOCK_COMMON( block_size )
151 
152 #define ICV_MEAN_ENTRY_BLOCK_C4( sumtype, worktype, block_size )\
153     sumtype sum0 = 0, sum1 = 0, sum2 = 0, sum3 = 0;             \
154     worktype s0 = 0, s1 = 0, s2 = 0, s3 = 0;                    \
155     ICV_MEAN_ENTRY_BLOCK_COMMON( block_size )
156 
157 
158 /////////////////////////////////////// exit macros //////////////////////////////////////
159 
160 #define ICV_MEAN_EXIT_COMMON()          \
161     double scale = pix ? 1./pix : 0
162 
163 #define ICV_MEAN_EXIT_C1( tmp )         \
164     ICV_MEAN_EXIT_COMMON();             \
165     mean[0] = scale*(double)tmp##0
166 
167 #define ICV_MEAN_EXIT_C2( tmp )         \
168     ICV_MEAN_EXIT_COMMON();             \
169     double t0 = scale*(double)tmp##0;   \
170     double t1 = scale*(double)tmp##1;   \
171     mean[0] = t0;                       \
172     mean[1] = t1
173 
174 #define ICV_MEAN_EXIT_C3( tmp )         \
175     ICV_MEAN_EXIT_COMMON();             \
176     double t0 = scale*(double)tmp##0;   \
177     double t1 = scale*(double)tmp##1;   \
178     double t2 = scale*(double)tmp##2;   \
179     mean[0] = t0;                       \
180     mean[1] = t1;                       \
181     mean[2] = t2
182 
183 #define ICV_MEAN_EXIT_C4( tmp )         \
184     ICV_MEAN_EXIT_COMMON();             \
185     double t0 = scale*(double)tmp##0;   \
186     double t1 = scale*(double)tmp##1;   \
187     mean[0] = t0;                       \
188     mean[1] = t1;                       \
189     t0 = scale*(double)tmp##2;          \
190     t1 = scale*(double)tmp##3;          \
191     mean[2] = t0;                       \
192     mean[3] = t1
193 
194 #define ICV_MEAN_EXIT_BLOCK_C1()    \
195     sum0 += s0;                     \
196     ICV_MEAN_EXIT_C1( sum )
197 
198 #define ICV_MEAN_EXIT_BLOCK_C2()    \
199     sum0 += s0; sum1 += s1;         \
200     ICV_MEAN_EXIT_C2( sum )
201 
202 #define ICV_MEAN_EXIT_BLOCK_C3()    \
203     sum0 += s0; sum1 += s1;         \
204     sum2 += s2;                     \
205     ICV_MEAN_EXIT_C3( sum )
206 
207 #define ICV_MEAN_EXIT_BLOCK_C4()    \
208     sum0 += s0; sum1 += s1;         \
209     sum2 += s2; sum3 += s3;         \
210     ICV_MEAN_EXIT_C4( sum )
211 
212 ////////////////////////////////////// update macros /////////////////////////////////////
213 
214 #define ICV_MEAN_UPDATE_COMMON( block_size )\
215     remaining = block_size
216 
217 #define ICV_MEAN_UPDATE_C1( block_size )    \
218     ICV_MEAN_UPDATE_COMMON( block_size );   \
219     sum0 += s0;                             \
220     s0 = 0
221 
222 #define ICV_MEAN_UPDATE_C2( block_size )    \
223     ICV_MEAN_UPDATE_COMMON( block_size );   \
224     sum0 += s0; sum1 += s1;                 \
225     s0 = s1 = 0
226 
227 #define ICV_MEAN_UPDATE_C3( block_size )    \
228     ICV_MEAN_UPDATE_COMMON( block_size );   \
229     sum0 += s0; sum1 += s1; sum2 += s2;     \
230     s0 = s1 = s2 = 0
231 
232 #define ICV_MEAN_UPDATE_C4( block_size )    \
233     ICV_MEAN_UPDATE_COMMON( block_size );   \
234     sum0 += s0; sum1 += s1;                 \
235     sum2 += s2; sum3 += s3;                 \
236     s0 = s1 = s2 = s3 = 0
237 
238 
239 #define ICV_IMPL_MEAN_BLOCK_FUNC_2D( flavor, cn,                \
240     arrtype, sumtype, worktype, block_size )                    \
241 IPCVAPI_IMPL( CvStatus, icvMean_##flavor##_C##cn##MR,           \
242     ( const arrtype* src, int step,                             \
243       const uchar* mask, int maskstep,                          \
244       CvSize size, double* mean ),                              \
245     (src, step, mask, maskstep, size, mean))                    \
246 {                                                               \
247     ICV_MEAN_ENTRY_BLOCK_C##cn( sumtype, worktype, block_size );\
248                                                                 \
249     for( ; size.height--; src += step, mask += maskstep )       \
250     {                                                           \
251         int x = 0;                                              \
252         while( x < size.width )                                 \
253         {                                                       \
254             int limit = MIN( remaining, size.width - x );       \
255             remaining -= limit;                                 \
256             limit += x;                                         \
257             ICV_MEAN_CASE_C##cn( limit );                       \
258             if( remaining == 0 )                                \
259             {                                                   \
260                 ICV_MEAN_UPDATE_C##cn( block_size );            \
261             }                                                   \
262         }                                                       \
263     }                                                           \
