1 /*
2  * jdmainct.c
3  *
4  * Copyright (C) 1994-1996, Thomas G. Lane.
5  * Modified 2002-2012 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains the main buffer controller for decompression.
10  * The main buffer lies between the JPEG decompressor proper and the
11  * post-processor; it holds downsampled data in the JPEG colorspace.
12  *
13  * Note that this code is bypassed in raw-data mode, since the application
14  * supplies the equivalent of the main buffer in that case.
15  */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 
21 
22 /*
23  * In the current system design, the main buffer need never be a full-image
24  * buffer; any full-height buffers will be found inside the coefficient or
25  * postprocessing controllers.  Nonetheless, the main controller is not
26  * trivial.  Its responsibility is to provide context rows for upsampling/
27  * rescaling, and doing this in an efficient fashion is a bit tricky.
28  *
29  * Postprocessor input data is counted in "row groups".  A row group
30  * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
31  * sample rows of each component.  (We require DCT_scaled_size values to be
32  * chosen such that these numbers are integers.  In practice DCT_scaled_size
33  * values will likely be powers of two, so we actually have the stronger
34  * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
35  * Upsampling will typically produce max_v_samp_factor pixel rows from each
36  * row group (times any additional scale factor that the upsampler is
37  * applying).
38  *
39  * The coefficient controller will deliver data to us one iMCU row at a time;
40  * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
41  * exactly min_DCT_scaled_size row groups.  (This amount of data corresponds
42  * to one row of MCUs when the image is fully interleaved.)  Note that the
43  * number of sample rows varies across components, but the number of row
44  * groups does not.  Some garbage sample rows may be included in the last iMCU
45  * row at the bottom of the image.
46  *
47  * Depending on the vertical scaling algorithm used, the upsampler may need
48  * access to the sample row(s) above and below its current input row group.
49  * The upsampler is required to set need_context_rows TRUE at global selection
50  * time if so.  When need_context_rows is FALSE, this controller can simply
51  * obtain one iMCU row at a time from the coefficient controller and dole it
52  * out as row groups to the postprocessor.
53  *
54  * When need_context_rows is TRUE, this controller guarantees that the buffer
55  * passed to postprocessing contains at least one row group's worth of samples
56  * above and below the row group(s) being processed.  Note that the context
57  * rows "above" the first passed row group appear at negative row offsets in
58  * the passed buffer.  At the top and bottom of the image, the required
59  * context rows are manufactured by duplicating the first or last real sample
60  * row; this avoids having special cases in the upsampling inner loops.
61  *
62  * The amount of context is fixed at one row group just because that's a
63  * convenient number for this controller to work with.  The existing
64  * upsamplers really only need one sample row of context.  An upsampler
65  * supporting arbitrary output rescaling might wish for more than one row
66  * group of context when shrinking the image; tough, we don't handle that.
67  * (This is justified by the assumption that downsizing will be handled mostly
68  * by adjusting the DCT_scaled_size values, so that the actual scale factor at
69  * the upsample step needn't be much less than one.)
70  *
71  * To provide the desired context, we have to retain the last two row groups
72  * of one iMCU row while reading in the next iMCU row.  (The last row group
73  * can't be processed until we have another row group for its below-context,
74  * and so we have to save the next-to-last group too for its above-context.)
75  * We could do this most simply by copying data around in our buffer, but
76  * that'd be very slow.  We can avoid copying any data by creating a rather
77  * strange pointer structure.  Here's how it works.  We allocate a workspace
78  * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
79  * of row groups per iMCU row).  We create two sets of redundant pointers to
80  * the workspace.  Labeling the physical row groups 0 to M+1, the synthesized
81  * pointer lists look like this:
82  *                   M+1                          M-1
83  * master pointer --> 0         master pointer --> 0
84  *                    1                            1
85  *                   ...                          ...
86  *                   M-3                          M-3
87  *                   M-2                           M
88  *                   M-1                          M+1
89  *                    M                           M-2
90  *                   M+1                          M-1
91  *                    0                            0
92  * We read alternate iMCU rows using each master pointer; thus the last two
93  * row groups of the previous iMCU row remain un-overwritten in the workspace.
