1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the decoder
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 // Jyrki Alakuijala (jyrki@google.com)
14
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include "./vp8li.h"
18 #include "../dsp/lossless.h"
19 #include "../dsp/yuv.h"
20 #include "../utils/huffman.h"
21 #include "../utils/utils.h"
22
23 #if defined(__cplusplus) || defined(c_plusplus)
24 extern "C" {
25 #endif
26
27 #define NUM_ARGB_CACHE_ROWS 16
28
29 static const int kCodeLengthLiterals = 16;
30 static const int kCodeLengthRepeatCode = 16;
31 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
32 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
33
34 // -----------------------------------------------------------------------------
35 // Five Huffman codes are used at each meta code:
36 // 1. green + length prefix codes + color cache codes,
37 // 2. alpha,
38 // 3. red,
39 // 4. blue, and,
40 // 5. distance prefix codes.
41 typedef enum {
42 GREEN = 0,
43 RED = 1,
44 BLUE = 2,
45 ALPHA = 3,
46 DIST = 4
47 } HuffIndex;
48
49 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
50 NUM_LITERAL_CODES + NUM_LENGTH_CODES,
51 NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
52 NUM_DISTANCE_CODES
53 };
54
55
56 #define NUM_CODE_LENGTH_CODES 19
57 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
58 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
59 };
60
61 #define CODE_TO_PLANE_CODES 120
62 static const uint8_t code_to_plane_lut[CODE_TO_PLANE_CODES] = {
63 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
64 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
65 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
66 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
67 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
68 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
69 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
70 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
71 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
72 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
73 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
74 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
75 };
76
77 static int DecodeImageStream(int xsize, int ysize,
78 int is_level0,
79 VP8LDecoder* const dec,
80 uint32_t** const decoded_data);
81
82 //------------------------------------------------------------------------------
83
VP8LCheckSignature(const uint8_t * const data,size_t size)84 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
85 return (size >= 1) && (data[0] == VP8L_MAGIC_BYTE);
86 }
87
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)88 static int ReadImageInfo(VP8LBitReader* const br,
89 int* const width, int* const height,
90 int* const has_alpha) {
91 const uint8_t signature = VP8LReadBits(br, 8);
92 if (!VP8LCheckSignature(&signature, 1)) {
93 return 0;
94 }
95 *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
96 *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
97 *has_alpha = VP8LReadBits(br, 1);
98 VP8LReadBits(br, VP8L_VERSION_BITS); // Read/ignore the version number.
99 return 1;
100 }
101
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)102 int VP8LGetInfo(const uint8_t* data, size_t data_size,
103 int* const width, int* const height, int* const has_alpha) {
104 if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
105 return 0; // not enough data
106 } else {
107 int w, h, a;
108 VP8LBitReader br;
109 VP8LInitBitReader(&br, data, data_size);
110 if (!ReadImageInfo(&br, &w, &h, &a)) {
111 return 0;
112 }
113 if (width != NULL) *width = w;
114 if (height != NULL) *height = h;
115 if (has_alpha != NULL) *has_alpha = a;
116 return 1;
117 }
118 }
119
120 //------------------------------------------------------------------------------
121
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)122 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
123 VP8LBitReader* const br) {
124 int extra_bits, offset;
125 if (distance_symbol < 4) {
126 return distance_symbol + 1;
127 }
128 extra_bits = (distance_symbol - 2) >> 1;
129 offset = (2 + (distance_symbol & 1)) << extra_bits;
130 return offset + VP8LReadBits(br, extra_bits) + 1;
131 }
132
GetCopyLength(int length_symbol,VP8LBitReader * const br)133 static WEBP_INLINE int GetCopyLength(int length_symbol,
134 VP8LBitReader* const br) {
135 // Length and distance prefixes are encoded the same way.
136 return GetCopyDistance(length_symbol, br);
137 }
138
PlaneCodeToDistance(int xsize,int plane_code)139 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
140 if (plane_code > CODE_TO_PLANE_CODES) {
141 return plane_code - CODE_TO_PLANE_CODES;
142 } else {
143 const int dist_code = code_to_plane_lut[plane_code - 1];
144 const int yoffset = dist_code >> 4;
145 const int xoffset = 8 - (dist_code & 0xf);
146 const int dist = yoffset * xsize + xoffset;
147 return (dist >= 1) ? dist : 1;
148 }
149 }
150
151 //------------------------------------------------------------------------------
152 // Decodes the next Huffman code from bit-stream.
