1 /*
2  * jquant1.c
3  *
4  * Copyright (C) 1991-1996, Thomas G. Lane.
5  * Modified 2011 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains 1-pass color quantization (color mapping) routines.
10  * These routines provide mapping to a fixed color map using equally spaced
11  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
12  */
13 
14 #define JPEG_INTERNALS
15 #include "jinclude.h"
16 #include "jpeglib.h"
17 
18 #ifdef QUANT_1PASS_SUPPORTED
19 
20 
21 /*
22  * The main purpose of 1-pass quantization is to provide a fast, if not very
23  * high quality, colormapped output capability.  A 2-pass quantizer usually
24  * gives better visual quality; however, for quantized grayscale output this
25  * quantizer is perfectly adequate.  Dithering is highly recommended with this
26  * quantizer, though you can turn it off if you really want to.
27  *
28  * In 1-pass quantization the colormap must be chosen in advance of seeing the
29  * image.  We use a map consisting of all combinations of Ncolors[i] color
30  * values for the i'th component.  The Ncolors[] values are chosen so that
31  * their product, the total number of colors, is no more than that requested.
32  * (In most cases, the product will be somewhat less.)
33  *
34  * Since the colormap is orthogonal, the representative value for each color
35  * component can be determined without considering the other components;
36  * then these indexes can be combined into a colormap index by a standard
37  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
38  * can be precalculated and stored in the lookup table colorindex[].
39  * colorindex[i][j] maps pixel value j in component i to the nearest
40  * representative value (grid plane) for that component; this index is
41  * multiplied by the array stride for component i, so that the
42  * index of the colormap entry closest to a given pixel value is just
43  *    sum( colorindex[component-number][pixel-component-value] )
44  * Aside from being fast, this scheme allows for variable spacing between
45  * representative values with no additional lookup cost.
46  *
47  * If gamma correction has been applied in color conversion, it might be wise
48  * to adjust the color grid spacing so that the representative colors are
49  * equidistant in linear space.  At this writing, gamma correction is not
50  * implemented by jdcolor, so nothing is done here.
51  */
52 
53 
54 /* Declarations for ordered dithering.
55  *
56  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
57  * dithering is described in many references, for instance Dale Schumacher's
58  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
59  * In place of Schumacher's comparisons against a "threshold" value, we add a
60  * "dither" value to the input pixel and then round the result to the nearest
61  * output value.  The dither value is equivalent to (0.5 - threshold) times
62  * the distance between output values.  For ordered dithering, we assume that
63  * the output colors are equally spaced; if not, results will probably be
64  * worse, since the dither may be too much or too little at a given point.
65  *
66  * The normal calculation would be to form pixel value + dither, range-limit
67  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
68  * We can skip the separate range-limiting step by extending the colorindex
69  * table in both directions.
70  */
71 
72 #define ODITHER_SIZE  16	/* dimension of dither matrix */
73 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
74 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */
75 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
76 
77 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
78 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
79 
80 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
81   /* Bayer's order-4 dither array.  Generated by the code given in
82    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
83    * The values in this array must range from 0 to ODITHER_CELLS-1.
84    */
85   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
86   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
87   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
88   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
89   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
90   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
91   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
92   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
93   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
94   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
95   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
96   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
97   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
98   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
99   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
100   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
101 };
102 
103 
104 /* Declarations for Floyd-Steinberg dithering.
105  *
106  * Errors are accumulated into the array fserrors[], at a resolution of
107  * 1/16th of a pixel count.  The error at a given pixel is propagated
108  * to its not-yet-processed neighbors using the standard F-S fractions,
109  *		...	(here)	7/16
110  *		3/16	5/16	1/16
111  * We work left-to-right on even rows, right-to-left on odd rows.
112  *
113  * We can get away with a single array (holding one row's worth of errors)
114  * by using it to store the current row's errors at pixel columns not yet
115  * processed, but the next row's errors at columns already processed.  We
116  * need only a few extra variables to hold the errors immediately around the
117  * current column.  (If we are lucky, those variables are in registers, but
118  * even if not, they're probably cheaper to access than array elements are.)
119  *
120  * The fserrors[] array is indexed [component#][position].
121  * We provide (#columns + 2) entries per component; the extra entry at each
122  * end saves us from special-casing the first and last pixels.