264                                                                 \
265     { ICV_MEAN_EXIT_BLOCK_C##cn(); }                            \
266     return CV_OK;                                               \
267 }
268 
269 
270 #define ICV_IMPL_MEAN_FUNC_2D( flavor, cn,                      \
271                 arrtype, sumtype, worktype )                    \
272 IPCVAPI_IMPL( CvStatus, icvMean_##flavor##_C##cn##MR,           \
273     ( const arrtype* src, int step,                             \
274       const uchar* mask, int maskstep,                          \
275       CvSize size, double* mean),                               \
276     (src, step, mask, maskstep, size, mean))                    \
277 {                                                               \
278     ICV_MEAN_ENTRY_C##cn( sumtype );                            \
279                                                                 \
280     for( ; size.height--; src += step, mask += maskstep )       \
281     {                                                           \
282         int x = 0;                                              \
283         ICV_MEAN_CASE_C##cn( size.width );                      \
284     }                                                           \
285                                                                 \
286     { ICV_MEAN_EXIT_C##cn( s ); }                               \
287     return CV_OK;                                               \
288 }
289 
290 
291 #define ICV_IMPL_MEAN_BLOCK_FUNC_2D_COI( flavor,                \
292         arrtype, sumtype, worktype, block_size )                \
293 static CvStatus CV_STDCALL                                      \
294 icvMean_##flavor##_CnCMR( const arrtype* src, int step,         \
295                           const uchar* mask, int maskstep,      \
296                           CvSize size, int cn,                  \
297                           int coi, double* mean )               \
298 {                                                               \
299     ICV_MEAN_ENTRY_BLOCK_C1( sumtype, worktype, block_size );   \
300     src += coi - 1;                                             \
301                                                                 \
302     for( ; size.height--; src += step, mask += maskstep )       \
303     {                                                           \
304         int x = 0;                                              \
305         while( x < size.width )                                 \
306         {                                                       \
307             int limit = MIN( remaining, size.width - x );       \
308             remaining -= limit;                                 \
309             limit += x;                                         \
310             ICV_MEAN_COI_CASE( limit, cn );                     \
311             if( remaining == 0 )                                \
312             {                                                   \
313                 ICV_MEAN_UPDATE_C1( block_size );               \
314             }                                                   \
315         }                                                       \
316     }                                                           \
317                                                                 \
318     { ICV_MEAN_EXIT_BLOCK_C1(); }                               \
319     return CV_OK;                                               \
320 }
321 
322 
323 #define ICV_IMPL_MEAN_FUNC_2D_COI( flavor,                      \
324                 arrtype, sumtype, worktype )                    \
325 static CvStatus CV_STDCALL                                      \
326 icvMean_##flavor##_CnCMR( const arrtype* src, int step,         \
327                           const uchar* mask, int maskstep,      \
328                           CvSize size, int cn,                  \
329                           int coi, double* mean )               \
330 {                                                               \
331     ICV_MEAN_ENTRY_C1( sumtype );                               \
332     src += coi - 1;                                             \
333                                                                 \
334     for( ; size.height--; src += step, mask += maskstep )       \
335     {                                                           \
336         int x = 0;                                              \
337         ICV_MEAN_COI_CASE( size.width, cn );                    \
338     }                                                           \
339                                                                 \
340     { ICV_MEAN_EXIT_C1( s ); }                                  \
341     return CV_OK;                                               \