153 // FillBitWindow(br) needs to be called at minimum every second call
154 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanTree * tree,VP8LBitReader * const br)155 static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
156 VP8LBitReader* const br) {
157 const HuffmanTreeNode* node = tree->root_;
158 int num_bits = 0;
159 uint32_t bits = VP8LPrefetchBits(br);
160 assert(node != NULL);
161 while (!HuffmanTreeNodeIsLeaf(node)) {
162 node = HuffmanTreeNextNode(node, bits & 1);
163 bits >>= 1;
164 ++num_bits;
165 }
166 VP8LDiscardBits(br, num_bits);
167 return node->symbol_;
168 }
169
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)170 static int ReadHuffmanCodeLengths(
171 VP8LDecoder* const dec, const int* const code_length_code_lengths,
172 int num_symbols, int* const code_lengths) {
173 int ok = 0;
174 VP8LBitReader* const br = &dec->br_;
175 int symbol;
176 int max_symbol;
177 int prev_code_len = DEFAULT_CODE_LENGTH;
178 HuffmanTree tree;
179
180 if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
181 NUM_CODE_LENGTH_CODES)) {
182 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
183 return 0;
184 }
185
186 if (VP8LReadBits(br, 1)) { // use length
187 const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
188 max_symbol = 2 + VP8LReadBits(br, length_nbits);
189 if (max_symbol > num_symbols) {
190 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
191 goto End;
192 }
193 } else {
194 max_symbol = num_symbols;
195 }
196
197 symbol = 0;
198 while (symbol < num_symbols) {
199 int code_len;
200 if (max_symbol-- == 0) break;
201 VP8LFillBitWindow(br);
202 code_len = ReadSymbol(&tree, br);
203 if (code_len < kCodeLengthLiterals) {
204 code_lengths[symbol++] = code_len;
205 if (code_len != 0) prev_code_len = code_len;
206 } else {
207 const int use_prev = (code_len == kCodeLengthRepeatCode);
208 const int slot = code_len - kCodeLengthLiterals;
209 const int extra_bits = kCodeLengthExtraBits[slot];
210 const int repeat_offset = kCodeLengthRepeatOffsets[slot];
211 int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
212 if (symbol + repeat > num_symbols) {
213 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
214 goto End;
215 } else {
216 const int length = use_prev ? prev_code_len : 0;
217 while (repeat-- > 0) code_lengths[symbol++] = length;
218 }
219 }
220 }
221 ok = 1;
222
223 End:
224 HuffmanTreeRelease(&tree);
225 return ok;
226 }
227
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,HuffmanTree * const tree)228 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
229 HuffmanTree* const tree) {
230 int ok = 0;
231 VP8LBitReader* const br = &dec->br_;
232 const int simple_code = VP8LReadBits(br, 1);
233
234 if (simple_code) { // Read symbols, codes & code lengths directly.
235 int symbols[2];
236 int codes[2];
237 int code_lengths[2];
238 const int num_symbols = VP8LReadBits(br, 1) + 1;
239 const int first_symbol_len_code = VP8LReadBits(br, 1);
240 // The first code is either 1 bit or 8 bit code.
241 symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
242 codes[0] = 0;
243 code_lengths[0] = num_symbols - 1;
244 // The second code (if present), is always 8 bit long.
245 if (num_symbols == 2) {
246 symbols[1] = VP8LReadBits(br, 8);
247 codes[1] = 1;
248 code_lengths[1] = num_symbols - 1;
249 }
250 ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
251 alphabet_size, num_symbols);
252 } else { // Decode Huffman-coded code lengths.
253 int* code_lengths = NULL;
254 int i;
255 int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
256 const int num_codes = VP8LReadBits(br, 4) + 4;
257 if (num_codes > NUM_CODE_LENGTH_CODES) {
258 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
259 return 0;
260 }
261
262 code_lengths =
263 (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths));
264 if (code_lengths == NULL) {
265 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
266 return 0;
267 }
268
269 for (i = 0; i < num_codes; ++i) {
270 code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
271 }
272 ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
273 code_lengths);
274 if (ok) {
275 ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
276 }
277 free(code_lengths);
278 }
279 ok = ok && !br->error_;
280 if (!ok) {
281 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
282 return 0;
283 }
284 return 1;
285 }
286
DeleteHtreeGroups(HTreeGroup * htree_groups,int num_htree_groups)287 static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) {
288 if (htree_groups != NULL) {
289 int i, j;
290 for (i = 0; i < num_htree_groups; ++i) {
291 HuffmanTree* const htrees = htree_groups[i].htrees_;
292 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
293 HuffmanTreeRelease(&htrees[j]);
294 }
295 }
296 free(htree_groups);
297 }
298 }
299
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)300 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
301 int color_cache_bits, int allow_recursion) {
302 int i, j;
303 VP8LBitReader* const br = &dec->br_;
304 VP8LMetadata* const hdr = &dec->hdr_;
305 uint32_t* huffman_image = NULL;
306 HTreeGroup* htree_groups = NULL;
307 int num_htree_groups = 1;
308
309 if (allow_recursion && VP8LReadBits(br, 1)) {
310 // use meta Huffman codes.
311 const int huffman_precision = VP8LReadBits(br, 3) + 2;
312 const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
313 const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
314 const int huffman_pixs = huffman_xsize * huffman_ysize;
315 if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
316 &huffman_image)) {
317 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
318 goto Error;
319 }
320 hdr->huffman_subsample_bits_ = huffman_precision;
321 for (i = 0; i < huffman_pixs; ++i) {
322 // The huffman data is stored in red and green bytes.
323 const int group = (huffman_image[i] >> 8) & 0xffff;
324 huffman_image[i] = group;
325 if (group >= num_htree_groups) {
326 num_htree_groups = group + 1;
327 }
328 }
329 }
330
331 if (br->error_) goto Error;
332
333 assert(num_htree_groups <= 0x10000);
334 htree_groups =
335 (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups,
336 sizeof(*htree_groups));
337 if (htree_groups == NULL) {
338 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
339 goto Error;
340 }
341
342 for (i = 0; i < num_htree_groups; ++i) {
343 HuffmanTree* const htrees = htree_groups[i].htrees_;
344 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
345 int alphabet_size = kAlphabetSize[j];
346 if (j == 0 && color_cache_bits > 0) {
347 alphabet_size += 1 << color_cache_bits;
348 }
349 if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error;
350 }
351 }
352
353 // All OK. Finalize pointers and return.