123  *
124  * Note: on a wide image, we might not have enough room in a PC's near data
125  * segment to hold the error array; so it is allocated with alloc_large.
126  */
127 
128 #if BITS_IN_JSAMPLE == 8
129 typedef INT16 FSERROR;		/* 16 bits should be enough */
130 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
131 #else
132 typedef INT32 FSERROR;		/* may need more than 16 bits */
133 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
134 #endif
135 
136 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
137 
138 
139 /* Private subobject */
140 
141 #define MAX_Q_COMPS 4		/* max components I can handle */
142 
143 typedef struct {
144   struct jpeg_color_quantizer pub; /* public fields */
145 
146   /* Initially allocated colormap is saved here */
147   JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */
148   int sv_actual;		/* number of entries in use */
149 
150   JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
151   /* colorindex[i][j] = index of color closest to pixel value j in component i,
152    * premultiplied as described above.  Since colormap indexes must fit into
153    * JSAMPLEs, the entries of this array will too.
154    */
155   boolean is_padded;		/* is the colorindex padded for odither? */
156 
157   int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
158 
159   /* Variables for ordered dithering */
160   int row_index;		/* cur row's vertical index in dither matrix */
161   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
162 
163   /* Variables for Floyd-Steinberg dithering */
164   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
165   boolean on_odd_row;		/* flag to remember which row we are on */
166 } my_cquantizer;
167 
168 typedef my_cquantizer * my_cquantize_ptr;
169 
170 
171 /*
172  * Policy-making subroutines for create_colormap and create_colorindex.
173  * These routines determine the colormap to be used.  The rest of the module
174  * only assumes that the colormap is orthogonal.
175  *
176  *  * select_ncolors decides how to divvy up the available colors
177  *    among the components.
178  *  * output_value defines the set of representative values for a component.
179  *  * largest_input_value defines the mapping from input values to
180  *    representative values for a component.
181  * Note that the latter two routines may impose different policies for
182  * different components, though this is not currently done.
183  */
184 
185 
186 LOCAL(int)
select_ncolors(j_decompress_ptr cinfo,int Ncolors[])187 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
188 /* Determine allocation of desired colors to components, */
189 /* and fill in Ncolors[] array to indicate choice. */
190 /* Return value is total number of colors (product of Ncolors[] values). */
191 {
192   int nc = cinfo->out_color_components; /* number of color components */
193   int max_colors = cinfo->desired_number_of_colors;
194   int total_colors, iroot, i, j;
195   boolean changed;
196   long temp;
197   static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
198 
199   /* We can allocate at least the nc'th root of max_colors per component. */
200   /* Compute floor(nc'th root of max_colors). */
201   iroot = 1;
202   do {
203     iroot++;
204     temp = iroot;		/* set temp = iroot ** nc */
205     for (i = 1; i < nc; i++)
206       temp *= iroot;
207   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
208   iroot--;			/* now iroot = floor(root) */
209 
210   /* Must have at least 2 color values per component */
211   if (iroot < 2)
212     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
213 
214   /* Initialize to iroot color values for each component */
215   total_colors = 1;
216   for (i = 0; i < nc; i++) {
217     Ncolors[i] = iroot;
218     total_colors *= iroot;
219   }
220   /* We may be able to increment the count for one or more components without
221    * exceeding max_colors, though we know not all can be incremented.
222    * Sometimes, the first component can be incremented more than once!
223    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
224    * In RGB colorspace, try to increment G first, then R, then B.
225    */
226   do {
227     changed = FALSE;
228     for (i = 0; i < nc; i++) {
229       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
230       /* calculate new total_colors if Ncolors[j] is incremented */
231       temp = total_colors / Ncolors[j];
232       temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
233       if (temp > (long) max_colors)
234         break;			/* won't fit, done with this pass */
235       Ncolors[j]++;		/* OK, apply the increment */
236       total_colors = (int) temp;
237       changed = TRUE;
238     }
239   } while (changed);
240 
241   return total_colors;
242 }
243 
244 
245 LOCAL(int)
output_value(j_decompress_ptr cinfo,int ci,int j,int maxj)246 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
247 /* Return j'th output value, where j will range from 0 to maxj */
248 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
249 {
250   /* We always provide values 0 and MAXJSAMPLE for each component;
251    * any additional values are equally spaced between these limits.