342 }
343 
344 
345 #define ICV_IMPL_MEAN_BLOCK_ALL( flavor, arrtype, sumtype,      \
346                                  worktype, block_size )         \
347     ICV_IMPL_MEAN_BLOCK_FUNC_2D( flavor, 1, arrtype, sumtype,   \
348                                  worktype, block_size )         \
349     ICV_IMPL_MEAN_BLOCK_FUNC_2D( flavor, 2, arrtype, sumtype,   \
350                                  worktype, block_size )         \
351     ICV_IMPL_MEAN_BLOCK_FUNC_2D( flavor, 3, arrtype, sumtype,   \
352                                  worktype, block_size )         \
353     ICV_IMPL_MEAN_BLOCK_FUNC_2D( flavor, 4, arrtype, sumtype,   \
354                                  worktype, block_size )         \
355     ICV_IMPL_MEAN_BLOCK_FUNC_2D_COI( flavor, arrtype, sumtype,  \
356                                  worktype, block_size )
357 
358 #define ICV_IMPL_MEAN_ALL( flavor, arrtype, sumtype, worktype )     \
359     ICV_IMPL_MEAN_FUNC_2D( flavor, 1, arrtype, sumtype, worktype )  \
360     ICV_IMPL_MEAN_FUNC_2D( flavor, 2, arrtype, sumtype, worktype )  \
361     ICV_IMPL_MEAN_FUNC_2D( flavor, 3, arrtype, sumtype, worktype )  \
362     ICV_IMPL_MEAN_FUNC_2D( flavor, 4, arrtype, sumtype, worktype )  \
363     ICV_IMPL_MEAN_FUNC_2D_COI( flavor, arrtype, sumtype, worktype )
364 
365 ICV_IMPL_MEAN_BLOCK_ALL( 8u, uchar, int64, unsigned, 1 << 24 )
366 ICV_IMPL_MEAN_BLOCK_ALL( 16u, ushort, int64, unsigned, 1 << 16 )
367 ICV_IMPL_MEAN_BLOCK_ALL( 16s, short, int64, int, 1 << 16 )
368 ICV_IMPL_MEAN_ALL( 32s, int, double, double )
369 ICV_IMPL_MEAN_ALL( 32f, float, double, double )
370 ICV_IMPL_MEAN_ALL( 64f, double, double, double )
371 
372 #define icvMean_8s_C1MR 0
373 #define icvMean_8s_C2MR 0
374 #define icvMean_8s_C3MR 0
375 #define icvMean_8s_C4MR 0
376 #define icvMean_8s_CnCMR 0
377 
CV_DEF_INIT_BIG_FUNC_TAB_2D(Mean,MR)378 CV_DEF_INIT_BIG_FUNC_TAB_2D( Mean, MR )
379 CV_DEF_INIT_FUNC_TAB_2D( Mean, CnCMR )
380 
381 CV_IMPL  CvScalar
382 cvAvg( const void* img, const void* maskarr )
383 {
384     CvScalar mean = {{0,0,0,0}};
385 
386     static CvBigFuncTable mean_tab;
387     static CvFuncTable meancoi_tab;
388     static int inittab = 0;
389 
390     CV_FUNCNAME("cvAvg");
391 
392     __BEGIN__;
393 
394     CvSize size;
395     double scale;
396 
397     if( !maskarr )
398     {
399         CV_CALL( mean = cvSum(img));
400         size = cvGetSize( img );
401         size.width *= size.height;
402         scale = size.width ? 1./size.width : 0;
403 
404         mean.val[0] *= scale;
405         mean.val[1] *= scale;
406         mean.val[2] *= scale;
407         mean.val[3] *= scale;
408     }
409     else
410     {
411         int type, coi = 0;
412         int mat_step, mask_step;
413 
414         CvMat stub, maskstub, *mat = (CvMat*)img, *mask = (CvMat*)maskarr;
415 
416         if( !inittab )
417         {
418             icvInitMeanMRTable( &mean_tab );
419             icvInitMeanCnCMRTable( &meancoi_tab );
420             inittab = 1;
421         }
422 
423         if( !CV_IS_MAT(mat) )
424             CV_CALL( mat = cvGetMat( mat, &stub, &coi ));
425 
426         if( !CV_IS_MAT(mask) )
427             CV_CALL( mask = cvGetMat( mask, &maskstub ));
428 
429         if( !CV_IS_MASK_ARR(mask) )
430             CV_ERROR( CV_StsBadMask, "" );
431 
432         if( !CV_ARE_SIZES_EQ( mat, mask ) )
433             CV_ERROR( CV_StsUnmatchedSizes, "" );
434 
435         type = CV_MAT_TYPE( mat->type );
436         size = cvGetMatSize( mat );
437 
438         mat_step = mat->step;
439         mask_step = mask->step;
440 
441         if( CV_IS_MAT_CONT( mat->type & mask->type ))
442         {
443             size.width *= size.height;
444             size.height = 1;
445             mat_step = mask_step = CV_STUB_STEP;
446         }
447 
448         if( CV_MAT_CN(type) == 1 || coi == 0 )
449         {
450             CvFunc2D_2A1P func;
451 
452             if( CV_MAT_CN(type) > 4 )
453                 CV_ERROR( CV_StsOutOfRange, "The input array must have at most 4 channels unless COI is set" );
454 
455             func = (CvFunc2D_2A1P)(mean_tab.fn_2d[type]);
456 
457             if( !func )
458                 CV_ERROR( CV_StsBadArg, cvUnsupportedFormat );
459 
460             IPPI_CALL( func( mat->data.ptr, mat_step, mask->data.ptr,
461                              mask_step, size, mean.val ));
462         }
463         else
464         {
465             CvFunc2DnC_2A1P func = (CvFunc2DnC_2A1P)(
466                 meancoi_tab.fn_2d[CV_MAT_DEPTH(type)]);
467 
468             if( !func )
469                 CV_ERROR( CV_StsBadArg, cvUnsupportedFormat );
470 
471             IPPI_CALL( func( mat->data.ptr, mat_step, mask->data.ptr,
472                              mask_step, size, CV_MAT_CN(type), coi, mean.val ));
473         }
474     }
475 
476     __END__;
477 
478     return  mean;
479 }
480 
481 /*  End of file  */
482