354 hdr->huffman_image_ = huffman_image;
355 hdr->num_htree_groups_ = num_htree_groups;
356 hdr->htree_groups_ = htree_groups;
357 return 1;
358
359 Error:
360 free(huffman_image);
361 DeleteHtreeGroups(htree_groups, num_htree_groups);
362 return 0;
363 }
364
365 //------------------------------------------------------------------------------
366 // Scaling.
367
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)368 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
369 const int num_channels = 4;
370 const int in_width = io->mb_w;
371 const int out_width = io->scaled_width;
372 const int in_height = io->mb_h;
373 const int out_height = io->scaled_height;
374 const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
375 int32_t* work; // Rescaler work area.
376 const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
377 uint32_t* scaled_data; // Temporary storage for scaled BGRA data.
378 const uint64_t memory_size = sizeof(*dec->rescaler) +
379 work_size * sizeof(*work) +
380 scaled_data_size * sizeof(*scaled_data);
381 uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
382 if (memory == NULL) {
383 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
384 return 0;
385 }
386 assert(dec->rescaler_memory == NULL);
387 dec->rescaler_memory = memory;
388
389 dec->rescaler = (WebPRescaler*)memory;
390 memory += sizeof(*dec->rescaler);
391 work = (int32_t*)memory;
392 memory += work_size * sizeof(*work);
393 scaled_data = (uint32_t*)memory;
394
395 WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
396 out_width, out_height, 0, num_channels,
397 in_width, out_width, in_height, out_height, work);
398 return 1;
399 }
400
401 //------------------------------------------------------------------------------
402 // Export to ARGB
403
404 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)405 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
406 int rgba_stride, uint8_t* const rgba) {
407 const uint32_t* const src = (const uint32_t*)rescaler->dst;
408 const int dst_width = rescaler->dst_width;
409 int num_lines_out = 0;
410 while (WebPRescalerHasPendingOutput(rescaler)) {
411 uint8_t* const dst = rgba + num_lines_out * rgba_stride;
412 WebPRescalerExportRow(rescaler);
413 VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
414 ++num_lines_out;
415 }
416 return num_lines_out;
417 }
418
419 // Emit scaled rows.
EmitRescaledRows(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_h,uint8_t * const out,int out_stride)420 static int EmitRescaledRows(const VP8LDecoder* const dec,
421 const uint32_t* const data, int in_stride, int mb_h,
422 uint8_t* const out, int out_stride) {
423 const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
424 const uint8_t* const in = (const uint8_t*)data;
425 int num_lines_in = 0;
426 int num_lines_out = 0;
427 while (num_lines_in < mb_h) {
428 const uint8_t* const row_in = in + num_lines_in * in_stride;
429 uint8_t* const row_out = out + num_lines_out * out_stride;
430 num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
431 row_in, in_stride);
432 num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
433 }
434 return num_lines_out;
435 }
436
437 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint32_t * const data,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)438 static int EmitRows(WEBP_CSP_MODE colorspace,
439 const uint32_t* const data, int in_stride,
440 int mb_w, int mb_h,
441 uint8_t* const out, int out_stride) {
442 int lines = mb_h;
443 const uint8_t* row_in = (const uint8_t*)data;
444 uint8_t* row_out = out;
445 while (lines-- > 0) {
446 VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
447 row_in += in_stride;
448 row_out += out_stride;
449 }
450 return mb_h; // Num rows out == num rows in.
451 }
452
453 //------------------------------------------------------------------------------
454 // Export to YUVA
455
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)456 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
457 const WebPDecBuffer* const output) {
458 const WebPYUVABuffer* const buf = &output->u.YUVA;
459 // first, the luma plane
460 {
461 int i;
462 uint8_t* const y = buf->y + y_pos * buf->y_stride;
463 for (i = 0; i < width; ++i) {
464 const uint32_t p = src[i];
465 y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff);
466 }
467 }
468
469 // then U/V planes
470 {
471 uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
472 uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
473 const int uv_width = width >> 1;
474 int i;
475 for (i = 0; i < uv_width; ++i) {
476 const uint32_t v0 = src[2 * i + 0];
477 const uint32_t v1 = src[2 * i + 1];
478 // VP8RGBToU/V expects four accumulated pixels. Hence we need to
479 // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
480 const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
481 const int g = ((v0 >> 7) & 0x1fe) + ((v1 >> 7) & 0x1fe);
482 const int b = ((v0 << 1) & 0x1fe) + ((v1 << 1) & 0x1fe);
483 if (!(y_pos & 1)) { // even lines: store values
484 u[i] = VP8RGBToU(r, g, b);
485 v[i] = VP8RGBToV(r, g, b);
486 } else { // odd lines: average with previous values
487 const int tmp_u = VP8RGBToU(r, g, b);
488 const int tmp_v = VP8RGBToV(r, g, b);
489 // Approximated average-of-four. But it's an acceptable diff.
490 u[i] = (u[i] + tmp_u + 1) >> 1;
491 v[i] = (v[i] + tmp_v + 1) >> 1;
492 }
493 }
494 if (width & 1) { // last pixel
495 const uint32_t v0 = src[2 * i + 0];
496 const int r = (v0 >> 14) & 0x3fc;
497 const int g = (v0 >> 6) & 0x3fc;
498 const int b = (v0 << 2) & 0x3fc;
499 if (!(y_pos & 1)) { // even lines
500 u[i] = VP8RGBToU(r, g, b);
501 v[i] = VP8RGBToV(r, g, b);
502 } else { // odd lines (note: we could just skip this)
503 const int tmp_u = VP8RGBToU(r, g, b);
504 const int tmp_v = VP8RGBToV(r, g, b);
505 u[i] = (u[i] + tmp_u + 1) >> 1;
506 v[i] = (v[i] + tmp_v + 1) >> 1;
507 }
508 }
509 }
510 // Lastly, store alpha if needed.