252    * (Forcing the upper and lower values to the limits ensures that
253    * dithering can't produce a color outside the selected gamut.)
254    */
255   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
256 }
257 
258 
259 LOCAL(int)
largest_input_value(j_decompress_ptr cinfo,int ci,int j,int maxj)260 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
261 /* Return largest input value that should map to j'th output value */
262 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
263 {
264   /* Breakpoints are halfway between values returned by output_value */
265   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
266 }
267 
268 
269 /*
270  * Create the colormap.
271  */
272 
273 LOCAL(void)
create_colormap(j_decompress_ptr cinfo)274 create_colormap (j_decompress_ptr cinfo)
275 {
276   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
277   JSAMPARRAY colormap;		/* Created colormap */
278   int total_colors;		/* Number of distinct output colors */
279   int i,j,k, nci, blksize, blkdist, ptr, val;
280 
281   /* Select number of colors for each component */
282   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
283 
284   /* Report selected color counts */
285   if (cinfo->out_color_components == 3)
286     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
287              total_colors, cquantize->Ncolors[0],
288              cquantize->Ncolors[1], cquantize->Ncolors[2]);
289   else
290     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
291 
292   /* Allocate and fill in the colormap. */
293   /* The colors are ordered in the map in standard row-major order, */
294   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
295 
296   colormap = (*cinfo->mem->alloc_sarray)
297     ((j_common_ptr) cinfo, JPOOL_IMAGE,
298      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
299 
300   /* blksize is number of adjacent repeated entries for a component */
301   /* blkdist is distance between groups of identical entries for a component */
302   blkdist = total_colors;
303 
304   for (i = 0; i < cinfo->out_color_components; i++) {
305     /* fill in colormap entries for i'th color component */
306     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
307     blksize = blkdist / nci;
308     for (j = 0; j < nci; j++) {
309       /* Compute j'th output value (out of nci) for component */
310       val = output_value(cinfo, i, j, nci-1);
311       /* Fill in all colormap entries that have this value of this component */
312       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
313         /* fill in blksize entries beginning at ptr */
314         for (k = 0; k < blksize; k++)
315           colormap[i][ptr+k] = (JSAMPLE) val;
316       }
317     }
318     blkdist = blksize;		/* blksize of this color is blkdist of next */
319   }
320 
321   /* Save the colormap in private storage,
322    * where it will survive color quantization mode changes.
323    */
324   cquantize->sv_colormap = colormap;
325   cquantize->sv_actual = total_colors;
326 }
327 
328 
329 /*
330  * Create the color index table.
331  */
332 
333 LOCAL(void)
create_colorindex(j_decompress_ptr cinfo)334 create_colorindex (j_decompress_ptr cinfo)
335 {
336   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
337   JSAMPROW indexptr;
338   int i,j,k, nci, blksize, val, pad;
339 
340   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
341    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
342    * This is not necessary in the other dithering modes.  However, we
343    * flag whether it was done in case user changes dithering mode.
344    */
345   if (cinfo->dither_mode == JDITHER_ORDERED) {
346     pad = MAXJSAMPLE*2;
347     cquantize->is_padded = TRUE;
348   } else {
349     pad = 0;
350     cquantize->is_padded = FALSE;
351   }
352 
353   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
354     ((j_common_ptr) cinfo, JPOOL_IMAGE,
355      (JDIMENSION) (MAXJSAMPLE+1 + pad),
356      (JDIMENSION) cinfo->out_color_components);
357 
358   /* blksize is number of adjacent repeated entries for a component */
359   blksize = cquantize->sv_actual;
360 
361   for (i = 0; i < cinfo->out_color_components; i++) {
362     /* fill in colorindex entries for i'th color component */
363     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
364     blksize = blksize / nci;
365 
366     /* adjust colorindex pointers to provide padding at negative indexes. */
367     if (pad)
368       cquantize->colorindex[i] += MAXJSAMPLE;
369 
370     /* in loop, val = index of current output value, */
371     /* and k = largest j that maps to current val */
372     indexptr = cquantize->colorindex[i];
373     val = 0;
374     k = largest_input_value(cinfo, i, 0, nci-1);
375     for (j = 0; j <= MAXJSAMPLE; j++) {
376       while (j > k)		/* advance val if past boundary */
377         k = largest_input_value(cinfo, i, ++val, nci-1);
378       /* premultiply so that no multiplication needed in main processing */
379       indexptr[j] = (JSAMPLE) (val * blksize);
380     }
381     /* Pad at both ends if necessary */
382     if (pad)
383       for (j = 1; j <= MAXJSAMPLE; j++) {
384         indexptr[-j] = indexptr[0];
385         indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
386       }
387   }
388 }
389 
390 
391 /*
392  * Create an ordered-dither array for a component having ncolors
393  * distinct output values.