94  * The pointer lists are set up so that the required context rows appear to
95  * be adjacent to the proper places when we pass the pointer lists to the
96  * upsampler.
97  *
98  * The above pictures describe the normal state of the pointer lists.
99  * At top and bottom of the image, we diddle the pointer lists to duplicate
100  * the first or last sample row as necessary (this is cheaper than copying
101  * sample rows around).
102  *
103  * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1.  In that
104  * situation each iMCU row provides only one row group so the buffering logic
105  * must be different (eg, we must read two iMCU rows before we can emit the
106  * first row group).  For now, we simply do not support providing context
107  * rows when min_DCT_scaled_size is 1.  That combination seems unlikely to
108  * be worth providing --- if someone wants a 1/8th-size preview, they probably
109  * want it quick and dirty, so a context-free upsampler is sufficient.
110  */
111 
112 
113 /* Private buffer controller object */
114 
115 typedef struct {
116   struct jpeg_d_main_controller pub; /* public fields */
117 
118   /* Pointer to allocated workspace (M or M+2 row groups). */
119   JSAMPARRAY buffer[MAX_COMPONENTS];
120 
121   boolean buffer_full;		/* Have we gotten an iMCU row from decoder? */
122   JDIMENSION rowgroup_ctr;	/* counts row groups output to postprocessor */
123 
124   /* Remaining fields are only used in the context case. */
125 
126   /* These are the master pointers to the funny-order pointer lists. */
127   JSAMPIMAGE xbuffer[2];	/* pointers to weird pointer lists */
128 
129   int whichptr;			/* indicates which pointer set is now in use */
130   int context_state;		/* process_data state machine status */
131   JDIMENSION rowgroups_avail;	/* row groups available to postprocessor */
132   JDIMENSION iMCU_row_ctr;	/* counts iMCU rows to detect image top/bot */
133 } my_main_controller;
134 
135 typedef my_main_controller * my_main_ptr;
136 
137 /* context_state values: */
138 #define CTX_PREPARE_FOR_IMCU	0	/* need to prepare for MCU row */
139 #define CTX_PROCESS_IMCU	1	/* feeding iMCU to postprocessor */
140 #define CTX_POSTPONED_ROW	2	/* feeding postponed row group */
141 
142 
143 /* Forward declarations */
144 METHODDEF(void) process_data_simple_main
145         JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
146              JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
147 METHODDEF(void) process_data_context_main
148         JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
149              JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
150 #ifdef QUANT_2PASS_SUPPORTED
151 METHODDEF(void) process_data_crank_post
152         JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
153              JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
154 #endif
155 
156 
157 LOCAL(void)
alloc_funny_pointers(j_decompress_ptr cinfo)158 alloc_funny_pointers (j_decompress_ptr cinfo)
159 /* Allocate space for the funny pointer lists.
160  * This is done only once, not once per pass.
161  */
162 {
163   my_main_ptr mainp = (my_main_ptr) cinfo->main;
164   int ci, rgroup;
165   int M = cinfo->min_DCT_v_scaled_size;
166   jpeg_component_info *compptr;
167   JSAMPARRAY xbuf;
168 
169   /* Get top-level space for component array pointers.
170    * We alloc both arrays with one call to save a few cycles.
171    */
172   mainp->xbuffer[0] = (JSAMPIMAGE)
173     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
174                                 cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
175   mainp->xbuffer[1] = mainp->xbuffer[0] + cinfo->num_components;
176 
177   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
178        ci++, compptr++) {
179     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
180       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
181     /* Get space for pointer lists --- M+4 row groups in each list.
182      * We alloc both pointer lists with one call to save a few cycles.
183      */
184     xbuf = (JSAMPARRAY)
185       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
186                                   2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
187     xbuf += rgroup;		/* want one row group at negative offsets */
188     mainp->xbuffer[0][ci] = xbuf;
189     xbuf += rgroup * (M + 4);
190     mainp->xbuffer[1][ci] = xbuf;
191   }
192 }
193 
194 
195 LOCAL(void)
make_funny_pointers(j_decompress_ptr cinfo)196 make_funny_pointers (j_decompress_ptr cinfo)
197 /* Create the funny pointer lists discussed in the comments above.