511 if (buf->a != NULL) {
512 int i;
513 uint8_t* const a = buf->a + y_pos * buf->a_stride;
514 for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
515 }
516 }
517
ExportYUVA(const VP8LDecoder * const dec,int y_pos)518 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
519 WebPRescaler* const rescaler = dec->rescaler;
520 const uint32_t* const src = (const uint32_t*)rescaler->dst;
521 const int dst_width = rescaler->dst_width;
522 int num_lines_out = 0;
523 while (WebPRescalerHasPendingOutput(rescaler)) {
524 WebPRescalerExportRow(rescaler);
525 ConvertToYUVA(src, dst_width, y_pos, dec->output_);
526 ++y_pos;
527 ++num_lines_out;
528 }
529 return num_lines_out;
530 }
531
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_h)532 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
533 const uint32_t* const data,
534 int in_stride, int mb_h) {
535 const uint8_t* const in = (const uint8_t*)data;
536 int num_lines_in = 0;
537 int y_pos = dec->last_out_row_;
538 while (num_lines_in < mb_h) {
539 const uint8_t* const row_in = in + num_lines_in * in_stride;
540 num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
541 row_in, in_stride);
542 y_pos += ExportYUVA(dec, y_pos);
543 }
544 return y_pos;
545 }
546
EmitRowsYUVA(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_w,int num_rows)547 static int EmitRowsYUVA(const VP8LDecoder* const dec,
548 const uint32_t* const data, int in_stride,
549 int mb_w, int num_rows) {
550 int y_pos = dec->last_out_row_;
551 const uint8_t* row_in = (const uint8_t*)data;
552 while (num_rows-- > 0) {
553 ConvertToYUVA((const uint32_t*)row_in, mb_w, y_pos, dec->output_);
554 row_in += in_stride;
555 ++y_pos;
556 }
557 return y_pos;
558 }
559
560 //------------------------------------------------------------------------------
561 // Cropping.
562
563 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
564 // crop options. Also updates the input data pointer, so that it points to the
565 // start of the cropped window.
566 // Note that 'pixel_stride' is in units of 'uint32_t' (and not 'bytes).
567 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,const uint32_t ** const in_data,int pixel_stride)568 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
569 const uint32_t** const in_data, int pixel_stride) {
570 assert(y_start < y_end);
571 assert(io->crop_left < io->crop_right);
572 if (y_end > io->crop_bottom) {
573 y_end = io->crop_bottom; // make sure we don't overflow on last row.
574 }
575 if (y_start < io->crop_top) {
576 const int delta = io->crop_top - y_start;
577 y_start = io->crop_top;
578 *in_data += pixel_stride * delta;
579 }
580 if (y_start >= y_end) return 0; // Crop window is empty.
581
582 *in_data += io->crop_left;
583
584 io->mb_y = y_start - io->crop_top;
585 io->mb_w = io->crop_right - io->crop_left;
586 io->mb_h = y_end - y_start;
587 return 1; // Non-empty crop window.
588 }
589
590 //------------------------------------------------------------------------------
591
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)592 static WEBP_INLINE int GetMetaIndex(
593 const uint32_t* const image, int xsize, int bits, int x, int y) {
594 if (bits == 0) return 0;
595 return image[xsize * (y >> bits) + (x >> bits)];
596 }
597
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)598 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
599 int x, int y) {
600 const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
601 hdr->huffman_subsample_bits_, x, y);
602 assert(meta_index < hdr->num_htree_groups_);
603 return hdr->htree_groups_ + meta_index;
604 }
605
606 //------------------------------------------------------------------------------
607 // Main loop, with custom row-processing function
608
609 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
610
ApplyInverseTransforms(VP8LDecoder * const dec,int num_rows,const uint32_t * const rows)611 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
612 const uint32_t* const rows) {
613 int n = dec->next_transform_;
614 const int cache_pixs = dec->width_ * num_rows;
615 const int start_row = dec->last_row_;
616 const int end_row = start_row + num_rows;
617 const uint32_t* rows_in = rows;
618 uint32_t* const rows_out = dec->argb_cache_;
619
620 // Inverse transforms.
621 // TODO: most transforms only need to operate on the cropped region only.
622 memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
623 while (n-- > 0) {
624 VP8LTransform* const transform = &dec->transforms_[n];
625 VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
626 rows_in = rows_out;
627 }
628 }
629
630 // Special method for paletted alpha data.
ApplyInverseTransformsAlpha(VP8LDecoder * const dec,int num_rows,const uint8_t * const rows)631 static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows,
632 const uint8_t* const rows) {
633 const int start_row = dec->last_row_;
634 const int end_row = start_row + num_rows;
635 const uint8_t* rows_in = rows;
636 uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row;
637 VP8LTransform* const transform = &dec->transforms_[0];
638 assert(dec->next_transform_ == 1);
639 assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
640 VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in,
641 rows_out);
642 }
643
644 // Processes (transforms, scales & color-converts) the rows decoded after the
645 // last call.