394  */
395 
396 LOCAL(ODITHER_MATRIX_PTR)
make_odither_array(j_decompress_ptr cinfo,int ncolors)397 make_odither_array (j_decompress_ptr cinfo, int ncolors)
398 {
399   ODITHER_MATRIX_PTR odither;
400   int j,k;
401   INT32 num,den;
402 
403   odither = (ODITHER_MATRIX_PTR)
404     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
405                                 SIZEOF(ODITHER_MATRIX));
406   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
407    * Hence the dither value for the matrix cell with fill order f
408    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
409    * On 16-bit-int machine, be careful to avoid overflow.
410    */
411   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
412   for (j = 0; j < ODITHER_SIZE; j++) {
413     for (k = 0; k < ODITHER_SIZE; k++) {
414       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
415             * MAXJSAMPLE;
416       /* Ensure round towards zero despite C's lack of consistency
417        * about rounding negative values in integer division...
418        */
419       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
420     }
421   }
422   return odither;
423 }
424 
425 
426 /*
427  * Create the ordered-dither tables.
428  * Components having the same number of representative colors may
429  * share a dither table.
430  */
431 
432 LOCAL(void)
create_odither_tables(j_decompress_ptr cinfo)433 create_odither_tables (j_decompress_ptr cinfo)
434 {
435   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
436   ODITHER_MATRIX_PTR odither;
437   int i, j, nci;
438 
439   for (i = 0; i < cinfo->out_color_components; i++) {
440     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
441     odither = NULL;		/* search for matching prior component */
442     for (j = 0; j < i; j++) {
443       if (nci == cquantize->Ncolors[j]) {
444         odither = cquantize->odither[j];
445         break;
446       }
447     }
448     if (odither == NULL)	/* need a new table? */
449       odither = make_odither_array(cinfo, nci);
450     cquantize->odither[i] = odither;
451   }
452 }
453 
454 
455 /*
456  * Map some rows of pixels to the output colormapped representation.
457  */
458 
459 METHODDEF(void)
color_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)460 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
461                 JSAMPARRAY output_buf, int num_rows)
462 /* General case, no dithering */
463 {
464   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
465   JSAMPARRAY colorindex = cquantize->colorindex;
466   register int pixcode, ci;
467   register JSAMPROW ptrin, ptrout;
468   int row;
469   JDIMENSION col;
470   JDIMENSION width = cinfo->output_width;
471   register int nc = cinfo->out_color_components;
472 
473   for (row = 0; row < num_rows; row++) {
474     ptrin = input_buf[row];
475     ptrout = output_buf[row];
476     for (col = width; col > 0; col--) {
477       pixcode = 0;
478       for (ci = 0; ci < nc; ci++) {
479         pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
480       }
481       *ptrout++ = (JSAMPLE) pixcode;
482     }
483   }
484 }
485 
486 
487 METHODDEF(void)
color_quantize3(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)488 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
489                  JSAMPARRAY output_buf, int num_rows)
490 /* Fast path for out_color_components==3, no dithering */
491 {
492   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
493   register int pixcode;
494   register JSAMPROW ptrin, ptrout;
495   JSAMPROW colorindex0 = cquantize->colorindex[0];
496   JSAMPROW colorindex1 = cquantize->colorindex[1];
497   JSAMPROW colorindex2 = cquantize->colorindex[2];
498   int row;
499   JDIMENSION col;
500   JDIMENSION width = cinfo->output_width;
501 
502   for (row = 0; row < num_rows; row++) {
503     ptrin = input_buf[row];
504     ptrout = output_buf[row];
505     for (col = width; col > 0; col--) {
506       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
507       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
508       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
509       *ptrout++ = (JSAMPLE) pixcode;
510     }
511   }
512 }
513 
514 
515 METHODDEF(void)
quantize_ord_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)516 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
517                      JSAMPARRAY output_buf, int num_rows)
518 /* General case, with ordered dithering */
519 {
520   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
521   register JSAMPROW input_ptr;
522   register JSAMPROW output_ptr;
523   JSAMPROW colorindex_ci;