198  * The actual workspace is already allocated (in main->buffer),
199  * and the space for the pointer lists is allocated too.
200  * This routine just fills in the curiously ordered lists.
201  * This will be repeated at the beginning of each pass.
202  */
203 {
204   my_main_ptr mainp = (my_main_ptr) cinfo->main;
205   int ci, i, rgroup;
206   int M = cinfo->min_DCT_v_scaled_size;
207   jpeg_component_info *compptr;
208   JSAMPARRAY buf, xbuf0, xbuf1;
209 
210   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
211        ci++, compptr++) {
212     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
213       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
214     xbuf0 = mainp->xbuffer[0][ci];
215     xbuf1 = mainp->xbuffer[1][ci];
216     /* First copy the workspace pointers as-is */
217     buf = mainp->buffer[ci];
218     for (i = 0; i < rgroup * (M + 2); i++) {
219       xbuf0[i] = xbuf1[i] = buf[i];
220     }
221     /* In the second list, put the last four row groups in swapped order */
222     for (i = 0; i < rgroup * 2; i++) {
223       xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
224       xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
225     }
226     /* The wraparound pointers at top and bottom will be filled later
227      * (see set_wraparound_pointers, below).  Initially we want the "above"
228      * pointers to duplicate the first actual data line.  This only needs
229      * to happen in xbuffer[0].
230      */
231     for (i = 0; i < rgroup; i++) {
232       xbuf0[i - rgroup] = xbuf0[0];
233     }
234   }
235 }
236 
237 
238 LOCAL(void)
set_wraparound_pointers(j_decompress_ptr cinfo)239 set_wraparound_pointers (j_decompress_ptr cinfo)
240 /* Set up the "wraparound" pointers at top and bottom of the pointer lists.
241  * This changes the pointer list state from top-of-image to the normal state.
242  */
243 {
244   my_main_ptr mainp = (my_main_ptr) cinfo->main;
245   int ci, i, rgroup;
246   int M = cinfo->min_DCT_v_scaled_size;
247   jpeg_component_info *compptr;
248   JSAMPARRAY xbuf0, xbuf1;
249 
250   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
251        ci++, compptr++) {
252     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
253       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
254     xbuf0 = mainp->xbuffer[0][ci];
255     xbuf1 = mainp->xbuffer[1][ci];
256     for (i = 0; i < rgroup; i++) {
257       xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
258       xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
259       xbuf0[rgroup*(M+2) + i] = xbuf0[i];
260       xbuf1[rgroup*(M+2) + i] = xbuf1[i];
261     }
262   }
263 }
264 
265 
266 LOCAL(void)
set_bottom_pointers(j_decompress_ptr cinfo)267 set_bottom_pointers (j_decompress_ptr cinfo)
268 /* Change the pointer lists to duplicate the last sample row at the bottom
269  * of the image.  whichptr indicates which xbuffer holds the final iMCU row.
270  * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
271  */
272 {
273   my_main_ptr mainp = (my_main_ptr) cinfo->main;
274   int ci, i, rgroup, iMCUheight, rows_left;
275   jpeg_component_info *compptr;
276   JSAMPARRAY xbuf;
277 
278   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
279        ci++, compptr++) {
280     /* Count sample rows in one iMCU row and in one row group */
281     iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size;
282     rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size;
283     /* Count nondummy sample rows remaining for this component */
284     rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
285     if (rows_left == 0) rows_left = iMCUheight;
286     /* Count nondummy row groups.  Should get same answer for each component,
287      * so we need only do it once.
288      */
289     if (ci == 0) {
290       mainp->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
291     }
292     /* Duplicate the last real sample row rgroup*2 times; this pads out the
293      * last partial rowgroup and ensures at least one full rowgroup of context.
294      */
295     xbuf = mainp->xbuffer[mainp->whichptr][ci];
296     for (i = 0; i < rgroup * 2; i++) {
297       xbuf[rows_left + i] = xbuf[rows_left-1];
298     }
299   }
300 }
301 
302 
303 /*
304  * Initialize for a processing pass.