ProcessRows(VP8LDecoder * const dec,int row)646 static void ProcessRows(VP8LDecoder* const dec, int row) {
647 const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
648 const int num_rows = row - dec->last_row_;
649
650 if (num_rows <= 0) return; // Nothing to be done.
651 ApplyInverseTransforms(dec, num_rows, rows);
652
653 // Emit output.
654 {
655 VP8Io* const io = dec->io_;
656 const uint32_t* rows_data = dec->argb_cache_;
657 if (!SetCropWindow(io, dec->last_row_, row, &rows_data, io->width)) {
658 // Nothing to output (this time).
659 } else {
660 const WebPDecBuffer* const output = dec->output_;
661 const int in_stride = io->width * sizeof(*rows_data);
662 if (output->colorspace < MODE_YUV) { // convert to RGBA
663 const WebPRGBABuffer* const buf = &output->u.RGBA;
664 uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
665 const int num_rows_out = io->use_scaling ?
666 EmitRescaledRows(dec, rows_data, in_stride, io->mb_h,
667 rgba, buf->stride) :
668 EmitRows(output->colorspace, rows_data, in_stride,
669 io->mb_w, io->mb_h, rgba, buf->stride);
670 // Update 'last_out_row_'.
671 dec->last_out_row_ += num_rows_out;
672 } else { // convert to YUVA
673 dec->last_out_row_ = io->use_scaling ?
674 EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
675 EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
676 }
677 assert(dec->last_out_row_ <= output->height);
678 }
679 }
680
681 // Update 'last_row_'.
682 dec->last_row_ = row;
683 assert(dec->last_row_ <= dec->height_);
684 }
685
686 #define DECODE_DATA_FUNC(FUNC_NAME, TYPE, STORE_PIXEL) \
687 static int FUNC_NAME(VP8LDecoder* const dec, TYPE* const data, int width, \
688 int height, ProcessRowsFunc process_func) { \
689 int ok = 1; \
690 int col = 0, row = 0; \
691 VP8LBitReader* const br = &dec->br_; \
692 VP8LMetadata* const hdr = &dec->hdr_; \
693 HTreeGroup* htree_group = hdr->htree_groups_; \
694 TYPE* src = data; \
695 TYPE* last_cached = data; \
696 TYPE* const src_end = data + width * height; \
697 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; \
698 const int color_cache_limit = len_code_limit + hdr->color_cache_size_; \
699 VP8LColorCache* const color_cache = \
700 (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL; \
701 const int mask = hdr->huffman_mask_; \
702 assert(htree_group != NULL); \
703 while (!br->eos_ && src < src_end) { \
704 int code; \
705 /* Only update when changing tile. Note we could use this test: */ \
706 /* if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed */ \
707 /* but that's actually slower and needs storing the previous col/row. */ \
708 if ((col & mask) == 0) { \
709 htree_group = GetHtreeGroupForPos(hdr, col, row); \
710 } \
711 VP8LFillBitWindow(br); \
712 code = ReadSymbol(&htree_group->htrees_[GREEN], br); \
713 if (code < NUM_LITERAL_CODES) { /* Literal*/ \
714 int red, green, blue, alpha; \
715 red = ReadSymbol(&htree_group->htrees_[RED], br); \
716 green = code; \
717 VP8LFillBitWindow(br); \
718 blue = ReadSymbol(&htree_group->htrees_[BLUE], br); \
719 alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br); \
720 *src = STORE_PIXEL(alpha, red, green, blue); \
721 AdvanceByOne: \
722 ++src; \
723 ++col; \
724 if (col >= width) { \
725 col = 0; \
726 ++row; \
727 if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) { \
728 process_func(dec, row); \
729 } \
730 if (color_cache != NULL) { \
731 while (last_cached < src) { \
732 VP8LColorCacheInsert(color_cache, *last_cached++); \
733 } \
734 } \
735 } \
736 } else if (code < len_code_limit) { /* Backward reference */ \
737 int dist_code, dist; \
738 const int length_sym = code - NUM_LITERAL_CODES; \
739 const int length = GetCopyLength(length_sym, br); \
740 const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br); \
741 VP8LFillBitWindow(br); \
742 dist_code = GetCopyDistance(dist_symbol, br); \
743 dist = PlaneCodeToDistance(width, dist_code); \
744 if (src - data < dist || src_end - src < length) { \
745 ok = 0; \
746 goto End; \
747 } \
748 { \
749 int i; \
750 for (i = 0; i < length; ++i) src[i] = src[i - dist]; \
751 src += length; \
752 } \
753 col += length; \
754 while (col >= width) { \
755 col -= width; \
756 ++row; \
757 if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) { \
758 process_func(dec, row); \
759 } \
760 } \
761 if (src < src_end) { \
762 htree_group = GetHtreeGroupForPos(hdr, col, row); \
763 if (color_cache != NULL) { \
764 while (last_cached < src) { \
765 VP8LColorCacheInsert(color_cache, *last_cached++); \
766 } \
767 } \
768 } \
769 } else if (code < color_cache_limit) { /* Color cache */ \
770 const int key = code - len_code_limit; \
771 assert(color_cache != NULL); \
772 while (last_cached < src) { \
773 VP8LColorCacheInsert(color_cache, *last_cached++); \
774 } \
775 *src = VP8LColorCacheLookup(color_cache, key); \
776 goto AdvanceByOne; \
777 } else { /* Not reached */ \
778 ok = 0; \
779 goto End; \
780 } \
781 ok = !br->error_; \
782 if (!ok) goto End; \
783 } \
784 /* Process the remaining rows corresponding to last row-block. */ \
785 if (process_func != NULL) process_func(dec, row); \
786 End: \
787 if (br->error_ || !ok || (br->eos_ && src < src_end)) { \
788 ok = 0; \
789 dec->status_ = \
790 (!br->eos_) ? VP8_STATUS_BITSTREAM_ERROR : VP8_STATUS_SUSPENDED; \
791 } else if (src == src_end) { \
792 dec->state_ = READ_DATA; \
793 } \
794 return ok; \
795 }
796
GetARGBPixel(int alpha,int red,int green,int blue)797 static WEBP_INLINE uint32_t GetARGBPixel(int alpha, int red, int green,
798 int blue) {
799 return (alpha << 24) | (red << 16) | (green << 8) | blue;
800 }
801
GetAlphaPixel(int alpha,int red,int green,int blue)802 static WEBP_INLINE uint8_t GetAlphaPixel(int alpha, int red, int green,
803 int blue) {
804 (void)alpha;
805 (void)red;
806 (void)blue;
807 return green; // Alpha value is stored in green channel.