524   int * dither;			/* points to active row of dither matrix */
525   int row_index, col_index;	/* current indexes into dither matrix */
526   int nc = cinfo->out_color_components;
527   int ci;
528   int row;
529   JDIMENSION col;
530   JDIMENSION width = cinfo->output_width;
531 
532   for (row = 0; row < num_rows; row++) {
533     /* Initialize output values to 0 so can process components separately */
534     FMEMZERO((void FAR *) output_buf[row],
535              (size_t) (width * SIZEOF(JSAMPLE)));
536     row_index = cquantize->row_index;
537     for (ci = 0; ci < nc; ci++) {
538       input_ptr = input_buf[row] + ci;
539       output_ptr = output_buf[row];
540       colorindex_ci = cquantize->colorindex[ci];
541       dither = cquantize->odither[ci][row_index];
542       col_index = 0;
543 
544       for (col = width; col > 0; col--) {
545         /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
546          * select output value, accumulate into output code for this pixel.
547          * Range-limiting need not be done explicitly, as we have extended
548          * the colorindex table to produce the right answers for out-of-range
549          * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
550          * required amount of padding.
551          */
552         *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
553         input_ptr += nc;
554         output_ptr++;
555         col_index = (col_index + 1) & ODITHER_MASK;
556       }
557     }
558     /* Advance row index for next row */
559     row_index = (row_index + 1) & ODITHER_MASK;
560     cquantize->row_index = row_index;
561   }
562 }
563 
564 
565 METHODDEF(void)
quantize3_ord_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)566 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
567                       JSAMPARRAY output_buf, int num_rows)
568 /* Fast path for out_color_components==3, with ordered dithering */
569 {
570   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
571   register int pixcode;
572   register JSAMPROW input_ptr;
573   register JSAMPROW output_ptr;
574   JSAMPROW colorindex0 = cquantize->colorindex[0];
575   JSAMPROW colorindex1 = cquantize->colorindex[1];
576   JSAMPROW colorindex2 = cquantize->colorindex[2];
577   int * dither0;		/* points to active row of dither matrix */
578   int * dither1;
579   int * dither2;
580   int row_index, col_index;	/* current indexes into dither matrix */
581   int row;
582   JDIMENSION col;
583   JDIMENSION width = cinfo->output_width;
584 
585   for (row = 0; row < num_rows; row++) {
586     row_index = cquantize->row_index;
587     input_ptr = input_buf[row];
588     output_ptr = output_buf[row];
589     dither0 = cquantize->odither[0][row_index];
590     dither1 = cquantize->odither[1][row_index];
591     dither2 = cquantize->odither[2][row_index];
592     col_index = 0;
593 
594     for (col = width; col > 0; col--) {
595       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
596                                         dither0[col_index]]);
597       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
598                                         dither1[col_index]]);
599       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
600                                         dither2[col_index]]);
601       *output_ptr++ = (JSAMPLE) pixcode;
602       col_index = (col_index + 1) & ODITHER_MASK;
603     }
604     row_index = (row_index + 1) & ODITHER_MASK;
605     cquantize->row_index = row_index;
606   }
607 }
608 
609 
610 METHODDEF(void)
quantize_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)611 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
612                     JSAMPARRAY output_buf, int num_rows)
613 /* General case, with Floyd-Steinberg dithering */
614 {
615   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
616   register LOCFSERROR cur;	/* current error or pixel value */
617   LOCFSERROR belowerr;		/* error for pixel below cur */
618   LOCFSERROR bpreverr;		/* error for below/prev col */
619   LOCFSERROR bnexterr;		/* error for below/next col */
620   LOCFSERROR delta;
621   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
622   register JSAMPROW input_ptr;
623   register JSAMPROW output_ptr;
624   JSAMPROW colorindex_ci;
625   JSAMPROW colormap_ci;
626   int pixcode;
627   int nc = cinfo->out_color_components;
628   int dir;			/* 1 for left-to-right, -1 for right-to-left */
629   int dirnc;			/* dir * nc */
630   int ci;
631   int row;
632   JDIMENSION col;
633   JDIMENSION width = cinfo->output_width;
634   JSAMPLE *range_limit = cinfo->sample_range_limit;