305  */
306 
307 METHODDEF(void)
start_pass_main(j_decompress_ptr cinfo,J_BUF_MODE pass_mode)308 start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
309 {
310   my_main_ptr mainp = (my_main_ptr) cinfo->main;
311 
312   switch (pass_mode) {
313   case JBUF_PASS_THRU:
314     if (cinfo->upsample->need_context_rows) {
315       mainp->pub.process_data = process_data_context_main;
316       make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
317       mainp->whichptr = 0;	/* Read first iMCU row into xbuffer[0] */
318       mainp->context_state = CTX_PREPARE_FOR_IMCU;
319       mainp->iMCU_row_ctr = 0;
320     } else {
321       /* Simple case with no context needed */
322       mainp->pub.process_data = process_data_simple_main;
323     }
324     mainp->buffer_full = FALSE;	/* Mark buffer empty */
325     mainp->rowgroup_ctr = 0;
326     break;
327 #ifdef QUANT_2PASS_SUPPORTED
328   case JBUF_CRANK_DEST:
329     /* For last pass of 2-pass quantization, just crank the postprocessor */
330     mainp->pub.process_data = process_data_crank_post;
331     break;
332 #endif
333   default:
334     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
335     break;
336   }
337 }
338 
339 
340 /*
341  * Process some data.
342  * This handles the simple case where no context is required.
343  */
344 
345 METHODDEF(void)
process_data_simple_main(j_decompress_ptr cinfo,JSAMPARRAY output_buf,JDIMENSION * out_row_ctr,JDIMENSION out_rows_avail)346 process_data_simple_main (j_decompress_ptr cinfo,
347                           JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
348                           JDIMENSION out_rows_avail)
349 {
350   my_main_ptr mainp = (my_main_ptr) cinfo->main;
351   JDIMENSION rowgroups_avail;
352 
353   /* Read input data if we haven't filled the main buffer yet */
354   if (! mainp->buffer_full) {
355     if (! (*cinfo->coef->decompress_data) (cinfo, mainp->buffer))
356       return;			/* suspension forced, can do nothing more */
357     mainp->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
358   }
359 
360   /* There are always min_DCT_scaled_size row groups in an iMCU row. */
361   rowgroups_avail = (JDIMENSION) cinfo->min_DCT_v_scaled_size;
362   /* Note: at the bottom of the image, we may pass extra garbage row groups
363    * to the postprocessor.  The postprocessor has to check for bottom
364    * of image anyway (at row resolution), so no point in us doing it too.
365    */
366 
367   /* Feed the postprocessor */
368   (*cinfo->post->post_process_data) (cinfo, mainp->buffer,
369                                      &mainp->rowgroup_ctr, rowgroups_avail,
370                                      output_buf, out_row_ctr, out_rows_avail);
371 
372   /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
373   if (mainp->rowgroup_ctr >= rowgroups_avail) {
374     mainp->buffer_full = FALSE;
375     mainp->rowgroup_ctr = 0;
376   }
377 }
378 
379 
380 /*
381  * Process some data.
382  * This handles the case where context rows must be provided.
383  */
384 
385 METHODDEF(void)
process_data_context_main(j_decompress_ptr cinfo,JSAMPARRAY output_buf,JDIMENSION * out_row_ctr,JDIMENSION out_rows_avail)386 process_data_context_main (j_decompress_ptr cinfo,
387                            JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
388                            JDIMENSION out_rows_avail)
389 {
390   my_main_ptr mainp = (my_main_ptr) cinfo->main;
391 
392   /* Read input data if we haven't filled the main buffer yet */
393   if (! mainp->buffer_full) {
394     if (! (*cinfo->coef->decompress_data) (cinfo,
395                                            mainp->xbuffer[mainp->whichptr]))
396       return;			/* suspension forced, can do nothing more */
397     mainp->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
398     mainp->iMCU_row_ctr++;	/* count rows received */
399   }
400 
401   /* Postprocessor typically will not swallow all the input data it is handed
402    * in one call (due to filling the output buffer first).  Must be prepared
403    * to exit and restart.  This switch lets us keep track of how far we got.
404    * Note that each case falls through to the next on successful completion.