808 }
809
DECODE_DATA_FUNC(DecodeImageData,uint32_t,GetARGBPixel)810 DECODE_DATA_FUNC(DecodeImageData, uint32_t, GetARGBPixel)
811 DECODE_DATA_FUNC(DecodeAlphaData, uint8_t, GetAlphaPixel)
812
813 #undef DECODE_DATA_FUNC
814
815 // -----------------------------------------------------------------------------
816 // VP8LTransform
817
818 static void ClearTransform(VP8LTransform* const transform) {
819 free(transform->data_);
820 transform->data_ = NULL;
821 }
822
823 // For security reason, we need to remap the color map to span
824 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)825 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
826 int i;
827 const int final_num_colors = 1 << (8 >> transform->bits_);
828 uint32_t* const new_color_map =
829 (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
830 sizeof(*new_color_map));
831 if (new_color_map == NULL) {
832 return 0;
833 } else {
834 uint8_t* const data = (uint8_t*)transform->data_;
835 uint8_t* const new_data = (uint8_t*)new_color_map;
836 new_color_map[0] = transform->data_[0];
837 for (i = 4; i < 4 * num_colors; ++i) {
838 // Equivalent to AddPixelEq(), on a byte-basis.
839 new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
840 }
841 for (; i < 4 * final_num_colors; ++i)
842 new_data[i] = 0; // black tail.
843 free(transform->data_);
844 transform->data_ = new_color_map;
845 }
846 return 1;
847 }
848
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)849 static int ReadTransform(int* const xsize, int const* ysize,
850 VP8LDecoder* const dec) {
851 int ok = 1;
852 VP8LBitReader* const br = &dec->br_;
853 VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
854 const VP8LImageTransformType type =
855 (VP8LImageTransformType)VP8LReadBits(br, 2);
856
857 // Each transform type can only be present once in the stream.
858 if (dec->transforms_seen_ & (1U << type)) {
859 return 0; // Already there, let's not accept the second same transform.
860 }
861 dec->transforms_seen_ |= (1U << type);
862
863 transform->type_ = type;
864 transform->xsize_ = *xsize;
865 transform->ysize_ = *ysize;
866 transform->data_ = NULL;
867 ++dec->next_transform_;
868 assert(dec->next_transform_ <= NUM_TRANSFORMS);
869
870 switch (type) {
871 case PREDICTOR_TRANSFORM:
872 case CROSS_COLOR_TRANSFORM:
873 transform->bits_ = VP8LReadBits(br, 3) + 2;
874 ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
875 transform->bits_),
876 VP8LSubSampleSize(transform->ysize_,
877 transform->bits_),
878 0, dec, &transform->data_);
879 break;
880 case COLOR_INDEXING_TRANSFORM: {
881 const int num_colors = VP8LReadBits(br, 8) + 1;
882 const int bits = (num_colors > 16) ? 0
883 : (num_colors > 4) ? 1
884 : (num_colors > 2) ? 2
885 : 3;
886 *xsize = VP8LSubSampleSize(transform->xsize_, bits);
887 transform->bits_ = bits;
888 ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
889 ok = ok && ExpandColorMap(num_colors, transform);
890 break;
891 }
892 case SUBTRACT_GREEN:
893 break;
894 default:
895 assert(0); // can't happen
896 break;
897 }
898
899 return ok;
900 }
901
902 // -----------------------------------------------------------------------------
903 // VP8LMetadata
904
InitMetadata(VP8LMetadata * const hdr)905 static void InitMetadata(VP8LMetadata* const hdr) {
906 assert(hdr);
907 memset(hdr, 0, sizeof(*hdr));
908 }
909
ClearMetadata(VP8LMetadata * const hdr)910 static void ClearMetadata(VP8LMetadata* const hdr) {
911 assert(hdr);
912
913 free(hdr->huffman_image_);
914 DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_);
915 VP8LColorCacheClear(&hdr->color_cache_);
916 InitMetadata(hdr);
917 }
918
919 // -----------------------------------------------------------------------------
920 // VP8LDecoder
921
VP8LNew(void)922 VP8LDecoder* VP8LNew(void) {
923 VP8LDecoder* const dec = (VP8LDecoder*)calloc(1, sizeof(*dec));
924 if (dec == NULL) return NULL;
925 dec->status_ = VP8_STATUS_OK;
926 dec->action_ = READ_DIM;
927 dec->state_ = READ_DIM;
928 return dec;
929 }
930
VP8LClear(VP8LDecoder * const dec)931 void VP8LClear(VP8LDecoder* const dec) {
932 int i;
933 if (dec == NULL) return;
934 ClearMetadata(&dec->hdr_);
935
936 free(dec->pixels_);
937 dec->pixels_ = NULL;
938 for (i = 0; i < dec->next_transform_; ++i) {
939 ClearTransform(&dec->transforms_[i]);
940 }
941 dec->next_transform_ = 0;
942 dec->transforms_seen_ = 0;
943
944 free(dec->rescaler_memory);
945 dec->rescaler_memory = NULL;
946
947 dec->output_ = NULL; // leave no trace behind
948 }
949
VP8LDelete(VP8LDecoder * const dec)950 void VP8LDelete(VP8LDecoder* const dec) {
951 if (dec != NULL) {
952 VP8LClear(dec);
953 free(dec);
954 }
955 }
956