635   SHIFT_TEMPS
636 
637   for (row = 0; row < num_rows; row++) {
638     /* Initialize output values to 0 so can process components separately */
639     FMEMZERO((void FAR *) output_buf[row],
640              (size_t) (width * SIZEOF(JSAMPLE)));
641     for (ci = 0; ci < nc; ci++) {
642       input_ptr = input_buf[row] + ci;
643       output_ptr = output_buf[row];
644       if (cquantize->on_odd_row) {
645         /* work right to left in this row */
646         input_ptr += (width-1) * nc; /* so point to rightmost pixel */
647         output_ptr += width-1;
648         dir = -1;
649         dirnc = -nc;
650         errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
651       } else {
652         /* work left to right in this row */
653         dir = 1;
654         dirnc = nc;
655         errorptr = cquantize->fserrors[ci]; /* => entry before first column */
656       }
657       colorindex_ci = cquantize->colorindex[ci];
658       colormap_ci = cquantize->sv_colormap[ci];
659       /* Preset error values: no error propagated to first pixel from left */
660       cur = 0;
661       /* and no error propagated to row below yet */
662       belowerr = bpreverr = 0;
663 
664       for (col = width; col > 0; col--) {
665         /* cur holds the error propagated from the previous pixel on the
666          * current line.  Add the error propagated from the previous line
667          * to form the complete error correction term for this pixel, and
668          * round the error term (which is expressed * 16) to an integer.
669          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
670          * for either sign of the error value.
671          * Note: errorptr points to *previous* column's array entry.
672          */
673         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
674         /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
675          * The maximum error is +- MAXJSAMPLE; this sets the required size
676          * of the range_limit array.
677          */
678         cur += GETJSAMPLE(*input_ptr);
679         cur = GETJSAMPLE(range_limit[cur]);
680         /* Select output value, accumulate into output code for this pixel */
681         pixcode = GETJSAMPLE(colorindex_ci[cur]);
682         *output_ptr += (JSAMPLE) pixcode;
683         /* Compute actual representation error at this pixel */
684         /* Note: we can do this even though we don't have the final */
685         /* pixel code, because the colormap is orthogonal. */
686         cur -= GETJSAMPLE(colormap_ci[pixcode]);
687         /* Compute error fractions to be propagated to adjacent pixels.
688          * Add these into the running sums, and simultaneously shift the
689          * next-line error sums left by 1 column.
690          */
691         bnexterr = cur;
692         delta = cur * 2;
693         cur += delta;		/* form error * 3 */
694         errorptr[0] = (FSERROR) (bpreverr + cur);
695         cur += delta;		/* form error * 5 */
696         bpreverr = belowerr + cur;
697         belowerr = bnexterr;
698         cur += delta;		/* form error * 7 */
699         /* At this point cur contains the 7/16 error value to be propagated
700          * to the next pixel on the current line, and all the errors for the
701          * next line have been shifted over. We are therefore ready to move on.
702          */
703         input_ptr += dirnc;	/* advance input ptr to next column */
704         output_ptr += dir;	/* advance output ptr to next column */
705         errorptr += dir;	/* advance errorptr to current column */
706       }
707       /* Post-loop cleanup: we must unload the final error value into the
708        * final fserrors[] entry.  Note we need not unload belowerr because
709        * it is for the dummy column before or after the actual array.
710        */
711       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
712     }
713     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
714   }
715 }
716 
717 
718 /*
719  * Allocate workspace for Floyd-Steinberg errors.
720  */
721 
722 LOCAL(void)
alloc_fs_workspace(j_decompress_ptr cinfo)723 alloc_fs_workspace (j_decompress_ptr cinfo)
724 {
725   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
726   size_t arraysize;
727   int i;
728 
729   arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
730   for (i = 0; i < cinfo->out_color_components; i++) {
731     cquantize->fserrors[i] = (FSERRPTR)
732       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
733   }
734 }
735 
736 
737 /*
738  * Initialize for one-pass color quantization.