405    */
406   switch (mainp->context_state) {
407   case CTX_POSTPONED_ROW:
408     /* Call postprocessor using previously set pointers for postponed row */
409     (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr],
410                         &mainp->rowgroup_ctr, mainp->rowgroups_avail,
411                         output_buf, out_row_ctr, out_rows_avail);
412     if (mainp->rowgroup_ctr < mainp->rowgroups_avail)
413       return;			/* Need to suspend */
414     mainp->context_state = CTX_PREPARE_FOR_IMCU;
415     if (*out_row_ctr >= out_rows_avail)
416       return;			/* Postprocessor exactly filled output buf */
417     /*FALLTHROUGH*/
418   case CTX_PREPARE_FOR_IMCU:
419     /* Prepare to process first M-1 row groups of this iMCU row */
420     mainp->rowgroup_ctr = 0;
421     mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
422     /* Check for bottom of image: if so, tweak pointers to "duplicate"
423      * the last sample row, and adjust rowgroups_avail to ignore padding rows.
424      */
425     if (mainp->iMCU_row_ctr == cinfo->total_iMCU_rows)
426       set_bottom_pointers(cinfo);
427     mainp->context_state = CTX_PROCESS_IMCU;
428     /*FALLTHROUGH*/
429   case CTX_PROCESS_IMCU:
430     /* Call postprocessor using previously set pointers */
431     (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr],
432                         &mainp->rowgroup_ctr, mainp->rowgroups_avail,
433                         output_buf, out_row_ctr, out_rows_avail);
434     if (mainp->rowgroup_ctr < mainp->rowgroups_avail)
435       return;			/* Need to suspend */
436     /* After the first iMCU, change wraparound pointers to normal state */
437     if (mainp->iMCU_row_ctr == 1)
438       set_wraparound_pointers(cinfo);
439     /* Prepare to load new iMCU row using other xbuffer list */
440     mainp->whichptr ^= 1;	/* 0=>1 or 1=>0 */
441     mainp->buffer_full = FALSE;
442     /* Still need to process last row group of this iMCU row, */
443     /* which is saved at index M+1 of the other xbuffer */
444     mainp->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
445     mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
446     mainp->context_state = CTX_POSTPONED_ROW;
447   }
448 }
449 
450 
451 /*
452  * Process some data.
453  * Final pass of two-pass quantization: just call the postprocessor.
454  * Source data will be the postprocessor controller's internal buffer.
455  */
456 
457 #ifdef QUANT_2PASS_SUPPORTED
458 
459 METHODDEF(void)
process_data_crank_post(j_decompress_ptr cinfo,JSAMPARRAY output_buf,JDIMENSION * out_row_ctr,JDIMENSION out_rows_avail)460 process_data_crank_post (j_decompress_ptr cinfo,
461                          JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
462                          JDIMENSION out_rows_avail)
463 {
464   (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
465                                      (JDIMENSION *) NULL, (JDIMENSION) 0,
466                                      output_buf, out_row_ctr, out_rows_avail);
467 }
468 
469 #endif /* QUANT_2PASS_SUPPORTED */
470 
471 
472 /*
473  * Initialize main buffer controller.
474  */
475 
476 GLOBAL(void)
jinit_d_main_controller(j_decompress_ptr cinfo,boolean need_full_buffer)477 jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
478 {
479   my_main_ptr mainp;
480   int ci, rgroup, ngroups;
481   jpeg_component_info *compptr;
482 
483   mainp = (my_main_ptr)
484     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
485                                 SIZEOF(my_main_controller));
486   cinfo->main = &mainp->pub;
487   mainp->pub.start_pass = start_pass_main;
488 
489   if (need_full_buffer)		/* shouldn't happen */
490     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
491 
492   /* Allocate the workspace.
493    * ngroups is the number of row groups we need.
494    */
495   if (cinfo->upsample->need_context_rows) {
496     if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */
497       ERREXIT(cinfo, JERR_NOTIMPL);
498     alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
499     ngroups = cinfo->min_DCT_v_scaled_size + 2;
500   } else {
501     ngroups = cinfo->min_DCT_v_scaled_size;
502   }
503 
504   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
505        ci++, compptr++) {
506     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
507       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
508     mainp->buffer[ci] = (*cinfo->mem->alloc_sarray)
509       ((j_common_ptr) cinfo, JPOOL_IMAGE,
510        compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size),
511        (JDIMENSION) (rgroup * ngroups));
512   }
513 }
514