UpdateDecoder(VP8LDecoder * const dec,int width,int height)957 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
958 VP8LMetadata* const hdr = &dec->hdr_;
959 const int num_bits = hdr->huffman_subsample_bits_;
960 dec->width_ = width;
961 dec->height_ = height;
962
963 hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
964 hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
965 }
966
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)967 static int DecodeImageStream(int xsize, int ysize,
968 int is_level0,
969 VP8LDecoder* const dec,
970 uint32_t** const decoded_data) {
971 int ok = 1;
972 int transform_xsize = xsize;
973 int transform_ysize = ysize;
974 VP8LBitReader* const br = &dec->br_;
975 VP8LMetadata* const hdr = &dec->hdr_;
976 uint32_t* data = NULL;
977 int color_cache_bits = 0;
978
979 // Read the transforms (may recurse).
980 if (is_level0) {
981 while (ok && VP8LReadBits(br, 1)) {
982 ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
983 }
984 }
985
986 // Color cache
987 if (ok && VP8LReadBits(br, 1)) {
988 color_cache_bits = VP8LReadBits(br, 4);
989 ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
990 if (!ok) {
991 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
992 goto End;
993 }
994 }
995
996 // Read the Huffman codes (may recurse).
997 ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
998 color_cache_bits, is_level0);
999 if (!ok) {
1000 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1001 goto End;
1002 }
1003
1004 // Finish setting up the color-cache
1005 if (color_cache_bits > 0) {
1006 hdr->color_cache_size_ = 1 << color_cache_bits;
1007 if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
1008 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1009 ok = 0;
1010 goto End;
1011 }
1012 } else {
1013 hdr->color_cache_size_ = 0;
1014 }
1015 UpdateDecoder(dec, transform_xsize, transform_ysize);
1016
1017 if (is_level0) { // level 0 complete
1018 dec->state_ = READ_HDR;
1019 goto End;
1020 }
1021
1022 {
1023 const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1024 data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1025 if (data == NULL) {
1026 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1027 ok = 0;
1028 goto End;
1029 }
1030 }
1031
1032 // Use the Huffman trees to decode the LZ77 encoded data.
1033 ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL);
1034 ok = ok && !br->error_;
1035
1036 End:
1037
1038 if (!ok) {
1039 free(data);
1040 ClearMetadata(hdr);
1041 // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
1042 // status appropriately.
1043 if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
1044 dec->status_ = VP8_STATUS_SUSPENDED;
1045 }
1046 } else {
1047 if (decoded_data != NULL) {
1048 *decoded_data = data;
1049 } else {
1050 // We allocate image data in this function only for transforms. At level 0
1051 // (that is: not the transforms), we shouldn't have allocated anything.
1052 assert(data == NULL);
1053 assert(is_level0);
1054 }
1055 if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind.
1056 }
1057 return ok;
1058 }
1059
1060 //------------------------------------------------------------------------------
1061 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
AllocateInternalBuffers(VP8LDecoder * const dec,int final_width,size_t bytes_per_pixel)1062 static int AllocateInternalBuffers(VP8LDecoder* const dec, int final_width,
1063 size_t bytes_per_pixel) {
1064 const int argb_cache_needed = (bytes_per_pixel == sizeof(uint32_t));
1065 const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1066 // Scratch buffer corresponding to top-prediction row for transforming the
1067 // first row in the row-blocks. Not needed for paletted alpha.
1068 const uint64_t cache_top_pixels =
1069 argb_cache_needed ? (uint16_t)final_width : 0ULL;
1070 // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
1071 const uint64_t cache_pixels =
1072 argb_cache_needed ? (uint64_t)final_width * NUM_ARGB_CACHE_ROWS : 0ULL;
1073 const uint64_t total_num_pixels =
1074 num_pixels + cache_top_pixels + cache_pixels;
1075
1076 assert(dec->width_ <= final_width);
1077 dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, bytes_per_pixel);
1078 if (dec->pixels_ == NULL) {
1079 dec->argb_cache_ = NULL; // for sanity check
1080 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1081 return 0;
1082 }
1083 dec->argb_cache_ =
1084 argb_cache_needed ? dec->pixels_ + num_pixels + cache_top_pixels : NULL;
1085 return 1;
1086 }
1087
1088 //------------------------------------------------------------------------------
1089
1090 // Special row-processing that only stores the alpha data.