739  */
740 
741 METHODDEF(void)
start_pass_1_quant(j_decompress_ptr cinfo,boolean is_pre_scan)742 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
743 {
744   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
745   size_t arraysize;
746   int i;
747 
748   /* Install my colormap. */
749   cinfo->colormap = cquantize->sv_colormap;
750   cinfo->actual_number_of_colors = cquantize->sv_actual;
751 
752   /* Initialize for desired dithering mode. */
753   switch (cinfo->dither_mode) {
754   case JDITHER_NONE:
755     if (cinfo->out_color_components == 3)
756       cquantize->pub.color_quantize = color_quantize3;
757     else
758       cquantize->pub.color_quantize = color_quantize;
759     break;
760   case JDITHER_ORDERED:
761     if (cinfo->out_color_components == 3)
762       cquantize->pub.color_quantize = quantize3_ord_dither;
763     else
764       cquantize->pub.color_quantize = quantize_ord_dither;
765     cquantize->row_index = 0;	/* initialize state for ordered dither */
766     /* If user changed to ordered dither from another mode,
767      * we must recreate the color index table with padding.
768      * This will cost extra space, but probably isn't very likely.
769      */
770     if (! cquantize->is_padded)
771       create_colorindex(cinfo);
772     /* Create ordered-dither tables if we didn't already. */
773     if (cquantize->odither[0] == NULL)
774       create_odither_tables(cinfo);
775     break;
776   case JDITHER_FS:
777     cquantize->pub.color_quantize = quantize_fs_dither;
778     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
779     /* Allocate Floyd-Steinberg workspace if didn't already. */
780     if (cquantize->fserrors[0] == NULL)
781       alloc_fs_workspace(cinfo);
782     /* Initialize the propagated errors to zero. */
783     arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
784     for (i = 0; i < cinfo->out_color_components; i++)
785       FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize);
786     break;
787   default:
788     ERREXIT(cinfo, JERR_NOT_COMPILED);
789     break;
790   }
791 }
792 
793 
794 /*
795  * Finish up at the end of the pass.
796  */
797 
798 METHODDEF(void)
finish_pass_1_quant(j_decompress_ptr cinfo)799 finish_pass_1_quant (j_decompress_ptr cinfo)
800 {
801   /* no work in 1-pass case */
802 }
803 
804 
805 /*
806  * Switch to a new external colormap between output passes.
807  * Shouldn't get to this module!
808  */
809 
810 METHODDEF(void)
new_color_map_1_quant(j_decompress_ptr cinfo)811 new_color_map_1_quant (j_decompress_ptr cinfo)
812 {
813   ERREXIT(cinfo, JERR_MODE_CHANGE);
814 }
815 
816 
817 /*
818  * Module initialization routine for 1-pass color quantization.
819  */
820 
821 GLOBAL(void)
jinit_1pass_quantizer(j_decompress_ptr cinfo)822 jinit_1pass_quantizer (j_decompress_ptr cinfo)
823 {
824   my_cquantize_ptr cquantize;
825 
826   cquantize = (my_cquantize_ptr)
827     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
828                                 SIZEOF(my_cquantizer));
829   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
830   cquantize->pub.start_pass = start_pass_1_quant;
831   cquantize->pub.finish_pass = finish_pass_1_quant;
832   cquantize->pub.new_color_map = new_color_map_1_quant;
833   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
834   cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */
835 
836   /* Make sure my internal arrays won't overflow */
837   if (cinfo->out_color_components > MAX_Q_COMPS)
838     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
839   /* Make sure colormap indexes can be represented by JSAMPLEs */
840   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
841     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
842 
843   /* Create the colormap and color index table. */
844   create_colormap(cinfo);
845   create_colorindex(cinfo);
846 
847   /* Allocate Floyd-Steinberg workspace now if requested.
848    * We do this now since it is FAR storage and may affect the memory
849    * manager's space calculations.  If the user changes to FS dither
850    * mode in a later pass, we will allocate the space then, and will
851    * possibly overrun the max_memory_to_use setting.
852    */
853   if (cinfo->dither_mode == JDITHER_FS)
854     alloc_fs_workspace(cinfo);
855 }
856 
857 #endif /* QUANT_1PASS_SUPPORTED */
858