ExtractAlphaRows(VP8LDecoder * const dec,int row)1091 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
1092 const int num_rows = row - dec->last_row_;
1093 const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_;
1094
1095 if (num_rows <= 0) return; // Nothing to be done.
1096 ApplyInverseTransforms(dec, num_rows, in);
1097
1098 // Extract alpha (which is stored in the green plane).
1099 {
1100 const int width = dec->io_->width; // the final width (!= dec->width_)
1101 const int cache_pixs = width * num_rows;
1102 uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
1103 const uint32_t* const src = dec->argb_cache_;
1104 int i;
1105 for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
1106 }
1107 dec->last_row_ = dec->last_out_row_ = row;
1108 }
1109
1110 // Row-processing for the special case when alpha data contains only one
1111 // transform: color indexing.
ExtractPalettedAlphaRows(VP8LDecoder * const dec,int row)1112 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) {
1113 const int num_rows = row - dec->last_row_;
1114 const uint8_t* const in =
1115 (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_;
1116 if (num_rows <= 0) return; // Nothing to be done.
1117 ApplyInverseTransformsAlpha(dec, num_rows, in);
1118 dec->last_row_ = dec->last_out_row_ = row;
1119 }
1120
VP8LDecodeAlphaImageStream(int width,int height,const uint8_t * const data,size_t data_size,uint8_t * const output)1121 int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data,
1122 size_t data_size, uint8_t* const output) {
1123 VP8Io io;
1124 int ok = 0;
1125 VP8LDecoder* const dec = VP8LNew();
1126 size_t bytes_per_pixel = sizeof(uint32_t); // Default: BGRA mode.
1127 if (dec == NULL) return 0;
1128
1129 dec->width_ = width;
1130 dec->height_ = height;
1131 dec->io_ = &io;
1132
1133 VP8InitIo(&io);
1134 WebPInitCustomIo(NULL, &io); // Just a sanity Init. io won't be used.
1135 io.opaque = output;
1136 io.width = width;
1137 io.height = height;
1138
1139 dec->status_ = VP8_STATUS_OK;
1140 VP8LInitBitReader(&dec->br_, data, data_size);
1141
1142 dec->action_ = READ_HDR;
1143 if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Err;
1144
1145 // Special case: if alpha data uses only the color indexing transform and
1146 // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
1147 // method that only needs allocation of 1 byte per pixel (alpha channel).
1148 if (dec->next_transform_ == 1 &&
1149 dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
1150 dec->hdr_.color_cache_size_ == 0) {
1151 bytes_per_pixel = sizeof(uint8_t);
1152 }
1153
1154 // Allocate internal buffers (note that dec->width_ may have changed here).
1155 if (!AllocateInternalBuffers(dec, width, bytes_per_pixel)) goto Err;
1156
1157 // Decode (with special row processing).
1158 dec->action_ = READ_DATA;
1159 ok = (bytes_per_pixel == sizeof(uint8_t)) ?
1160 DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
1161 ExtractPalettedAlphaRows) :
1162 DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1163 ExtractAlphaRows);
1164
1165 Err:
1166 VP8LDelete(dec);
1167 return ok;
1168 }
1169
1170 //------------------------------------------------------------------------------
1171
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1172 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1173 int width, height, has_alpha;
1174
1175 if (dec == NULL) return 0;
1176 if (io == NULL) {
1177 dec->status_ = VP8_STATUS_INVALID_PARAM;
1178 return 0;
1179 }
1180
1181 dec->io_ = io;
1182 dec->status_ = VP8_STATUS_OK;
1183 VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1184 if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1185 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1186 goto Error;
1187 }
1188 dec->state_ = READ_DIM;
1189 io->width = width;
1190 io->height = height;
1191
1192 dec->action_ = READ_HDR;
1193 if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1194 return 1;
1195
1196 Error:
1197 VP8LClear(dec);
1198 assert(dec->status_ != VP8_STATUS_OK);
1199 return 0;
1200 }
1201
VP8LDecodeImage(VP8LDecoder * const dec)1202 int VP8LDecodeImage(VP8LDecoder* const dec) {
1203 const size_t bytes_per_pixel = sizeof(uint32_t);
1204 VP8Io* io = NULL;
1205 WebPDecParams* params = NULL;
1206
1207 // Sanity checks.
1208 if (dec == NULL) return 0;
1209
1210 io = dec->io_;
1211 assert(io != NULL);
1212 params = (WebPDecParams*)io->opaque;
1213 assert(params != NULL);
1214 dec->output_ = params->output;
1215 assert(dec->output_ != NULL);
1216
1217 // Initialization.
1218 if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1219 dec->status_ = VP8_STATUS_INVALID_PARAM;
1220 goto Err;
1221 }
1222
1223 if (!AllocateInternalBuffers(dec, io->width, bytes_per_pixel)) goto Err;
1224
1225 if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1226
1227 // Decode.
1228 dec->action_ = READ_DATA;
1229 if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1230 ProcessRows)) {
1231 goto Err;
1232 }
1233
1234 // Cleanup.
1235 params->last_y = dec->last_out_row_;
1236 VP8LClear(dec);
1237 return 1;
1238
1239 Err:
1240 VP8LClear(dec);
1241 assert(dec->status_ != VP8_STATUS_OK);
1242 return 0;
1243 }
1244
1245 //------------------------------------------------------------------------------
1246
1247 #if defined(__cplusplus) || defined(c_plusplus)
1248 } // extern "C"
1249 #endif
1250